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Abstract 
 
In this paper, we study two-component evolutionary systems of the homogeneous KdV equation 
of the third order types (I) and (II). Trigonometric and hyperbolic function methods such as the 
sine-cosine method, the rational sine-cosine method, the rational sinh-cosh method, sech-csch 
method and rational tanh-coth method are used for analytical treatment of these systems. These 
methods, have the advantage of reducing the nonlinear problem to a system of algebraic 
equations that can be solved by computerized packages.  
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1.  Introduction 
 
Applications in physics are modeled by nonlinear partial differential equations (PDEs). To 
understand these models, many researchers insist on explicit solutions needing powerful methods 
such as the Hirota bilinear method (A. M. Wazwaz, 2007a and 2008), the rational sine-cosine 
function method (Huabing Jia and Wei Xu, 2010), the Tanh method (Alquran and Al-Khaled, 
2011a, b), the tanh-coth method (A. M. Wazwaz, 2007b), the sine-cosine method (Alquran, 
2012), the extended tanh method (Ahmet Bekir, 2008 and Sami S. and Al-Khaled, 2010) and a 
host of other techniques for their solutions. The results are very interesting classes of solutions: 
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solitons, kinks and periodic. Solitons are solutions in the form sech  and psech , the graph of a 
soliton is a wave that goes up only. It is not like periodic solutions sine , cosine , etc, that 
appears above and below the horizontal. Kink is also considered a soliton, it is in the form tanh  
not 2tanh . In kink the limit as x  , is a nonzero constant, unlike solitons where the limit is 
zero. 
 
In this work, we consider two-component evolutionary system of the homogeneous KdV 
equations of the third order types (I) and (II) given respectively by 
  

=t xxx x xu u uu vv   

  
= 2t xxx xv v uv                                                                                                                  (1.1) 

 
 and 
  

= 2t xxx x xu u vu uv   

 
= .t xv uu                                                                                                                              (1.2) 

 
Shukri and Al-Khaled (2010), used the extended tanh method to obtain soliton and kink solutions 
of the above systems. 
 
In what follows we highlight the main features of the trigonometric and the hyperbolic function 
methods where more details and examples can be found in [(Wazwaz, 2005a, b), (Alquran, 2012) 
and (Alquran and Al-Khaled, 2011a)].  

 
2.  Trigonometric and Hyperbolic Function Methods 
 
Here, we will highlight briefly the main steps of the methods that will be used in this paper. We 
first unite the independent variables x  and t  into one wave variable = x ct   to convert the 
PDE 
  

( , , , , ,...)t x xx xxxP u u u u u                                                                                                        (2.1) 

 
 into an ODE  

 
( , , , ,...).Q u u u u                                                                                                                  (2.2) 

  
Equation (2.2) is then integrated as long as all terms contain derivatives.  
 
2.1   The Sine-Cosine Method (Ansatze I) 
 
The sine-cosine algorithm admits the use of the ansatze (Wazwaz, 2010) 
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( , ) = ( ), | |cos
2

u x t    


                                                                                         (2.3) 

 
 and the ansatze,  
 

( , ) = ( ), | |sinu x t    


  ,                                                                                        (2.4) 

 
where  , c ,   and   are parameters that will be determined. Substituting (2.3) or (2.4) into the 
reduced ODE gives a polynomial equation of cosine or sine terms. We then collect the 
coefficients of the resulting triangle functions and setting them to zeros, to get a system of 
algebraic equations among the unknowns  , c ,   and  . The problem is now completely 
reduced to an algebraic one. Having determined  , c ,   and   by algebraic calculations or by 
using Mathematica, the solutions proposed in (2.3) and in (2.4) follow immediately. 
 
2.2   The Second Rational Sine-Cosine Function Method (Ansatze II) 
 
The second rational sine-cosine functions methods can be expressed in the form (Wazwaz, 2010)   

 

0 0

1

sin( )
( , ) =

1 sin( )

a b
u x t

a







                                                                                                    (2.5) 

 
and  

 

0 0

1

cos( )
( , ) =

1 cos( )

a b
u x t

a







                                                                                                    (2.6) 

 
where 0a , 1a , 0b  , and   are parameters that will be determined.  

 
2.3   The Hyperbolic Function Method (Ansatze III) 
 
This method (Wazwaz, 2007) admits the use of the following ansatze  

 
( )

( , ) = ,
1 ( )

f
u x t

f


 

                                                                                                         (2.7) 

 
where ( )f   is anyone of the hyperbolic functions. The approach is simply used by applying 
the equation, setting the coefficients of the resulting hyperbolic functions to zero, and solving the 
resulting equations to determine the parameters   and  .  
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3.  Homogeneous Kdv Equations of Third Order Type (I)  
 
In this section we consider two-component evolutionary system of a homogeneous KdV 
equations of third order 3 type I 
  

= ,t xxx x xu u uu vv   

 
= 2 .t xxx xv v uv                                                                                                                 (3.1) 

  
Using the wave variable = x ct   transforms (3.1) into the ODEs  

 
2 21 1

0 =
2 2

cu u u v                                                                                                       (3.2) 

 
 and  

 
2

= .
v

u c
v





                                                                                                                       (3.3) 

  
Substituting (3.3) into (3.2) gives  
 

 
2 (5) (4) (3) 2 2 (3)0 = 2( ) 4 4 ( ) 4 ( )v v v v v v v c v v         

  
2 (3) 2 3 3 23 1

4( ) ( ) ( ) .
2 2

v v c v v v                                                                                      (3.4) 

 
First, we apply Ansatze (II); the second rational sine method. Substitute (2.5) into (3.4) to get  

 
2 2 2 2 2 4 4
0 1 10 = 3 8 48 4 48a c c a c a         

 
2 2 4

0 0 1 1 1sin( )(2 6 32 16 )a b a c a c a       

 
2 2 2 2 2 2 42
0 1 1 1( )( 3 8 4 ).sin b a c a c a                                                                                 (3.5) 

 
The above equation is satisfied only if the following system of algebraic equations holds 
  

2 2 2 2 2 4 4
0 1 10 = 3 8 48 4 48a c c a c a         

 
2 2 4

0 0 1 1 10 = 2 6 32 16a b a c a c a     

 
2 2 2 2 2 2 4
0 1 1 10 = 3 8 4 .b a c a c a                                                                                            (3.6) 
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Solving the above system involves numbers one calculations, so we consider some particular 
cases of c  and  . Therefore,  
 

0 1 0

5 5
= 11, = , = , = 1, = .

2 2

i i
a a b c i                                                               (3.7) 

  
Thus, the solutions of (3.1) are 
  

1

5
11 sinh( )

2( , ) =
5

1 sinh( )
2

x t
v x t

x t

 


 
 

  

2

5
11 sinh( )

2( , ) = .
5

1 sinh( )
2

x t
v x t

x t

 


 
                                                                                         (3.8) 

  
Substituting (3.8) into (3.3) gives that  

 

1

6(23 5cosh(2( )))
( , ) = 5

3 5cosh(2( )) 8 5 sinh( )

x t
u x t

x t x t

 


   
 

 

2 2

123 5cosh(2( )) 40 5 sinh( )
( , ) = ).

2( 2 5 sinh( ))

x t x t
u x t

x t

   


  
                                                      (3.9) 

 
Now, by the second rational cosine method. Substituting (2.6) into (3.4) gives the same system 
(3.6). Accordingly, two more complex solutions follow and given by  
  

3

5
11 cosh( )

2( , ) = ,
5

1 cosh( )
2

i
x t

v x t
i

x t

 


 
 

  

4

5
11 cosh( )

2( , ) = .
5

1 cosh( )
2

i
x t

v x t
i

x t

 


 
                                                                                    (3.10) 

 
 Substituting (3.10) into (3.3) gives that  

  



216                                                                                        Marwan Alquran, Roba Al-Omary and Qutaibeh Katatbeh 
 

3 2

123 40 5 cosh( ) 5cosh(2( ))
( , ) = ,

2( 2 5 cosh( ))

i x t x t
u x t

i x t

   
  

 

  

4 2

123 40 5 cosh( ) 5cosh(2( ))
( , ) = .

2(2 5 cosh( ))

i x t x t
u x t

i x t

   
 

                                                     (3.11) 

  
 

 

Figure 1. The first obtained soliton   like solution of (3.1) ( , )v x t  and ( , )u x t  respectively by using  

                 Ansatze II (the second rational sine method) 
  

Second, we apply the cosine methodAnsatze (I). Substituting (2.3) into (3.4) gives  
  

4 4 2 4 3 4 4 40 = 32 24 28 24 4             
 

2 2 2 2 4 2 3 4 4 42( )( 16 24 8 32 48 24 8 )cos c c c                   
 

2 2 2 4 44( )(3 8 4 )cos c c        
 

2 4 2 ( ).cos                                                                                                                  (3.12) 
  
The above equation is satisfied only if the following system of algebraic equations holds  

 
2 3 40 = 8 24 7 6 ,         

 
2 2 2 2 2 4 2 3 4 4 40 = 16 24 8 32 48 24 8 ,c c c                  

 
2 2 2 4 40 = 3 8 4 ,c c      
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2 = 4 2 ,  

= 1.c                                                                                                                           (3.13) 
 
Solving the above system yields the following two cases:  

 

= 6 , = , = 1, = 1.
2

i
i c      

3
= 6 5, = , = 1, = 1.

2
i i c                                                                              (3.14) 

 
 Thus, the solutions of (3.1) in complex form are  

 

1( , ) = 6 s ,
2

x t
v x t i ech

   
 

 

 

2

3
( , ) = 6 5s ( ) .

2
v x t i ech x t

 
   

 
                                                                               (3.15) 

  
Substituting (3.15) into (3.3) yields  
 

2
1( , ) = 6 s ,

2

x t
u x t ech

 
 
 

 

  

2
2

3
( , ) = 2 18 s ( ) .

2
u x t ech x t

 
    

 
                                                                              (3.16) 

 
Now, we solve (3.4) by using the sine method. Substituting (2.4) into (3.4) gives the same 
system (3.13). Thus, two more solutions follow and given by:  

 

  3 ( , ) = 6 c ,
2

x t
v x t sch

   
 

 

 

4

3
( , ) = 6 5 c ( ) .

2
v x t sch x t

 
   

 
                                                                             (3.17) 

  
Substituting (3.17) into (3.3) gives 
 

2
3 ( , ) = 6 c ,

2

x t
u x t sch

   
 
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2
4

3
( , ) = 2 18 c ( ) .

2
u x t sch x t

 
    

 
                                                                          (3.18) 

 

 

  
          Figure 2. The second obtained like soliton solution of (3.1) ( , )v x t  and ( , )u x t  respectively by using  

                          Ansatze I (the sine method) 
  

Third, we apply Ansatze (III) with ( ) = s ( )f ech  . Substituting (2.7) into (3.4) gives  
 

2 2 2 2 2 4 2 40 = 1 3 8 48 48 4c c c c            

                     2 2 4cosh( )(6 32 16 )c c      2 2 42( )(3 8 4 ).cosh c c          (3.19) 
  
The above equation is satisfied only if the following system of algebraic equations holds  

 
2 2 2 2 2 4 2 40 = 1 3 8 48 48 4 ,c c c c            

 
2 2 40 = 6 32 16 ,c c     

 
2 2 40 = 3 8 4 .c c                                                                                                           (3.20) 

  
Solving the above system yields  
 

3

4( 1)
= , = , = 0,

6 2 3

i
c   

       

1

4( 1)
= , = , = 0,

6 2 3

i
c  

  
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3

4

4

( 1)
= , = , = 0,

6 5 2 5

i
c   

     

1

4

4

( 1)
= , = , = 0.

6 5 2 5

i
c  

                                      (3.21) 

 
Thus, the solutions of (3.1) are  

 
3

4

1

( 1)
( , ) = s ,

2 3
v x t ech


 
 

  
 

  

1

4

2

( 1)
( , ) = s ,

2 3
v x t ech


 
 

  
 

 

 
3

4

3 4

( 1)
( , ) = s ,

2 5
v x t ech


 
 

  
 

  

1

4

4 4

( 1)
( , ) = s .

2 5
v x t ech


 
 

  
 

                                                    (3.22) 

 
Substituting (3.22) into (3.3) gives 
  

2
1( , ) = 6 s

2

x t
u x t ech

 
 
 

 

 

2
2

3
( , ) = 2 18 s ( ) .

2
u x t ech x t

 
    

 
                                                                              (3.23) 

 
It is noticed that the above obtained solutions ( , )u x t  are the same solutions obtained earlier by 
using different Ansatze, see Eq. (3.18). 

 
When we use the csch  instead of sech  in Ansatze (III), we get the same system (3.20) except 
that the first equation is replaced by  
 

2 2 2 2 2 4 2 41 3 8 48 48 4 = 0.c c c c                                                                       (3.24) 
 
 Solving the new system yields  
 

1
= , = , = 0,

6 2 3

i
c      

1 1
= , = , = 0,

6 2 3
c    

 

4

1
= , = , = 0,

6 5 2 5

i
c      

4

1 1
= , = , = 0.

6 5 2 5
c                                           (3.25) 

 
 
Therefore, the following solutions follow  
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1( , ) = csc
2 3

v x t i
   

 
,     2 ( , ) = c

2 3
v x t sch

   
 

 

 

3 4
( , ) = csc

2 5
v x t i

   
 

,      4 4
( , ) = c , = .

2 5
v x t sch x ct

    
 

                                (3.26) 

 
Substituting (3.26) into (3.3) gives that 
  

2
1( , ) = ,csc

2 3
u x t

   
 

    2
2 ( , ) = ,

2 3
u x t csch

   
 

 

 

2

3

1 9 csc
2 3( , ) = ,

3 5
u x t

   
      

2

4

1 9c
2 3( , ) = , = .

3 5

sch

u x t x ct





   
                       (3.27) 

  
 
4.   Homogeneous Kdv Equations of Third Order Type (II) 
 
In this section we consider two-component evolutionary system of a homogeneous KdV 
equations of third order type (II) 
  

= 2t xxx x xu u vu uv   

  
= .t xv uu                                                                                                                              (4.1) 

 
Using the wave variable = x ct   transforms (4.1) into the ODEs  
 

2( ) = 0x x xcu u uv uv                                                                                                  (4.2) 

  
and  

 
2

= .
2

u
v

c


                                                                                                                              (4.3) 

 
Substituting (4.3) into (4.2), and then integrating and setting the constant of integration to zero 
yields  
 

2 32
= 0.

3
c u cu u                                                                                                             (4.4) 

 
 First, we solve (4.4) by using the cosine method; Ansatze (I). Substituting (2.3) into (4.4) gives  
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2 2 2 20 = 3 3c c    
  

2 2 22( )( 3 3 )cos c c      
  

2 2 22 ( ).cos                                                                                                                  (4.5) 
 
The above equation is satisfied only if the following system of algebraic equations holds  

  
2 2 2 2 20 = 3 3 2c c      

  
2 2 20 = 3 3c c    

 
0 = 2 2 .                                                                                                                             (4.6) 

 
Solving the above system gives  

  

= 3 , = , = 1,c c      
  
where 0c   is an arbitrary constant. Thus, the solution of system (4.1) is  
 

1( , ) = 3 sec( ( ))u x t c c x ct                                                                                         (4.7) 

 
 and  

 

2
1

3
( , ) = ( ( )).sec

2

c
v x t c x ct                                                                                           (4.8) 

 
Now, we use the sine method. Substituting (2.4) into (4.4) gives the same system (4.6), therefore, 
one more solution follows  

  

2 ( , ) = 3 csc( ( ))u x t c c x ct   (4.9) 

  
and  

 

2
2

3
( , ) = ( ( )).csc

2

c
v x t c x ct   (4.10) 
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              Figure 3. The first obtained periodic solution of (4.1) ( , )u x t  and ( , )v x t  respectively by using  

                              Ansatze I (The cosine method) 
  

Second, we apply Ansatze (III) with ( ) = s ( )f ech   . Substituting (2.7) into (4.4) gives  
 

2 2 20 = 2 3 6c c    2 2cosh( )(6 3 )c c    2 22( )(3 3 ).cosh c c                     (4.11) 
  
The above equation is satisfied only if the following system of algebraic equations holds 
  

2 2 20 = 2 3 6c c     
 

2 20 = 6 3c c   
 

2 20 = 3 3 .c c                                                                                                                  (4.12) 
  
Solving the above system gives that  

4

1
= 0, = , =

3 3

i
c   ,         

4

1 1
= 0, = , = .

3 3
c  

                                              (4.13) 

 
Thus, the solutions of (4.1) are  
 

1 4

1

3( , ) = sec ,
3

x t
u x t

  
 
  
 

    2 4

1

3( , ) = s ,
3

x t
u x t ech

  
 
  
 

                                                (4.14) 



AAM: Intern. J., Vol. 7, Issue 1 (June 2012)                                                                                                            223                                
          

   

 
and  
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  Figure 4. The second obtained Kink soliton solution of (4.1) ( , )u x t  and ( , )v x t , respectively, by using  

                  Ansatze III ( ( ) = s ( )f ech  ). 

  
When we use the csch  instead of sech , we get the same system (4.12) but the first equation is 
replaced by  

 
2 2 2 22 3 3 3 = 0.c c c                                                                                                  (4.16) 

 
Solving the new system yields  
 

1

4

4

( 1)
= 0, = , =

3 3

i
c   

 ,         

3

4

4

( 1)
= 0, = , = .

3 3

i
c  

                                      (4.17) 

 
Therefore, two more complex solutions follow and given by 
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                  (4.18) 

 
and  
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   (4.19) 

 
5.  Conclusions 
 
In this work we used trigonometric-function method and hyperbolic-function method to handle 
some nonlinear evolution systems. The simplified form of these methods were applied to 
establish soliton and periodic solutions to such evolution equations. The methods are applicable 
to several types of equations, easy to use, and may provide us a straightforward, effective and 
alternative mathematical tool for generating solutions.   
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