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Abstract 
 
This paper deals with the theoretical investigation of the effect of dust particles on a layer of 
rotating micropolar fluid heated from below saturating a porous medium. A dispersion 
relation is obtained for a flat fluid layer contained between two free boundaries using a linear 
stability analysis theory and normal mode analysis. The principle of exchange of stabilities is 
found to hold true for the micropolar fluid saturating a porous medium heated from below in 
the absence of dust particles, rotation and micropolar heat conduction parameter. The 
oscillatory modes are introduced due to the presence of the dust particles and rotation, which 
were non-existence in their absence. The presence of micropolar heat conduction parameter 
may also introduce oscillatory modes. For the case of stationary convection, the effect of 
various parameters like medium permeability, rotation, dust particles, coupling parameter, 
micropolar coefficient (A) and micropolar heat conduction parameter has been analyzed. The 
thermal Rayleigh number for the onset of instability is also determined numerically and 
results are depicted graphically. In the present paper, an attempt is also made to obtain the 
sufficient conditions for the non-existence of overstability. 
 
Keywords: Micropolar Fluid; Thermal Convection; Porous Medium; Dust Particles; 

Rotation 
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1.   Introduction  
 
A general theory of micropolar fluids was originally introduced by Eringen (1966). 
According to him, a subclass of microfluids [Eringen (1964)] which exhibit the micro-
rotational effects and micro-rotational inertia is the micropolar fluids. Certain anisotropic 
fluids, e.g., liquid crystals which are made up of dumb bell molecules are of this type. In fact, 
animal blood happens to fall into this category. Other polymeric fluids and fluids containing 
certain additives may be represented by the mathematical model underlying micropolar 
fluids. Compared to the classical Newtonian fluids, micropolar fluids are characterised by 
two supplementary variables, i.e., the spin, responsible for the micro-rotations and the micro-
inertia tensor describing the distributions of atoms and molecules inside the fluid elements in 
addition to the velocity vector. Liquid crystals, colloidal fluids, polymeric suspension, animal 
blood, etc. are few examples of micropolar fluids [Lebon and Perez-Garcia (1981)]. Kazakia 
and Ariman (1971) and Eringen (1972) extended this theory of structure continue to account 
for the thermal effects.  
 
Micropolar fluids abound in engineering science and some common examples are human 
blood, plasma, sediments in rivers, drug suspension in pharmacology, liquid crystals, etc. The 
past four decades have seen an incredible interest emerge in applications of these fluid 
theories to numerous problems in engineering sciences ranging from biofluid mechanics of 
blood vessels to sediment transport in rivers and lubrication technology. It has wide 
applications in the developments of micropolar biomechanical flows and as such is both are 
engineering science one.  
 
The more applications of micropolar fluid may include lubrication theory, boundary layer 
theory, short waves for heat conducting fluids, hydrodynamics of multicomponent media, 
magnetohydrodynamics and electrohydrodynamics, biological fluid modelling, etc. 
Hydrodynamics of micropolar fluids has significant applications to a variety of different 
fields of physics and engineering such as synovial lubrication, knee cap mechanics, arterial 
blood flows, and cardio-vascular flows, cervical flows (spermatozoa propulsion dynamics), 
pharmacodynamics, of drug delivery and peristaltic transport of micropolar fluid pumping. 
We are highlighted some key areas of applications in Figure 1.  
 
The micropolar fluid theory has been successfully applied by many authors [Rosenberg 
(2003, Shukla and Isa (1975), Sinha and Singh (1982a, b), Sinha et al. (1982a, b), Chandra 
and Philip (1996), Power (1998)] to the modeling of the bone, micropolar hip-joint 
lubrication model, modeling the CSF (cerebral spinal fluid), to study various problems in 
lubrication, etc. A large number of references about modeling and applications aspect of 
micropolar fluids has been given in the book [Gezegorz (1999)]. In the review paper [Ariman 
(1973)], the most comprehensive discussion of applications of fluids with microstructure, 
micropolar fluids in particular are tabularized. The literature concerning applications of 
micropolar fluids in engineering sciences is vast and still quickly growing.  
 
The theory of thermomicropolar convection began with Datta and Sastry (1976) and 
interestingly continued by Ahmadi (1976). Labon and Perez-Garcia (1981), Bhattacharya and 
Jena (1983), Payane and Straughan (1989), Sharma and Kumar (1995, 1997) and Sharma and 
Gupta (1995). The above works give a good understanding of thermal convection in 
micropolar fluids. The Rayleigh-Benard instability in a horizontal thin layer of fluid heated 
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from below is an important particular stability problem. A detailed account of Rayleigh-
Benard instability in a horizontal thin layer of Newtonian fluid heated from below under 
varying assumptions of hydrodynamics and hydromagnetics has been given by 
Chandrasekhar (1981). Perez-Garcia et al. (1981) have extended the effects of the 
microstructures in the Rayleigh-Benard instability and have found that in the absence of 
coupling between thermal and micropolar effects, the Principle of Exchange of Stabilities 
(PES) holds good.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 1. 
 
Perez-Garcia and Rubi (1982) have shown that when coupling between thermal and 
micropolar effect is present, the Principle of Exchange of Stabilities (PES) may not be 
fulfilled and hence oscillatory motions are present in micropolar fluids. The effect of rotation 
on thermal convection in micropolar fluids is important in certain chemical engineering and 
biochemical situations Sunil et al. (2006a). Qin and Kaloni (1992) have considered a thermal 
instability problem in a rotating micropolar fluid. They found that the rotation has a 
stabilizing effect. The effect of rotation on thermal convection in micropolar fluids has also 
been studied by Sharma and Kumar (1994), whereas the effect of rotation on thermal 
convection in micropolar fluids in porous medium has been considered by Sharma and 
Kumar (1998). The study of thermal convection in a rotating layer of a fluid heated from 
below in porous media is motivated both theoretically as also by its practical applications in 
engineering.  
 

Micropolar 
fluid 

applications in 
engineering 

 
Paint  

rheology 

 
Colloids and 

polymeric 
suspensions 

 

Blood  
flows 

Radial 
diffusion and 
thrust bearing 
technologies

Liquid  
crystal  
systems 

 

Contaminated 
and clean 

engine 
lubricants 

Sedimentary 
(mud, sand) 
geomorpho-
logical fluids 



192                                                                                                                                                    Reena and Rana 

 

Among the applications in engineering disciplines, one find the food process industry, 
chemical process industry, solidification and centrifugal casting of metals. With growing 
importance of micropolar fluids in modern technology and industries, the investigation on 
such fluids in porous media are desirable. Generally, it is accepted that comets consists of a 
dusty ‘snowball’ of a mixture of frozen gases which is the process of their journey changes 
from solid to gas and vice versa. The physical properties of comets, meteorites and inter-
planetary dust strongly suggests that importance of porosity in the astrophysical context 
[McDonnel (1978)]. 
 
The porous medium of very low permeability allows us to use the generalized Darcy’s model 
[Walter (1977)] including the inertial forces. This is because for a medium of very large 
stable particle suspension, the permeability tends to be very small justifying the use of the 
generalized Darcy’s model including the inertial forces. This is also because the viscous drag 
force is negligibly small in comparison with the Darcy’s resistance due to the presence of 
large particle suspension. In the last decade, stability problems on micropolar fluids have 
been studied in porous and non-porous medium by many authors [Sunil et al. (2006a), Qin 
and Kaloni (1992), Sharma and Kumar (1994), Sharma and Kumar (1998)].  
 
More recently, Reena and Rana (2008) have studied the effect of rotation in micropolar fluid 
permeated with variable gravity field in porous medium with thermal effect and Mittal and 
Rana (2008) have studied the thermal convection of rotating micropolar fluid in 
hydromagnetics saturating a porous medium. A comprehensive review of the literature 
concerning convection in porous medium is available in the book of Nield and Bejan (1998). 
 
In all the above studies, fluid has been considered to be clean (i.e., free from dust particles). 
In many geophysical situations, the fluid is often not pure but contains suspended/dust 
particles. The motivation for the present study is also due to the fact that micropolar fluid 
particle mixtures are not commensurate with their scientific and industrial importance and the 
effect of dust particles on stability problems of micropolar fluid through porous medium finds 
its usefulness in several geophysical situations, chemical technology, biomechanics and 
industry.  
 
Contribution of Saffman (1962) in this direction is immemorable. He has considered the 
stability of laminar flow of a dusty gas. Scanlon and Segal (1973) have considered the effect 
of dusty particles on the onset of Benard convection, whereas, Sharma et al. (1976) have 
studied the effect of suspended particles on the onset of Benard convection in 
hydromagnetics and found that the critical Rayleigh number is reduced because of the heat 
capacity of the particles. The thermal instability of fluids in porous medium in the presence of 
suspended particles and rotation has been studied by Sharma and Sharma (1982) and found 
that suspended particles destabilize the layer and rotation has stabilizing effect on the system. 
Prakash and Manchanda (1996) studied the effect of magnetic viscosity and suspended 
particles on the thermal instability of a plasma in porous medium and showed that the effect 
of suspended particles is destabilizing. Palaniswamy and Purushotham (1981) have studied 
the stability of shear flows of stratified fluids with fine dust and found that the fine dust 
increases the region of instability.  
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According to Sunil et al. (2005e), the multiphase fluid systems are concerned with the motion 
of a liquid or gas containing immiscible inert identical particles. Of all multiphase fluid 
systems observed in nature, blood flows in arteries, flow in rocket tubes, dust in gas cooling 
systems to enhance the heat transfer, movement of inert solid particles in the atmosphere, 
sand or other particles in sea or ocean beaches are the most common examples of multiphase 
fluid systems. Studies of these systems are mathematically interesting and physically useful 
for various good reasons.  
 
The effect of dust particles on visco-elastic rotating fluid in porous medium for variable 
gravity field has been found by Sharma and Rana (2002). The effect of dust particles on non-
magnetic fluids has been investigated by many authors [Sharma and Sunil (1994), Sharma et 
al. (2002), Sunil et al. (2003), Sunil et al. (2004)]. 
 
The effect of dust particles on ferromagnetic fluids has been investigated by many authors 
[Sunil et al. (2005a, b, c, d, e, 2006b)]. The main result of all these studies is that dust 
particles are found to have a destabilizing effect. Unfortunately not much work has been done 
on the stability of dusty flow for micropolar fluids. 
 
In view of the above investigations and keeping in mind the importance and applications of 
micropolar fluids, in geophysics, chemical engineering, astrophysics, biomechanics and 
industry, it is attempted to discuss the effect of dust particles on thermal convection in a 
micropolar rotating fluid in porous medium, using generalized Darcy’s model including the 
inertial forces. Many papers are devoted to various stability problems of micropolar fluids, 
but to the best of our knowledge and belief, this problem has not been investigated yet. The 
present study can serve as a theoretical support for experimental investigations, e.g., 
evaluating the influence of impurifications in a micropolar fluid on thermal convection 
phenomena.  

 

2.   Mathematical Formulation of the Problem  
 
Here, the stability of an infinite horizontal layer of an incompressible micropolar fluid of 
thickness d  embedded in dust particles in porous medium of porosity   and permeability 1k  
acted on by a uniform vertical rotation (0, 0, ) Ω  and gravity (0, 0, )g g  is considered 
(Figure 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Geometrical representation 
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The vertical axis is taken as the z -axis. This fluid layer is heated from below and remains at 

rest until a critical (steady) adverse temperature gradient dT

dz

 
  
 

 between the lower and 

upper limiting surfaces is maintained. The critical temperature gradient depends upon the 
bulk properties and boundary conditions of the fluid. Both the boundaries are taken to be free 
and perfect conductors of heat.  
 
The mathematical equations governing the motion of a micropolar fluid saturating a porous 
medium following Boussinesq approximation for the above model are as follows [Eringen 
(1966), Grzegorz (1999)]. 
 
The continuity equation for an incompressible fluid is 
 

. 0 q ,                                      (1) 
 
The momentum and internal angular momentum equations for the generalized Darcy model 
including the inertial forces are  
 

 0

1

1 1
( . ) p k k

t k

                 
q q g q ν 02 '

( ) ( )


   
  d

K N
q Ω q q ,   (2) 

 
and 
 

2
0 ( ' ') ( . ) ' 2

k
j k

t


            

 
ν

ν ν q ν ,            (3) 

 
where 0, , , , , , , ', ', ', , , ( , )      dk p j t X tq ν q  and ( , )N X t  are the fluid density, reference density, 
filter velocity, spin (microrotation), shear kinematic viscosity coefficient (constant), coupling 
viscosity coefficient or vortex viscosity, pressure, bulk spin viscosity coefficient, shear spin 
viscosity coefficient, micropolar coefficient of viscosity, microinertia constant, time, filter 
velocity and number density of dust particles of the micropolar fluid, respectively. 

( , , )x y zX  and ' 6K  ,   being the particle radius, is the Stokes drag coefficient. When 
the fluid flows through a porous medium, the gross effect is represented by Darcy’s law. As a 
result, the usual viscous terms in the equations of fluid motion is replaced by the resistance 

term 
1

k

k

  
  
 

q , where 1k  is the medium permeability.  

 
Assuming a uniform particle size, a spherical shape and small relative velocities between the 
fluid and dust particles, the presence of dust particles adds an extra force term in the equation 
of motion (2), proportional to the velocity difference between the dust particles and the fluid. 
The effect of rotation contributed two terms: 
 

(a) centrifugal force 0 2| |
2

grad


 Ω r , and  

(b) coriolis force 02
( )





q Ω .  
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In equation (2), 2
0

1
| |

2fp p   Ω r  is the reduced pressure, whereas fp  stands for fluid 

pressure. The temperature equation for an incompressible micropolar fluid is 
 

  2
0 0(1 ) ( . ) . '( ). 

                       
s s pt d T

T
C C C T mNC T K T T

t t
q q ν ,    (4) 

 
where , , , , ,v s pt s TC C C K T  and '  are the specific heat at constant volume, specific heat of 

solid (porous matrix) material, specific heat of dust particles, density of solid matrix, thermal 
conductivity, temperature and micropolar heat conduction coefficient (coefficient giving 
account of coupling between the spin flux and heat flux), respectively. mN is the mass of dust 
particles per unit volume.  
 
The density equation of state is  
 

 0 1 ( )aT T      ,                  (5) 

 
where   and aT  are coefficient of thermal expansion and average temperature given by 

0 1( ) / 2aT T T  , where 0T  and 1T  are the constant average temperatures of the lower and upper 
surfaces of the fluid layer, respectively. 
 
Since the force exerted by the fluid on the particles is equal and opposite to that exerted by 
the particles on the fluid, there must be an extra force term, equal in magnitude but opposite 
in sign, in the equations of motion for the particles [Sharma et al. (1976)]. Interparticle 
reactions are ignored for we assume that the distances between particles are quite large 
compared with their diameter. The effects due to pressure, gravity and Darcian force on the 
dust particles are negligibly small and hence ignored. Under the above assumptions, the 
equations of motion and continuity for the suspended particles are  
 

1
( . ) ' ( )

      
d d dmN K N

t
q q q q


,                    (6) 

 

. ( ) 0d

N
N

t


   


q ,                   (7) 

 
In the initial (quiescent) state, the solution of (1)-(7) is 
 

(0, 0, 0), ( ) (0, 0, 0)b d d b   q q q q , (0, 0, 0), ( )b b z   ν ν  defined as  
 

0 [1 ]z    , 
 

( )bp p z , ( )b aT T z z T    , where 1 0
0, b

T T
N N N

d



    (constant)    (8) 

 
where the subscript b denotes the basic state. 
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3.   Perturbation Equations 
 
The stability of the basic state can be analyzed by introducing small perturbations around the 
basic state as follows: 
 
Let ' ' '

1 2 3( , , ), ( , , ), ' ( , , ), , ,        x y z x y zu u u u u u pu ω u  and 'N  denote respectively the 

perturbations in micropolar fluid velocity q , spin ν , particle velocity dq , pressure p , density  , 
temperature T  and suspended particle number density 0N . 
 
Now, the procedure for finding the non-dimensional form of linearized perturbation equations 
is given in Appendix-A. 
The dimensionless boundary conditions are 
 

2

0, 0, 0, 0z
z

u
u

z



   


ω , 0z   at 0z  and 1z ,          (9) 

 
where, z  = ( ) zu  is the z -component of vorticity. 
 
Here, we consider the case where the boundaries are free and perfectly heat conducting. On a 
free surface, shear stress is zero and the velocity normal to the surface is zero. For micro-
rotation boundary conditions, we assume the micro-rotation to be zero on the surface.  
 
Now, analyzing the disturbances into normal modes, we assume that the perturbation 
quantities are of the form 
 

 ', , , ( ), ( ), ( ), exp ( ),z z z x yu U z G z Z z ik x ik y t                      (10) 

 
where ,x yk k  are the wave numbers along with x  and y  directions respectively, 

2 2 1/ 2( )x yk k k   is the resultant wave number and   is the stability parameter which is, in 

general a complex constant. 
 
For solutions having the dependence of the form (10), equations (A.10)-(A.13) become 
solutions (see Appendix-B). (B.1)-(B.4) must be sought, which satisfy the boundary 
conditions. 
 

20 , 0U D U DZ    
0, 0  G  at 0z   and 1z  .               (11) 

 
Using (11), equations (B.1)-(B.4) give 
 

2 20, 0D D G     at  z  = 0 and 1z  ,                (12) 
 
and it can be shown from equations (B.1)-(B.4) and boundary conditions (11), (12) that all 
even order derivatives of U vanish on the boundaries. Thus the exact solution of the system 
subject to the boundary conditions (11) and (12) characterizing the lowest mode is 
 

0 sinU U z ,                        (13) 
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where 0U  is a constant. 
 
Now for finding the dispersion relation, eliminating , Z  and G  from equation (B.1)-(B.4), 
we obtain 
 

2

2 2 2 2 2 2
1 1

1
( ) (1 ) (1 ) 2 ( ) ( )

l

f
D k K l A D k E p D k U

P
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 

  
                     
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  
                l

f
Rk K l A D k b

P

    
 

 

1 2 2( )(1 )    A D k U  1 2 2 2 2 2
1 1( ) { ( )}(1 )KA D k E p D k           

1
(1 ) (1 )

l

f
K U

P

  
 

  
     

   
 2 2 2 2

1 14 (1 ) { ( )}(1 )E p D k             

                     2 2 2[ 2 ( )]l A D k D U                 (14) 
 

Substituting (13) in (14), we get 
 

   
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l

f
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P
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f
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P

  
 

  
     

   
 

 2 2
1 14 (1 ) { }(1 )E p b        [ 2 ]l A b   ,         (15) 

 
where, 2 2b k  . 
 
Equation (15) is the required dispersion relation studying the effect of medium permeability, 
rotation and suspended particles.  In the absence of suspended particles, ( 0, ' 0, 0)b f    , 
equation (15) reduces to 
 

   
2

1
1

1
(1 ) 2

l

b K l A b Ep b
P

   
     

 
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l
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P
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      

 
 1 2

1KA b Ep b   1 1
(1 )

l

K
P

  
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 
 

     2 2 2
14 [ 2 ]Ep b l A b        ,                 (16) 

 
a result derived by [Sharma and Kumar (1998), equation (31)]. In the absence of rotation 
( 0)  , equation (16) reduces to 

 

   1
1

1
(1 ) 2

l

b K Ep b l A b
P

   
     

 
2 1[ 2 ]Rk l A b Ab        1 2

1 ,KA b Ep b    

                        
a result derived by [Sharma and Gupta (1995), equation (28)]. 
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4.   Stability of the System and Oscillatory Modes 
 
Here, we examine the possibility of the oscillatory modes, if any, on stability problem due to 
the presence of rotation, suspended particles, medium permeability and micropolar 
parameters. Multiplying equation (B.1) by *U , the complex conjugate of U  and integrating 
w.r.t. z  between the limits 0z   to 1z   and making use of equations (B.2)-(B.4) with the 
help of boundary conditions (11) and (12), we get 
 

2
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
            

    
,       (17) 

 
where,   
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The integrals 1I  to 6I  are all positive definite.  Now, putting ii    in equation (17), where 

i  is real and taking imaginary parts only, we get 
 

2 2
2 1
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1
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i
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f K K
I

P P
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   

                                
 = 0,        (18) 

 
where 1 1 ' 1b b   , in the absence of suspended particles.  Here, for the sake of convenience, 
we have taken 0   (i.e., absence of coupling between spin and heat flux). Equation (18) 
implies that i  may be either zero or non-zero, meaning that modes may be either non-
oscillatory or oscillatory. 
 
Limiting Case:  
 
In the absence of dust particles, we obtain the result as 
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2 1
1 4 1 2 5

1
( ) 0i I I Rk Ep I K A lI 


      

,                (19) 

 
a result derived in our earlier paper [Reena and Rana (2008)], equation (43). Now, in the 
absence of rotation, equation (19) becomes 
 

2 1
1 1 2 5

1
0i I Rk Ep I K A lI 


     

 .                   (20) 

 
The expression inside the bracket of equation (20) is always positive definite. Hence, 0i  , 
which means that oscillatory modes are not allowed and the principle of exchange of 
stabilities (PES) is satisfied for the present problem. 
 
Thus from equation (18), we conclude that the oscillatory modes are introduced due to the 
presence of dust particles and rotation, which were non-existence in their absence. The 
presence of micropolar heat conduction parameter ( )  may also bring the oscillatory modes. 
 
 
5.  Case of Overstability 
 
Since   is, in general, a complex constant, so we put r ii     , where ,r i   are real. The 
marginal state is reached when 0r  ; if 0r   implies 0i  , one says that principle of 
exchange of stability (PES) is valid otherwise we have overstability and then ii    at 
marginal stability. Putting ii    in equation (15), equating real and imaginary parts and 
eliminating R  between them, we get  
 

4 3 2
4 1 3 1 2 1 1 1 0 0f C f C f C f C f     .                 (21) 

 
The coefficients 3f  and 4f  are given in Appendix-C. 

 
The coefficients 2 1,f f  and 0f  being quite lengthy and not needed in the discussion of 

overstability, have not been written in Appendix-C. 
 
Since i  is real for overstability, the true values of 2

1 ( )iC    in equation (21) are positive. So, 

the sum of roots of equation (21) is positive, but this is impossible if 4 0f   and 3 0f   (since 

the sum of roots of equation (21) is 3 4( / )f f . Thus, 3 0f   and 4 0f   are the sufficient 

conditions for the non-existence of overstability.  
 
It is clear from equations. (C.1) and (C.2) that 3f  and 4f  are always positive if 

 
1 1
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which implies that 
 

1 1
1 1(1 ) , 2, 0 1, and ,

2
l

v pt

bP b AK
C A C KE p A

l
                      

     (22) 
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and the other inequality 2 1 /L b   giving 'f b , which automatically satisfied in 
 

1(1 ) 'f A b   . 

Thus, for 1 1
1 1(1 ) , 2, 0 1l

v pt

bP
C A C KE p A 


        and 

2

b AK

l
        
   

, overstability 

can not occur and the principle of exchange of stabilities (PES) is valid. Hence, the above 
conditions (22) are the sufficient conditions for the non-existence of overstability, the 
violation of which does not necessarily imply the occurrence of overstability. 
 
Particular Cases 
 
1. In the absence of micropolar heat conduction parameter ( 0)  , conditions as expected 

reduces to 1 1 2lbP
K E p


   and v ptC C  (i.e., the specific heat of the fluid at constant 

volume is greater than the specific heat of dust particles). 
 
2. In the absence of suspended particles 1( 0, 1, )h E E    , equation (21) reduces to a 

quadratic equation 
 

2
2 1 1 1 0 0f C f C f   .                     (23) 

 
The coefficients 1f  and 2f  are given in Appendix-D.  Equation (23) is similar to the 
result derived by Reena and Rana [(2008), equation (54)], which gives the sufficient 
conditions of non-existence of overstability as 

 

1

(1 )
0 , , 2

2 l

K b
KEp

A P





     ,              (24) 

 
the violation of which does not necessarily imply the occurrence of overstability. The 
same result derived by Reena and Rana [(2008), equation (58)].  If in addition to absence 
of suspended particles, the fluid is also non-rotating ( 0)  , the condition (24) reduces to 
 

10 , 2KEp
A

   .                         (25) 

 
The same result derived by Reena and Rana ((2008), equation (59)) and in addition to 
absence of suspended particles and rotation ( 0)  , the micropolar heat conduction 
parameter ( )  is also absent, the conditions (25) reduce to 
 

1 2KEp  .                       (26) 
 

If we take medium permeability very-very large ( )lP  , then in the absence of 
suspended particles, rotation and micropolar heat conduction parameter, the condition of 
non-existence of overstability is also 1 2KEp  , which is in good agreement with the result 
obtained earlier by Sharma and Gupta (1995).  Thus, the presence of suspended particles, 
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rotation and micropolar heat conduction parameter may bring overstability. The medium 
permeability may also bring overstability. 
 

 
6.   The Case of Stationary Convection 
 
When the instability sets in as stationary convection, the marginal state will be characterized 
by 0  ; hence putting 0   in equation (15), the Rayleigh number is given by 
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          

 
  

 

,      (27) 

 
where 1 1 ' 1b b    in the absence of dust particles, which leads to the marginal stability curve 
in stationary conditions. Equation (27) expresses the Rayleigh number R  as a function of the 
dimensionless wave number k , medium permeability lP  (Darcy number), rotation ( ) , dust 
particles parameter 1b , coupling parameter K  (coupling between vorticity and spin effects), 
micropolar coefficient A  (the ratio of the micropolar viscous effects K  to micropolar 
diffusion effects 0C ) and micropolar heat conduction parameter   (coupling between spin 
and heat flux). The parameters K  and A  measure the micropolar viscous effect and 
micropolar diffusion effect, respectively. Since the marginal state dividing stability from 
instability is stationary, this shows that at the onset of instability, there is no relative velocity 
between particles and fluid and hence no particles drag on the fluid. Therefore, the Rayleigh 
number is reduced solely because the heat capacity of the clean fluid is supplemented by that 
of the suspended (dust) particles. This explains the physics and the role of dust parameters, 
Sunil et al. (2005c). 
 
To investigate the effects of medium permeability, rotation, dust particles, coupling 
parameter K , micropolar coefficient A  and micropolar heat conduction parameter , we 

examine the behavior of 
1

, , , ,
l

dR dR dR dR dR

dP d db dK dA
 and dR

d
 analytically. Equation (27) gives  

 

 

2

2 2 2

2 1
1 1

1
( 2 ) 4

(1 ) 2 ( )

l

l

K
b b A b

PdR

dP k K Ab b b A





        
    

   
,                     (28) 

 
which is always negative when 
 

1(1 )
and

2l

K b b
P

A

  
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
.                  (29) 

 
It implies that the medium permeability has a destabilizing effect when condition (29) holds. 
In the absence of suspended particles 1( 1)b   condition (29) reduces to  
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which is in good agreement of earlier results derived by Reena and Rana (2008).  
 
In the absence of micropolar heat conduction parameter ( 0)   and rotation ( 0)  , equation 

(28) yields that 
l

dR

dP
 is always negative, implies that the medium permeability always has a 

destabilizing effect on the system for stationary convection in porous medium, i.e., Rayleigh 
number decreases with an increase in medium permeability. Medium permeability may have 
a dual role in the presence of rotation. The medium permeability has a stabilizing effect, if 

(1 )

2 l

K b

P

 
 


. Thus, for higher values of rotation, the stabilizing/destabilizing effect of 

medium permeability has been predicted.   
 
Thus, in micropolar rotating fluid heated from below saturating a porous medium, there is a 
competition between the destabilizing role of medium permeability and stabilizing role of 
micropolar heat conduction parameter and rotation, but there is complete destabilization in 
the above inequalities given by (29).  Equation (27) also gives 
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,                   (30) 

 
where we have taken 2'   , which is always positive if 
 

1b

A


  .                        (31) 

 
This shows that the rotation has stabilizing effect when condition (31) holds. In the absence 

of micropolar heat conduction parameter (  ), equation (30) yields that 
'

dR

d
 is always 

positive, i.e., the Rayleigh number increases with an increase in rotation, implying thereby 
the stabilizing effect of rotation, but in the presence of micropolar heat conduction parameter, 

rotation has destabilizing role if 1(2 )A b b

A b

 
  .  

 
Thus, for sufficiently higher values of micropolar heat conduction parameter, the 
destabilizing role of rotation has been predicted. Thus in the presence of micropolar heat 
conduction parameter, rotation may have stabilizing/destabilizing effect but in the absence of 
micropolar heat conduction parameter, rotation always has stabilizing effect.  Equation (27) 
also yields 
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                           (32) 
 

which is always negative, if 
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P
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
,                        (33) 

 
which implies that dust particles are found to have a destabilizing effect when condition (33) 

holds. Here, we also observe that in a non-porous medium, 
1

dR

db
 is always negative, implying 

thereby the destabilizing effect of dust particles.  
 
Thus, the medium permeability and porosity have significant role in developing conditions 
for the destabilizing behavior of dust particles. Also, it can be easily shown that in the 
absence of micropolar heat conduction parameter, there is no change in the effect of dust 
particles on the system. Thus, the destabilizing behavior of dust particles is independent of 
presence of micropolar heat conduction parameter ( ) . 
 
It can easily be derived from equation (27) that 
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which is always positive, if 
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This shows that coupling parameter has a stabilizing effect when condition (35) holds. In the 

absence of rotation and in a non-porous medium, equation (34) yields that dR

dK
 is always 

positive, i.e., Rayleigh number R increases with increase in permeability parameter K, 
implying thereby the stabilizing effect of coupling parameter K .  
 
Again it follows from equation (27) that 
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which is always positive, if 
 

1 lb P  .                         (37) 
 
This shows that micropolar coefficient A has a stabilizing effect when condition (37) holds. 

In the absence of micropolar heat conduction parameter, equation (36) yields that dR

dA
 is 
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always negative, implies that Rayleigh number R  decreases with an increase in micropolar 
coefficient A  implying thereby that the micropolar coefficient A  always has a destabilizing 
effect in the absence of micropolar heat conduction parameter  .  
 
In the absence of dust particles 1( 1)b   condition (37) reduces to lP  , i.e., the micropolar 
heat conduction parameter is greater than medium permeability, which is in good agreement 
with the results obtained earlier [Reena and Rana (2008)].   Equation (27) also yields 
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which is always positive, if 
 

1

l

A

P



.                         (38) 

 
This shows that micropolar heat conduction parameter   has a stabilizing effect when 

condition (38) holds. In a non-porous medium dR

d
 is always positive, implies that micropolar 

heat conduction parameter always has a stabilizing effect in a non-porous medium. Also, it is 
clear from (38) that stabilizing effect of micropolar heat conduction parameter   is always 
independent of presence of dust particles. Thus, porosity and medium permeability have 
significant role in developing condition for the stabilizing behavior of micropolar heat 
conduction parameter.  
 
7.   Numerical Computation 
 
Here in this section, the values of thermal Rayleigh number ( )R  for the onset of instability are 
determined for various values of permeability parameter (Darcy number) lP , rotation 
parameter  , dust particles parameter 1b  and micropolar parameters ,K A  and  , using 
equation (27) and variation of R  with various parameters are illustrated in Figure 3-9.  
 
Figure 3 illustrates that as permeability parameter lP  increases, Rayleigh number R  always 
decreases for small values of rotation parameter  , whereas for higher values of  , R  
decreases for lower values of lP  and then increases for higher values of lP , implying thereby 
that medium permeability has a destabilizing effect for lower values of   whereas for 
sufficiently higher values of  , medium permeability may have a destabilizing or a 
stabilizing effect which can also be observed from Figure 4.  
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    (i)                (ii) 
Figure 3.  Marginal instability curve for variation of Rayleigh number R  versus lP  for  

    10.5, 0.1, 0.2, 3, 1A K b k       and (i) 0.05  , (ii) 0  . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         (i)                        (ii) 
 

Figure 4.   Marginal instability curve for variation of Rayleigh number R  versus   for  
10.5, 0.1, 0.2, 3, 1A K b k       and (i) 0.05  , (ii) 0  . 

 
Figure 3 (ii) also illustrates that in the absence of rotation   and micropolar heat conduction 
parameter  , permeability always has a destabilizing effect. Figure 4 indicates the stabilizing 
nature of  ,as the value of R increases as   increases for every value of lP , in the presence 
or absence of micropolar heat conduction parameter  , whereas figure 5 indicates that   has 
destabilizing effect for higher values of micropolar heat conduction parameter and stabilizing 
effect for lower values of micropolar heat conduction parameter, but from Figures 4 and 5, it 
is clear that in the absence of micropolar heat conduction parameter, rotation   always has 
stabilizing effect, i.e., Rayleigh number R  increases as   increases.  
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Figure 5. Marginal instability curve for variation of Rayleigh number R  versus   for  

10.5, 0.1, 0.2, 3, 1     A K b k . 
 
Figure 6 shows destabilizing nature of R  as 1b  increases, i.e., as the value of dust parameter 
increases, the Rayleigh number R  decreases.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Marginal instability curve for variation of Rayleigh number R  versus 1b  for  

0.5, 0.1, 0.2, 10, 1, 0.05A K k         . 
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It is also observed from figure 6 that in the absence of dust particles 1( 1)b  , the thermal 
Rayleigh number is very high however in the presence of dust particles 1( 1)b  , the thermal 
Rayleigh number is reduced because of the specific heat of the dust particles (because the 
heat capacity of clean fluid is supplemented by that of the dust particles).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Marginal instability curve for variation of Rayleigh number R  versus K  for  

    10.5, 0.1, 1, 10, 3, 0.05A k b         . 
 
 
Figure 7 and 9 represent the plots of thermal Rayleigh number R  versus coupling parameter 
K  and micropolar heat conduction parameter   for various values of lP  which indicate that 
the coupling parameter and micropolar heat conduction parameter has a stabilizing effect, 
whereas figure 8 represents the plot of thermal Rayleigh number R  versus micropolar 
coefficient parameter ( )A  in the presence and absence of micropolar heat conduction 
parameter   which indicates that the micropolar coefficient parameter ( )A  have a stabilizing 
effect on the system in the presence of   and destabilizing effect in the absence of  . 
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Figure 8. Marginal instability curve for variation of Rayleigh number R  versus A  for 
                10.5, 0.2, 3, 10, 0.003lK b P       .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Marginal instability curve for variation of Rayleigh number R  versus   for  

10.5, 0.1, 0.2, 3, 10, 1A K b k        . 
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into the problem. The case of two free boundaries is of little physical interest, but it is 
mathematically important because one can derive an exact solution whose properties help our 
analysis. We have investigated the effect of medium permeability, rotation, dust particles, 
micropolar coupling parameter (coupling between vorticity and spin effects), micropolar 
coefficient (the ratio of the micropolar viscous effects to micropolar diffusion effects) and 
micropolar heat conduction parameter (coupling between spin and heat flux) on the onset of 
convection. The major results from the analysis of this paper are as follows: 
 
(i) The principle of exchange of stabilities (PES) is found to hold true for a micropolar 

rotating fluid saturating a porous medium heated from below in the absence of dust 
particles, rotation and micropolar heat conduction parameter. The oscillatory modes 
are introduced due to the presence of the dust particles and rotation, which were non-
existence in their absence. The presence of micropolar heat conduction parameter may 
also introduce oscillatory modes. 

(ii) The conditions, i.e., 
2

b AK

l
           

, 1
1 1 2, (1 ) 'lbP

KE p f A b    


 and 1 1A   

are sufficient conditions for the non-existence of overstability, the violation of which 
does not necessarily imply the occurrence of overstability. 
Also it is found that in the absence of micropolar heat conduction parameter 

conditions as expected, reduce to 1 1 2lbP
KE p 


 and v ptC C  (i.e., the specific heat of 

the fluid at constant volume is greater than the specific heat of dust particles). In the 
absence of suspended particles, rotation, micropolar heat conduction parameter and 
for medium permeability very-very large ( )lP   the above conditions, as expected, 
reduces to 1 2KEp   which is in good agreement with the previous results obtain 
earlier by Sharma and Kumar (1998) and Sharma and Gupta (1997). 
 

(iii) For the case of stationary convection, the dust particles have a destabilizing effect, 
whereas rotation has a stabilizing effect on the system under certain conditions. In the 
absence of rotation and micropolar heat conduction parameter, the destabilizing effect 
of the medium permeability is depicted, but in the presence of rotation, medium 
permeability may have a destabilizing or a stabilizing effect on the onset of 
convection. The destabilizing role of the medium permeability in the absence of 
rotation can be observed from equation (28).  

 
In the absence of micropolar heat conduction parameter, rotation always has 
stabilizing effect. In a non-porous medium, dust particles always have destabilizing 
effect on the system. The medium permeability and porosity have significant role in 
developing conditions for the destabilizing behavior of dust particles but the 
destabilizing behavior of dust particles is independent of presence of micropolar heat 
conduction parameter. We also observe that the thermal Rayleigh number R  is 
reduced in the presence of dust particles because of the specific heat of the dust 
particles. The destabilizing effect of dust particles on fluids has been accounted earlier 
and is found to be valid for micropolar fluid also.  

 
The effect of micropolar parameters has been also analyzed and found that coupling 
parameter, micropolar heat conduction parameter and micropolar coefficient ( )A  has a 
stabilizing effect under certain conditions but in the absence of micropolar heat conduction 
parameter, micropolar coefficient ( )A  has destabilizing effect, in the absence of rotation and 
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in a non-porous medium, coupling parameter always has stabilizing effect and in a non-
porous medium, micropolar heat conduction parameter always has a stabilizing effect on the 
system. Also, it is observed from equation (38) that the stabilizing behavior of micropolar 
heat conduction parameter is always independent of presence of dust particles.  
 
All of the above results for stationary convection are determined numerically and depicted 
graphically in Figures. 3-9. In order to investigate our results, the physical explanations 
behind our results found from the calculations are as follows: 
 

 It is well known that the rotation introduces vorticity into the fluid in case of 
Newtonian fluid [Chandrasekhar (1981)]. Then due to this motion, the fluid moves in 
the horizontal planes with higher velocities, the velocity of the fluid perpendicular to 
the planes reduces and hence delays the onset of convection. On account of this, 
rotation has stabilizing effect. When we consider that the fluid layer is to be flowing 
through an isotropic and homogeneous medium, free from rotation or a small rate of 
rotation, then the medium permeability has a destabilizing effect. This is because, as 
medium permeability increases, the void space increases and on account of this, the 
flow quantities perpendicular to the planes will obviously be increased. Thus, increase 
in heat transfer is responsible for early onset of convection. Thus, increase in lP  leads 
to decrease in R . In case the stabilizing effect of coupling parameter ( K ). The 
physical explanation behind this is that as K  increases of high rotation, the motion of 
the fluid prevails essentially in the horizontal planes. As medium permeability 
increases, this motion is increased. Thus, the component of velocity perpendicular to 
the horizontal planes reduces, leading to delay in the onset of convection. Hence, 
affect of medium permeability converts to stabilizing effect in case of high rotation. 

 
 Figure 6 shows the destabilizing nature of R  as the value of dust parameter ( 1b ) 

increases. The thermal Rayleigh number R  shows a drastic decrease in the presence 
of dust particles because the heat capacity of clean fluid is supplemented by that of 
the dust particle. 

 
 Figure 7 shows, concentration of micro elements also increases and on account of 

this, a greater part of the energy of the system is consumed by these elements in 
developing gyration velocities in the fluid, leading to delay in the onset of convection. 

 
 Figure 8 represents the stabilizing behavior of the micropolar coefficient  0/A K C , 

i.e., destabilizing effect of spin-diffusion (couple-stress) parameter. As A  increases, 
the couple stress of the fluid increases. Which causes the microrotation to decrease, 
rendering the system towards the instability? 

 
 Figure 9 indicates the stabilizing effect of micropolar heat conduction parameter ( ). 

The physical concept behind it is, when   increases, the heat induced in the fluid due 
to microelements is also increased, thus inducing the heat transfer from the bottom to 
the top. The decrease in heat transfer is responsible for delaying the onset of 
convection. Thus increase in   lead to increase in R , thereby   stabilizes the flow.  
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9.   Conclusion 
 
From the above analysis, we conclude that the oscillatory modes are introduced due to the 
presence of dust particles and rotation. The presence of micropolar heat conduction parameter 
may also introduce oscillatory modes. The thermal Rayleigh number is reduced solely in the 
presence of dust particles as the heat capacity of the clean fluid is supplemented by the dust 
particles. The results show that for the case of stationary convection, the medium 
permeability, dust particles and spin diffusion parameter has a destabilizing effect under 
certain condition(s), whereas rotation and micropolar parameters (coupling parameter and 
micropolar heat conduction parameter) has a stabilizing effect under certain condition(s). 
 
Finally we conclude that the micropolar parameters, rotation, dust particles and permeability 
have a deep effect on the onset of convection in porous medium. It is believed that the present 
work will serve for understanding more complex problems including the various physical 
effects investigated in the present problem. 
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Appendix-A 

 
The change in density  , caused mainly by the perturbation   in temperature, is given by  
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0                            (A.1) 
 
Then the linearized perturbation equations of the micropolar fluid become 
 

. 0 u ,                         (A.2) 
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In writing all the perturbation equations in linearized form, we have neglected all the non-
linear terms like ( . ) , ( . ) , .( ), ( , ) , ( '. ) '     u u u ω u v ω u u and ( '. ) u , since the perturbations 
applied on the system are assumed to be small, the second and higher order perturbations are 
negligibly small and only linear terms are retained.  
Now, it is usual to write the balance equations in a dimensionless form, scaling as   
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and then removing the stars for convenience, the non-dimensional form of equations (A.2) – 
(A.5) become 
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where, we have taken ˆze  as a unit vector in z -direction and the new dimensionless 
coefficients are 
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together with the dimensionless Rayleigh ( )R  and Prandtl 1( )p  numbers defined as  
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Now, applying curl operator twice to equation (A.7) and taking the z -component, we  
Get 
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 is the z -component of vorticity. 

 
Again applying the curl operator once to equations (A.7) and (A.8) respectively and taking 
the z -component, we get 
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In this equation, the coefficient 0C  and K  account for spin diffusion and coupling between 
vorticity and spin effects respectively. 
The linearized non-dimensional form of equation (A.9) is 
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where, 0/ , / l jA K A K C  and /D d dz . Here, A  is the ratio between the micropolar viscous 
effects and micropolar diffusion effects. 
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where for the sake of convenience, we have put 0 2
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There is no need of writing 0f . 
 


