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Abstract

In this article, we have applied Jacobi polynomial to solve Riccati differential equation of
fractional order. To do so, we have presented a general formula for the Jacobi operational matrix
of fractional integral operator. Using the Tau method, the solution of this problem reduces to the
solution of a system of algebraic equations. The numerical results for the examples presented in

this paper demonstrate the efficiency of the present method.
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1. Introduction

Fractional calculus has been one of the most fascinating issues that have attracted the attention of
large group of scholars, particularly in the fields of mathematics and engineering. This is due to
the fact that boundary value problems of fractional differential equation can be employed to
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explain various natural phenomena. Many scholars and authors in different fields such as physics,
fluid flows, electrical networks, and viscoelasticity have attempted to introduce a model for these
phenomena through using fractional differential equation [Oldham and Spanier (1974), Ross
(1975), Kilbas et al. (2006), Podlubny (1999), Lakshmikantham et al. (2009)]. Interested readers
can check other books and papers in the related literature to get further information about
fractional calculus [Kilbas et al. (2006), Podlubny (1999)].

We know that most fractional differential equations do not lend themselves to accurate analytical
solutions. Consequently, we should use approximate and numerical techniques to find solutions
for fractional differential equations. Various methods have been employed in the last few decades
to find such solutions.

These methods include fractional partial differential equations and fractional integro-differential
equations containing fractional derivatives as Adomian decomposition method [Momani and
Noor (2006), Ray et al. (2006), Wang (2006)], Variational iteration method [Inc (2008), Odibat
and Momani (2006), Abbasbandy(2007)], Homotopy analysis method [Hashim (2009),
Zurigat(2010) ] and other methods [Kazemi (2011), Sweilam et al. (2012), Erjaee et al. (2011), ].

Attempts to find accurate and efficient methods to solve fractional Riccati equations have invited
a lot of active research projects. Scholars and authors have presented various analytical and
numerical methods for solving this equation. Analytical method includes the ADM and VIM,
Abbasbandy (2007). Another approach through which we can solve fractional Riccati equation is
to use HPM, Abbasbandy (2007).

In the present research, we have employed Jacobi orthogonal polynomials to find solutions to the
Riccati differential equation of fractional order

D*y(x) +a(x)y(x) +b(x) y*(x) = 9(x), @1
y(0)=d, 1.2)

in which D* signifies caputo fractional derivative operator of ordera(x) and b(x) and g(x)

stand for real functions on R. The purpose of this study is to generalize Jacobi integral
operational matrix to fractional calculus.

Thus, these matrices have been used along with the Tau method to reduce the solution of this
problem to the solution of a system of algebraic equation.

2. Preliminaries

In this section, several definitions of fractional calculus are presented. The definitions include the
Jacobi polynomials, the shifted Jacobi polynomials and some of their properties.

2.1. Fractional Calculus

Definition 1.

A real function f(x),X>0 is considered to be in the space C,, (v e R)if there exists a real
number n(>v) ,so that f(x)=x" f,(x), where fl(x)eC[O, oo)J and it is said to be in the space C'
ifand only if f*eC ,keN.
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Definition 2.

The Riemann-Liouville fractional integral operator of order >0, of a function f cc_,v>-1
is given by

I“f(x)——J. (x—r)**f(r)dr,
1 £ () =12 F(X), 1°F(x) = f(x).

Definition 3. The Caputo's fractional derivative of f is defined as

D” f(x) =1 D" f(x) = F(kl_ ” [L =y 19y dr, x>0,
where, f eC, k—1<a<kand keN.

Property 1.

Fork—1<a<k,keN, f eCk, v>-1land x>0 the following properties satisfy
D212 f(x)=f(X),

ii) 12 D% f(x) = f(x)— Zf(”(a )(X a)

2.2. Jacobi polynomials

The Jacobi polynomials which are represented by J“#(z), are orthogonal with regard to the
weight function W(z) = (L1-2)“(L-2)” ontheinterval | =(-11), i.e

jJaﬂ(z)Jaﬂ(z)dz yers, (2.1)
where
wh _ 2P TN+ a+)T(n+ S +1)
n n2n+a+p+HI(n+a+ B+1)
(2.2)

and o,, , is the Kronecker function.

One can easily notice that the weight function w(z) belongs to L'(1) if and only if «, B>-1

The following three term-recurrence to relation results in the Jacobi polynomials

Jek =1, 308 :%(a+ﬂ+2)z+%(a—ﬁ),
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37 (@) =(a,2-b,)37"(2) —c, 357 (2),n>1,

n+1

where
. _(@n+a+p+1)2n+a+p+2)
" 2n+D(n+a+p+1)
. _(@n+a+p+1)2n+a+p+2)
" 2n+D(n+a+p+1)
2n+a+ B+ n+a)n+p)

" n+)(n+a+p+12n+a+A)

The Jacobi polynomials J“#(z), of degree n are generated by

ir@=23 " e 23

n-Ii

2.3. The shifted Jacobi polynomials

As a result of changing variable z=2x-1, we obtain new orthogonal polynomials P*#(x) with

weight function w/*#(x)=(1-x)'x” on the interval [0,1] which is called shifted Jacobi
polynomials. These polynomials have the following orthogonality properties

[.PE (P2 (i) (x) ok = 976, (2.4)

7/n

af _
where 9, YR

From (2.3), we can write P*#(x)as follows:

P/ (x) i[nmlmﬂ ~1)x", (2.5)

i=0 n-—I

P’ (x) =Zn‘,|2(n+.aln+ﬁj(1j( 1)'x™, (2.6)

From relations (2.5) and (2.6), we can easily notice that the following properties are satisfied.

Property 2.
n+
Pe/(0) = (—1)”( “]-
n
Property 3.
d" P (x) = rn+a+pB+i+l) pipvi ().
dx' r(n+a+p+1)
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Property 4. The shifted Jacobi polynomial can be achieved in the following form:
n
P’ ()= P,
i=0

in which

| n-I

o = (1) (nwﬁﬁﬂ][nw_{], i=0,1,...n.

Property 5. For x>0,
i
[ :x"Pnf"ﬁ oW () dx =" pUB(u+1+ B+La+1) 2.7)
1=0

where is B(t,s) Beta function.
2.4. The approximation of functions in the Sobolov space

Suppose Q:(O,l), then for any re N (N is the set of all non-negative integers), the weighted
Sobolev space H ., (€)can be defined in the usual way, which indicates its inner product, semi-

norm and norm by

(U, V) ,|v|rnga, ,and ||v||rnga, ,, respectively.

Particularly,
L2, (©Q)=HY., (©),and |v

HE, ()

wieh) = ”V”r,wg"'ﬂ) ’

{f | f can be measured, V] .. <00},

r
I e =
0

k=

o f

2
r’W£a+k,/i+k) !

2

|f|r,w£“'ﬂ a; f

) =

2
W£a+r,ﬂ+r) '
Now we can suppose the function f e H' ., (Q) in

WS

P™ < (x) =span { p5” (X), Py’ (X),.... P ()} »

as presented in the following formula:

£00 =k B (4. 2.7)

in which the coefficients k; are generated by:
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_ 1 e (a.5) i
k‘_lgj“ﬁ-[op‘ (x) f ()W *Pdx, i=04,... (2.8)

In practice, only the first m-terms shifted Jacobi polynomials are taken into account. Then we
have:

f00~ Sk PP (0 =K p, 29)

with
K =[ky, Ky ko ] (2.10)
P =[p&” (%), =’ (X),..., P24 (). (2.11)

In as much as P™““is a finite dimensional vector space, f has a unique best approximation
fromP™*/ say f_(x)eP™*” thatis:

vy eP™ ()£, <|F00-y],,.

Guo and Wang (2004), came to the conclusion that for any f e H',,(Q), reN ando<pu<r,a

generic positive constant C independent of any function,m, & and g exists so that:

£~ £000)], o <CUM-DNM+a+ D) [£(3), .

3. The operational matrix of fractional integral

We can express Riemann-Liouville fractional integral operator of order & of the vector P by:
1“P~QWP, (3.0

where Q™ is the mx noperational matrix of Riemann-Liouville fractional integral of order 4 .

Theorem 3.1.

If Q“) is the mxnoperational matrix of Riemann-Liouville fractional integral of order u, then
the elements of this matrix are taken as:

W oy DK+ BK+1+p+ f+1La+1)
— WMij Jijoo T . 3.2
QU =g " ;IZOZ PP (s 01D 3.2)

Now, we define the error vector E, as
E= I”P—Q(”)P.

The maximum norm of vector E is defined as follows (Guo and Wang (2004))
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% (Xij [m;ﬂ}/a(ml,ﬁu), B>0

miT(z —m+1)
|El. < ) (3.3)
JB(a+1, 5 +1), <0,
i (- m+1)(( j (@+Lp p
where x, >0 and L = max{L— x;, X, }
4. Main Results
Lemma4.1.
Let
K =[kos Koo o] P=[057 00, D7 (09,0, A0
Now if we suppose that Q" is the same in Theorem (3.1). Then,
P PT (Q(,U))T K — HP, (4.1)

where H:(hIJ)Jm ..... v with

2a+ﬁ'+l

-y

i T (x)[”_l(“p”(x)qﬂ j WK, i, =041,

i'j 7/1 1=0 \_t=0
Proof:

We denote P*”(x) = p,,i =0,1,...,n—1. We have

Po a5y’ o .. gl |k

(1) (1) (1) k

PPTQ“YK=| oy py oo B q”f” ;
Pt G VO O

n-1 n-1 n-1
koD PPt +k, > PGt ...k s > PP,

i=0 i=0 i—0
n-1 n-1 n-1
1 koY A kY P etk D popal

i=0 i=0 i=0

n-1 n-1 ' n-1
koD Poa PO +K > Py PO+t kL Y Py P,
i=0 i=0 i=0 |

If we consider f =(f,, f,..., f,, ) with



AAM: Intern. J., Vol. 10, Issue 2 (December 2015) 885

fi=k Zpkpqo. +kZpkpq1. +. +kZpkp.qn_1., j=01..,n-1

i=0 i=0

and applying (2.8)-(2.9), the following is obtained:

n-1
Mo, P,
j=0
n-1
T(OWYT K — hp; |_
PPTQU) K= ZP1 |=HP
n-1 .
hn—lij
L i=0 i
where
206+ﬁ+1 n-1/n-1 (@) o
hi,j ]/ J. plaﬂ(x) pfﬁ(x)[ [ paﬁ(x)q(/‘)j j a’ﬂdxa I!J:Olll"'ln_l'

j 1=0 \ =0

The proof is complete.

Now, we consider the Riccati equation with fractional orders of the form

D*y(x)+ay(X)+by*(x) =g(x), 0< u<1, (4.2)
y(0)=d, (4.3)

where a, b, d are real constant coefficients and D*stand for the Caputo fractional derivative of
order 4 .

Using Definition (3), we can rewrite Equation (4.2):

1Dy (x) +ay(x) +by*(x) = g(x), 0< u<1. (4.4)

To solve problems (4.2)-(4.3) we approximate Dy(x) and g(x) by the shifted Jacobi
polynomials as:

D y(X) = fki p“’(x)=K'P, (4.5)
9()~ 3.9, (X) =GP, (46)
From (4.5), we get
[ Dy()dx~ I(K™P)=K"(IP) (4.7)

Consequently,

y(x) =K'QYP +y(0), (4.8)
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and
y’(x) =K'QWPP"(Q™) K +2K'Q®P y(0) +(y(0) ), (4.9)

Moreover, we have
D“y(x) = I"*Dy(x) = I"*(K"P)= KTQ**P, (4.10)

Using (4.6) and (4.8)-(4.10), problems (4.2)-(4.3) can be rewritten as:
K'Q®“P +a(K'Q¥P+ y(0))+b(K'Q¥P PT(Q®)" K )+ 2K'Q®Py(0) +(y(0) )} =

Applying lemma (4.1), this relation reduces to the following relation

KTQ**P +a(K'Q®WP +C, )+b(K'Q®HP) an
+2K'QWC,P+C,P=G"P

where y(0)=C,P, Py(0) = C,P and (y(0)) = C,Pcan be calculated in the same way as (4.1).

By applying the typical Tau method see Canuto et al. (1988), a system of algebraic equation

KTL = F, (4.12)
L= Q(l—y) n aQ(l) T bQ(l)H + Q(l)C_2 P, (4.13)
F=G" _61_(:_3, (4.14)

is obtained.

5. Numerical results
In this section, we applied the method presented in this paper and solved some examples. The
examples reported in this section were selected from a large collection of problem to which this
method could be applied.

Example 1.

We consider the following fractional Riccati differential equation

D*y(x)—2y(X)+ Y’ (X)=g(x), 0<x<1 0<u<l (5.1)
with initial condition
y(0) =0. (5.2)

The exact solution of this problem for 4 =1 was found to be of the form

y(X) = 1+\/§tanh[\/_x+ Iog(\/\/:JrﬂJ

By using the method that was elaborated in previous section, we have the approximations (4.5)-
(4.10).
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Using (4.11) and Tau method, the problems (5.1)-(5.2) are transformed to the following relation

K'(Q"* —2Q® +Q¥H )=G". (5.3)

Lettingm=2, o =g =1and u :% , We obtain

Q(;j_ 0773748 021493 ) [05 025] o [1
0.401202 0.351704 [ |-04 00/ ~ |0

| 0.773748k, —0.687780k, 0.967185k, —0.859725k,
- 0.773748k, —0.687780k,  0.96718k, —0.859725k, |

Now, from (5.3) we conclude that K =[6.91457  8.40791] . So
y(X) =1.0000x + 6.1391x 107"

I

Exact @ ® 'Appro,\|

04

02 04 0.6 08 1
X

Figurel. The approximate solutioninthecase =1, m=5aa =3 and B=2 of
Examplel.

Example 2.

We consider the following fractional Riccati differential equation

D“y(X)+y(X) - y*(x) =0, 0<x<1 0<u<l (5.4)
with initial condition
1
y(0) = > (5.6)
The exact solution of this problem is

—X

e
1+e™’

y(x) =

By using the method that was elaborated in previous section, we have the approximations (4.5)-
(4.10).
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Using (4.11) and Tau method, the problems (5.4)-(5.5) are transformed to the following relation

KT (Q +Q(1)H)P+%=O. (5.7)
Lettingm=3, a=4=1 and x#=0.8 , we obtain

[ 0.935031 0.0703778 —0.00754058
QY =]-0392111 0.727248  0.0446918

| 0.642244 -0.437149  0.643899

05 0.16667 0.0
QY =|-0.642857 0.0 0.0535714 |,

| 1.33333  -0.437149 0.0

H=[h h h]

It is easy to see that

1
_1:{_1 0 o} 6x—3 :{—1 0 O}P.
4| 4 4

28%° — 28X +6

Now, from (5.6) we conclude that K =[-63.4958 —63.7014 —25.8788]T. So,

y(x) =0.2351x? —0.035180 X —0.37578.
0.608934k, —0.881562k, + 0.725841K,

0.214920k, — 0.140508k, —1.41862k,
—0.0110388k, —0.199772k, +0.0245617K,

h

0.608934k, — 0.881562k, -+ 0.725841K,
h,=| 0.167160k, +0.109284k, —1.103372k,
—0.00858573k, +1.55379k, — 0.190802k,

0.228350k, — 0.330586k, +0.272190k,
h,=| 0.0805950k, —0.526905k, — 0.531984kK,
0.00413955k, + 0.0749146k, — 0.00919940k,
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l_ Exact = = * Apptox

0.50 =

045

0.40

035

0.30

0 0.2 04 0.6 08 1

Figure 2. The approximate solution inthe case ¢z=1,m=5a =3 and B =2 of
Example2.

Example 3.

As a final example, we consider the following fractional Riccati differential equation
D*y(X)—y*(X) =x°, 0<x<10<u<l (5.7)

with initial condition
y(0) =1. (5.8)

)
i

The exact solution of this problem is

X(J . (Xjr(lj 4, (X
=2 ) a)77Y 2
()= N (1 ;
J, (Xjr(j ~2] _{X
H2 ) la) 74 2

where J (t) is the Bessel function of the first kind.

y

AW Nlw

We suppose that m=3, o= =1 and y:%. It is easy to see that
3 . 13 1 1
X2+l:[i_5 3_];) %:| 4x -2 =|:E % E:lp
15x* —2x+3

In the same way as in the previous examples, by using (4.11), the problems (5.7)-(5.8) are
transformed to the following relation:

&) 13 1 1
K' Q2 —QWH —2Q® =[— — —}P.
(Q ° < 15 30 15
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Now, using Tau method, we reduce the problem to solve the following system of algebraic
equation

1
& 13 1 1
K'1Q?-QWH-2QW |=| = — —| 5.9
[Q Q Q 15 30 15 (5.9)
Now, from (5.9) we conclude
K =[1.65702 —2.45478 1.81873].

So
y(x) = —2.554778x? + 3.33234x + 2.79004.

In Table 1, the approximate solutions for test problems 1, 2 and 3 obtained by different values of
m, 2, and B using the presented method.

Table 1. The approximate solutions for examples 1, 2 and 3

EX I'm H la|p y
> | 03] 1| 1.000 X + 6.1391x 10~
3108|515 0.96249 X2 + 0.80401X + 6.1391x10~"
EXL1 4 1 09] 1 |3 0.21268x° + 0.65203 X2 + 0.99962 X + 7.2732 x 10~
ol —0.36169x" +0.73652%° + 0.96249 X° +
' 0.80401x +7.1306 %107
o | 03] 1 14 — 0.029326X + 0.38318
3 108|515 0.23478 x? —0.035191x + 0.38941
EX2
4 109) 13 0.0031179x° + 0.052465 x> — 0.032258 X + 0.41260
< 1iols s —00027185x* +.00010234x° —.28132 X2 —
' .0000032236 X +.52133
> | 03] 1|1 0.0001230466 X -+ 0.9931299
3108|515 0.6529539 x? + —0.5156453 X -+ 0.9761941
EX3
4 |99 11 3| 6.608623% +0.6529539 x2 — 0.005250264 X + 0.9931489
ol —14.36735x* +14.45792x° +.6528798 X°.
' +1283269x10° X +.9931370
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5. Conclusion

In this paper, we have proposed a numerical method for solving Riccati differential equation of
fractional order. The shifted Jacobi polynomial integral operational matrix was developed to
solve this equation. The numerical results showed this method is powerful, new and interesting.
All of the numerical computations in this study have been done on a PC applying some programs
written in MAPLE.
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