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Abstract 
 

 In this article, we have applied Jacobi polynomial to solve Riccati differential equation of 

fractional order. To do so, we have presented a general formula for the Jacobi operational matrix 

of fractional integral operator. Using the Tau method, the solution of this problem reduces to the 

solution of a system of algebraic equations. The numerical results for the examples presented in 

this paper demonstrate the efficiency of the present method. 
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  Tau method, Riccati equation 
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1. Introduction 
 

Fractional calculus has been one of the most fascinating issues that have attracted the attention of 

large group of scholars, particularly in the fields of mathematics and engineering. This is due to 

the fact that boundary value problems of fractional differential equation can be employed to 
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explain various natural phenomena. Many scholars and authors in different fields such as physics, 

fluid flows, electrical networks, and viscoelasticity have attempted to introduce a model for these 

phenomena through using fractional differential equation [Oldham and Spanier (1974), Ross 

(1975), Kilbas et al. (2006), Podlubny (1999), Lakshmikantham et al. (2009)]. Interested readers 

can check other books and papers in the related literature to get further information about 

fractional calculus [Kilbas et al. (2006), Podlubny (1999)]. 

 

We know that most fractional differential equations do not lend themselves to accurate analytical 

solutions. Consequently, we should use approximate and numerical techniques to find solutions 

for fractional differential equations. Various methods have been employed in the last few decades 

to find such solutions. 

 

These methods include fractional partial differential equations and fractional integro-differential 

equations containing fractional derivatives as Adomian decomposition method [Momani and 

Noor (2006), Ray et al. (2006), Wang (2006)], Variational iteration method [Inc (2008), Odibat 

and Momani (2006), Abbasbandy(2007)], Homotopy analysis method [Hashim (2009), 

Zurigat(2010) ] and other methods [Kazemi (2011), Sweilam et al. (2012), Erjaee et al. (2011), ]. 

 

Attempts to find accurate and efficient methods to solve fractional Riccati equations have invited 

a lot of active research projects. Scholars and authors have presented various analytical and 

numerical methods for solving this equation. Analytical method includes the ADM and VIM, 

Abbasbandy (2007). Another approach through which we can solve fractional Riccati equation is 

to use HPM, Abbasbandy (2007). 

 

In the present research, we have employed Jacobi orthogonal polynomials to find solutions to the 

Riccati differential equation of fractional order 

 

                                             )()()()()()( 2 xgxyxbxyxaxyD 
,

                                      

)1.1(

 
                                                                       ,)0( dy 

                                                             

)2.1(  

in which D  signifies caputo fractional derivative operator of order )(xa  and )(xb  and )(xg  

stand for real functions on R . The purpose of this study is to generalize Jacobi integral 

operational matrix to fractional calculus. 

 

Thus, these matrices have been used along with the Tau method to reduce the solution of this 

problem to the solution of a system of algebraic equation. 

 

2.  Preliminaries 
 

In this section, several definitions of fractional calculus are presented. The definitions include the 

Jacobi polynomials, the shifted Jacobi polynomials and some of their properties. 

 

2.1. Fractional Calculus 

 

Definition 1.  

A real function )(xf , 0x is considered to be in the space C , )( R if there exists a real 

number )( n ,so that )()( 1 xfxxf n , where   ,0)(1 Cxf and it is said to be in the space kC  

if and only if NkCf k  ,)(

 . 
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Definition 2.  
 

The Riemann-Liouville fractional integral operator of order 0 , of a function
Cf  , 1  

is given by 
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Definition 3. The Caputo's fractional derivative of f is defined as 
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where, 
kCf 1 , kk  1 and Nk . 

 

Property 1.  
 

For kk  1 , kCfNk  , , 1 and 0x   the following properties satisfy 
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2.2.  Jacobi polynomials 

 

The Jacobi polynomials which are represented by ),(, zJn

  are orthogonal with regard to the 

weight function 
 )1()1()( zzzw   on the interval  1,1I   ,  i.e., 
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and nm,
 
is the Kronecker function. 

 

One can easily notice that the weight function )(zw belongs to )(1 IL if and only if .1,   
 

The following three term-recurrence to relation results in the Jacobi polynomials 
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The Jacobi polynomials ),(, zJn

  of degree n  are generated by 
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2.3. The shifted Jacobi polynomials 

 

As a result of changing variable ,12  xz

 

we obtain new orthogonal polynomials )(, xPn



 

with 

weight function      xxxws  1)(,

 

on the interval [0,1]

 

which is called shifted Jacobi 

polynomials. These polynomials have the following orthogonality properties 
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From (2.3), we can write )(, xPn

 as follows: 
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From relations (2.5) and (2.6), we can easily notice that the following properties are satisfied. 
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Property 4. The shifted Jacobi polynomial can be achieved in the following form: 
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Property 5. For    ,0  
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where is ),( stB  Beta function. 

 

2.4.  The approximation of functions in the Sobolov space 

 

Suppose  ,1,0 then for any NNr ( is the set of all non-negative integers), the weighted 

Sobolev space   )(, r

sw
H  can be defined in the usual way, which indicates its inner product, semi-

norm and norm by  
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Now we can suppose the function     r

ws

Hf  ,   in    
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 as presented in the following formula: 
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in which the coefficients ik are generated by: 
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In practice, only the first -m terms shifted Jacobi polynomials are taken into account. Then we 

have: 
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In as much as  ,,mP is a finite dimensional vector space, f has a unique best approximation 

from  ,,mP , say  ,,)( m

m Pxf   that is: 
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Guo and Wang (2004), came to the conclusion that for any     r
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Hf  , , Nr  and r 0 , a 

generic positive constant C independent of any function, m , and  exists so that: 
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3.   The operational matrix of fractional integral 
 

We can express Riemann-Liouville fractional integral operator of order   of the vector p by: 
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where 
)(Q is the nm operational matrix of Riemann-Liouville fractional integral of order  . 

 

Theorem 3.1.  
 

If 
)(Q  is the nm operational matrix of Riemann-Liouville fractional integral of order  , then 

the elements of this matrix are taken as: 
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Now, we define the error vector ,E  as  

 

E .)( PQPI    

 

The maximum norm of vector E  is defined as follows (Guo and Wang (2004)) 
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where  00 x  and  .,1max 00 xxL                       

 

4.  Main Results 

 

Lemma 4.1.   
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Now if we suppose that  
)(Q  is the same in Theorem (3.1). Then, 
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If we consider  110 ,,,  nffff   with 
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and applying (2.8)-(2.9), the following is obtained: 
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The proof is complete. 

 

Now, we consider the Riccati equation with fractional orders of the form 

 

                             
2( ) ( ) ( ) ( ), 0 1,D y x a y x b y x g x     

                        

)2.4(

 
                                                                       ,)0( dy 

                                                             

)3.4(  
 

where dba ,, are real constant coefficients and D stand for the Caputo fractional derivative of 

order  . 

 

Using Definition (3), we can rewrite Equation (4.2): 

 

                            
1 2( ) ( ) ( ) ( ), 0 1.I Dy x a y x b y x g x      

                      

)4.4(

  

To solve problems (4.2)-(4.3) we approximate )(xyD  and )(xg  by the shifted Jacobi 

polynomials as: 
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From (4.5), we get 
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Consequently, 
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and 

                                  

  ,)0()0(2)()(
2)1()1()1(2 yyPQKKQPPQKxy TTTT 
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Moreover, we have 

                                      .)()( )1(11 PQKPKIxyDIxyD TT   
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Using (4.6) and (4.8)-(4.10), problems (4.2)-(4.3) can be rewritten as: 
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Applying lemma (4.1), this relation reduces to the following relation 
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where PCy 1)0(  , PCPy 2)0(   and   PCy 3

2
)0(  can be calculated in the same way as (4.1). 

 

By applying the typical Tau method see Canuto et al. (1988),  a system of algebraic equation 
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)13.4(  

                                                                ,31 CCGF T    
                                                

)14.4(  

is obtained. 

 

5. Numerical results 
 

In this section, we applied the method presented in this paper and solved some examples. The 

examples reported in this section were selected from a large collection of problem to which this 

method could be applied. 

 

Example 1.  
 

We consider the following fractional Riccati differential equation 

 

                                    10,10),()()(2)( 2   xxgxyxyxyD
                       

)1.5(

 with initial condition 

                                                                       .0)0( y
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The exact solution of this problem for 1  was found to be of the form 
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By using the method that was elaborated in previous section, we have the approximations (4.5)-

(4.10). 
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Using (4.11) and Tau method, the problems (5.1)-(5.2) are transformed to the following relation 
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Now, from (5.3) we conclude that   .40791.891457.6
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Example 2.  

 

We consider the following fractional Riccati differential equation 

 

                                        10,10,0)()()( 2   xxyxyxyD
                          

)4.5(

 with initial condition 
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The exact solution of this problem is 

 

.
1
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x
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e
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




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By using the method that was elaborated in previous section, we have the approximations (4.5)-

(4.10). 

Figure1.   The approximate solution in the case 3,5,1   m   and 2   of 

Example1. 
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Using (4.11) and Tau method, the problems (5.4)-(5.5) are transformed to the following relation 
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Example 3.  

 

As a final example, we consider the following fractional Riccati differential equation 
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The exact solution of this problem is 
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where )(tJ is the Bessel function of the first kind. 
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In the same way as in the previous examples, by using (4.11), the problems (5.7)-(5.8) are 

transformed to the following relation: 
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Figure 2. The approximate solution in the case  3,5,1   m   and 2  of 

Example2. 
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Now, using Tau method, we reduce the problem to solve the following system of algebraic 

equation 
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In Table 1, the approximate solutions for test problems 1, 2 and 3 obtained by different values of 

,,m  and   using the presented method. 
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Table 1.  The approximate solutions for examples 1, 2 and 3 
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5.  Conclusion 
 

In this paper, we have proposed a numerical method for solving Riccati differential equation of 

fractional order. The shifted Jacobi polynomial integral operational matrix was developed to 

solve this equation.  The numerical results showed this method is powerful, new and interesting. 

All of the numerical computations in this study have been done on a PC applying some programs 

written in MAPLE. 

 

 

REFERENCES 
 

 

Abbasbandy, S. (2006). Homotopy perturbation method for quadratic Riccati differential 

equation and comparison with Adomian decomposition method, Appl. Math. Comput. 

172:485-490. 

Abbasbandy, S. (2007). An approximation solution of a nonlinear equation with Riemann-

Liouville's fractional derivatives by He's variational iteration method, J. Comput. Appl. 

Math. 207:53-58. 

Abbasbandy, S. (2007). A new application of He’s variational iteration method for quadratic 

Riccati differential equation by using Adomians polynomials, J. Comput. Appl. Math. 207 

(1) 159-163. 

Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A. (1988). Spectral Methods in Fluid 

Dynamic, Prentice-Hall, Englewood Cliffs, NJ. 

Erjaee, G.H., Taghvafard, H. and Alnasr, M. (2011). Numerical solution of the high thermal loss 

problem presented by a fractional differential equation,  Commun. Nonlinear. Sci. Numer. 

Simul. 16 :1356-1362. 

Guo, B.Y., Wang, L.L. (2004). Jacobi approximations in non-uniformly jacobi-weighted sobolev 

spaces, J. Approx. Theory. 128:1–41. 

Hashim, I., Abdulaziz, O., Momani, S. (2009). Homotopy analysis method for fractional IVPs,  

Commun. Nonlinear Sci. Numer. Simul. 14:674-684. 

Inc, M. (2008). The approximate and exact solutions of the space- and time-fractional Burgers 

equations with initial conditions by variational iteration method, J. Math. Anal. Appl. 345: 

476-484. 

Kazemi, M. and Erjaee, G. H. (2011). Analytical and numerical solutions of different parabolic 

heat equations presented in the form of multi-term fractional differential equations, Iranian 

Journal of Science and Technology. Transaction A. Science, vol. 35, no. 3, pp. 185-192. 

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J. (2006). Theory and application of fractional 

differential equations,   Elsevier B.V, Netherlands. 

Lakshmikantham, V., Leela, S., Vasundhara,  J. (2009). Theory of fractional dynamic systems,  

Cambridge Academic Publishers, Cambridge. 

Momani, S., Noor, M.A. (2006). Numerical methods for fourth-order fractional integro-

differential equations, Appl. Math. Comput. 182:754-760. 

Odibat, Z., Momani, S. (2006). Application of variational iteration method to nonlinear 

differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul. 7:271-279. 

Oldham, K.B., Spanier, J. (1974). The fractional calculus, Academic press, New York and 

London. 



892                                                                                                                                                         A. Neamaty et al. 
 

Podlubny,  I. (1999).  Fractional differential equations, Academic Press, San Diego, CA. 

Ray, S.S., Chaudhuri, K.S., Bera, R.K. (2006). Analytical approximate solution of nonlinear 

dynamic system containing fractional derivative by modified decomposition method,  Appl. 

Math. Comput. 182:544-552. 

Ross (Ed.), B. (1975). The fractional calculus and its application, in: Lecture notes in 

mathematics, vol.475, Springer-Verlag, Berlin. 

Sweilam, N.H., Khader, M.M. and Mahdy, A.M. (2012). Numerical Studies for Solving 

Fractional Riccati Differential Equation. Appl. Appl. Math., 7: 595 - 608. 

Wang, Q., (2006). Numerical solutions for fractional KdV-Burgers equation by Adomian 

decomposition method, Appl. Math. Comput. 182: 1048-1055. 

Zurigat, M., Momani, S., Alawneh, A. (2010). Analytical approximate solutions of systems of 

fractional algebraic-differential equations by homotopy analysis method, Comput. Math. 

Appl. 59: 1227-1235. 


