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Abstract  

An analysis is made of the velocity and temperature distribution in the flow of a viscous 

incompressible fluid caused by the stretching permeable surface which issues in the Prandtl fluid. 

Parandtl fluid is a pseudoplastic visco-inelastic non-Newtonian fluid. The governing partial 

differential equations are reduced to ordinary differential equations using deductive group 

transformation and similarity solution is derived. Numerical solutions to the reduced non-linear 

similarity equations are then obtained by adopting shooting method using the Nachtsheim-

Swigert iteration technique. The results of the numerical solution are then presented graphically 

in the form of velocity and temperature profiles. The corresponding skin friction coefficient and 

the Nusselt number are also calculated.  
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Nomenclature  
 

u, v velocity component in the boundary   

layer along x,y - axis resp. 

 𝛼, 𝛽 flow   parameter                          

𝜏 the non-vanishing  shear tensor  η similarity variable 

x, y Cartesian  coordinates  F, H, G similarity functions 

ρ density of  the fluid  ∞ free stream  condition 

α thermal conductivity  o constant condition   

𝐿, 𝑈0 characteristic length and velocity of  

the mainstream respectively 

 Pr Prandtl number (LU0/αRe) 

𝜓 stream function  Re Reynold number (LU0/ν) 

Cf, Nu Skin friction coefficient and Nusselt 

number-physical quantities 

   

 

 

1.   Introduction 
 

The present study has many applications in coating and suspensions, cooling of metallic plate, 

paper production, heat exchangers technology and materials processing exploiting. Aerodynamic 

extrusion of plastic sheets, glass fiber production, paper production, heat treated materials  

traveling  between  a feed  roll  and  a  wind-up  roll,  cooling  of  an  infinite  metallic plate in a 

cooling bath, manufacturing of polymeric sheets are some examples of practical applications of 

non-Newtonian  fluid flow over a stretching surface. The production of fiber sheet, plastic sheet, 

extrusion of molten polymers through a slit die is an important process in polymer industry. In 

almost every extrusion application the prime aim is to maintain the surface quality of the 

extrudate. To meet the requirements for best appearance and optimum service properties such as 

low friction, transparency and strength, all coating processes demand a smooth glossy surface.  

 

During a manufacturing process, the material is in a molten phase, thrust through an extrusion 

die and then cools and solidifies some distance away from the die before arriving at the 

collection stage. In the region between the die and the cooling mechanism the material, while 

cooling, is found to stretch. Because of the solidification that eventually occurs one can 

reasonably expect that the stretching process varies with distance from the die.  

           

The quality of the final product as well as the cost of production is affected by the speed of 

collection and the heat transfer rate. In this sense knowledge of the flow properties of the 

ambient fluid is clearly desirable. In fact, a detailed  knowledge of the velocity and temperature 

distributions in this layer is therefore of utmost importance in controlling  the rate of cooling so  

as  to  obtain  final  products  of  desired  characteristics. In the present paper we consider the 

modeling of a two-dimensional Prandtl fluid for a stretching sheet. Note that this stretching may 

not necessarily be linear. It may be quadratic, power-law, exponential and so on.          

Sakiadis (1961) was the first to investigate the boundary layer flow on moving solid surfaces. 

Due to entrainment of the ambient fluid, this boundary layer is different from that in the Blasius 

flow past a flat plate. The problem was extended to the case when there is suction or blowing at 

the moving surface by Erickson et al. (1966) who presented numerical solutions of the boundary 
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layer equations for momentum, heat and mass transfer for various values of the parameters. 

Crane (1970) studied the laminar boundary layer flow caused by a stretching sheet with 

stretching velocity varying linearly with distance from a fixed point. Gupta and Gupta (1977) 

analyzed the heat and mass transfer  corresponding  to  the  similarity  solution  for  the  

boundary  layer  over  a  stretching sheet. Grubka and Bobba (1985) investigated the heat transfer 

characteristics of the stretching sheet problem with variable temperature.  

Chen and Char (1988) considered the continuous stretching surface with variable surface 

temperature. Abel and Veena (1995) examined unsteady boundary layer flow in a visco-elastic 

fluid past a stretching sheet. Tapanidis et al. (2003) discussed the application of scaling group of 

transformations to visco-elastic second-grade fluid flow. Mukhopadhyay et al. (2005) studied the 

MHD boundary layer flow and heat transfer over a stretching sheet with variable viscosity using 

the scaling group of transformations. Problems on stretching surface under other different 

physical situations were analyzed by Ishak et al. (2006), Wang (2009) and Patel and Timol 

(2011). Sajid and Hayat (2008) investigated the effect of thermal radiation on the boundary layer 

flow over an exponentially stretching sheet and found analytical solution. This thermal radiation 

and heat transfer of fluid flow applications occur in the modern system of electric power 

generation, plasma space vehicles, astrophysical flows and cooling of nuclear reactors. Recently, 

Nadeem et al. (2010) and Mukhopadhyay and Gorla (2012) studied various aspects of such 

problem either analytically or numerically.   

The similarity solutions are quite popular because they result in the reduction of the independent 

variables of the problem. Most of the researchers in the field of fluid mechanics try to obtain the 

similarity solutions by introducing a general similarity transformation with unknown parameters 

into the differential equation and as a result obtain an algebraic system. Then, the solution of this 

system, if it exists, determines the values of the unknown parameters. We believe it is better to 

attack any problem of similarity solutions from the outset; that is, to find out the full list of the 

symmetries of the problem and then to study which of them are appropriate to provide group-

invariant (or more specifically, similarity) solutions. To obtain symmetry of a differential 

equation is equivalent to the determination of the continuous groups of transformations 

associated with this symmetry. 

Birkhoff (1960) initiated the applications of group theory to fluid mechanics which opened up 

the way for general similarity procedures. Building on this work, Morgan (1952) gave complete 

structure of the theory for reducing the number of independent variables. Ames (1966) applied 

the method for reducing more than one independent variable simultaneously by composing a 

multi-parameter group. Later, authors like Hansen (1965), Moran and Gaggioli (1968), Bluman 

and Cole (1974), Seshadri and Na (1985) and Bluman and Kumai (1989) contributed much to the 

development of the theory. The method has been applied intensively by Hansen and Na (1968), 

Timol and Kalthia (1986), Abd-el-Malek and Badran (1990), Pakdemirli (1994), Abd-el-Malek 

et al. (2002).  

Further, most of the paints or protective coating applied on an extrudate is in general non-

Newtonian fluids. In the present study we therefore examine the behavior of an incompressible 

non-Newtonian fluid obeying the Prandtl model due to stretching of the surface. For this 

purpose, we apply the deductive group transformations to investigate similarity and to analyze 

the steady boundary layer flow. By systematically searching the group of transformations, the set 

of governing partial differential equations for the flow and energy distribution transformed into a 
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set of self-similar ordinary differential equations along with the appropriate boundary conditions. 

Numerical solution is derived to understand the fluid behavior. Velocity, temperature, the skin-

friction and the Nusselt number for different values of thermo-physical parameters have been 

computed and the results are presented graphically and discussed qualitatively.  

2.   Mathematical formulation  

Consider the case of a flat sheet issuing from a thin slit at x = 0, y = 0 and subsequently being 

stretched as in a polymer processing application shown in Figure1.  

 

 y 

  

  u Stretching  sheet 

 x 

 

 

Figure 1.  Schematic diagram 

 

The flow caused by the stretching of this sheet is assumed to be laminar. Consider the boundary 

layer flow of incompressible, viscous-inelastic, two dimensional steady Prandtl non-Newtonian 

fluid over a stretching permeable surface. The governing differential equations of continuity, 

momentum and heat transfer following Pop and Na (1998) are 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                 (1)                                                                

𝜌 (𝑢 
𝜕𝑢

𝜕𝑥
+ 𝑣 

𝜕𝑢

𝜕𝑦
) =

𝜕𝜏

𝜕𝑦
,                                     (2)                    

𝑢 
𝜕𝑇

𝜕𝑥
+ 𝑣 

𝜕𝑇

𝜕𝑦
 =  ∝  

𝜕2𝑇

𝜕𝑦2,                (3) 

                                                             

where u and v are components of velocity in x and y directions.  is the fluid density, 𝜏  is stress 

tensor and α is the thermal conductivity. Here, the shearing stress 𝜏  is related to the rate of stain 

by the arbitrary function   

 ℱ (    ,
𝜕𝑢

𝜕𝑦
  )  =   0,                  (4)  

the form of which differs for different fluid models. It should be noted that the flow is caused 

solely by the stretching of the wall and there is no free stream velocity outside the boundary 

layer. The corresponding boundary conditions are  

u =  𝑈0 𝑢 𝑤(𝑥),      𝑣 = − 𝑣 0,      𝑇 =  𝑇 𝑤     𝑓𝑜𝑟     𝑦 = 0,          (5a) 

𝑢 = 0,        𝑇 =  𝑇      𝑓𝑜𝑟     𝑦 →  .             (5b) 
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where the uniform  surface  heat flux  𝑣 0  and  the ambient temperature 𝑇   are  assumed 

constant. Note that 𝑣 0 > 0  corresponds to suction and 𝑣 0 < 0  to injection. Introducing the 

dimensionless quantities as 

𝑥̅ =
𝑥

𝐿
,                 𝑦̅ =  

𝑦

𝐿
(

𝑈0 𝐿

𝜐
)

1
2⁄

,             𝑢̅ =  
𝑢

𝑈0 
, 

𝑣̅ =   
𝑣

𝑈0 
  (

𝑈0 𝐿

𝜐
)

1
2⁄

,             𝜏̅ =   
𝜏

𝜌 𝑈0 (
𝑈0 𝜐

𝐿
)

1
2⁄

,          𝜃 =   
𝑇 −  𝑇 𝑤

 𝑇 𝑤 −  𝑇  
. 

 

and introducing the stream function  𝜓  such that 𝑢 =
𝜕𝜓

𝜕𝑦
  and  𝑣 = −

𝜕𝜓

𝜕𝑥
, continuity equation is 

satisfied identically and bars are dropped for simplicity. The above Equations (1) to (5a) and (5b) 

become   

   
𝜕𝜓

𝜕𝑦
 

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑥
 
𝜕2𝜓 

𝜕𝑦2 −
𝜕𝜏

𝜕𝑦
  =   0,                                                                                 (6) 

   
𝜕𝜓

𝜕𝑦
  

𝜕𝜃

𝜕𝑥
− 

𝜕𝜓

𝜕𝑥
 
𝜕𝜃 

𝜕𝑦
−   

1

𝑃𝑟
  

𝜕2𝜃

𝜕𝑦2   =   0,                                                                                      (7) 

   ℱ (    ,
𝜕2𝜓 

𝜕𝑦2    )  =   0,                                                                                                           (8) 

and subject to the boundary conditions                                                          

𝜕𝜓

𝜕𝑦
 = 𝑢 𝑤  ,     

𝜕𝜓

𝜕𝑥
=  𝐾 ,      𝜃 = 1    𝑓𝑜𝑟  𝑦 = 0,                                                                   (9a) 

 𝜕𝜓

𝜕𝑦
= 0   ,   𝜃 = 0     𝑓𝑜𝑟     𝑦 →   ,                                                                                     (9b) 

where Pr  is  the  Prandtl  number  and  𝐾 =  −𝑣 0  (
𝐿

𝑈0 𝜐
)

1
2⁄

 is  non-dimensional constant. 

3.   Methodology 

Our method of solution depends on the application of a one-parameter deductive group of 

transformation to the partial differential Equations (6)-(8) along with auxiliary conditions (9a) 

and (9b). Under this transformation the two independent variables will be reduced by one and the 

differential equations will transform into ordinary differential equation. Recently, this method 

has been successfully applied to various two dimensional non-linear problems by Darji and 

Timol (2011), Hiral and Timol (2011), Adnan et al. (2013). 

 

3.1.   The group systematic formulation 

 Introducing the group theoretic method  

G:  ¥𝑎(@) = ₡@(𝑎) @ + ₭@(𝑎).                                                                         (10) 
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where @ stands  for  x,  y , 𝜓 , 𝜃  , 𝜏,  𝑢 𝑤 .  ₡'s  and  ₭'s are  real-valued  and  are  at  least  

differentiable  in  the  real  argument  a. 

3.2.   The invariance analysis                                                                      

For invariance, invoking the group (10) in (6)-(8), we get 

𝜕𝜓̅

𝜕𝑦̅
  

𝜕2𝜓̅

𝜕𝑥̅𝜕𝑦̅
 −   

𝜕𝜓̅

𝜕𝑥̅
  

𝜕2𝜓̅ 

𝜕𝑦̅2
 −  

𝜕𝜏̅

𝜕𝑦̅
     = ₦1(𝑎) (  

𝜕𝜓

𝜕𝑦
 

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑥
 
𝜕2𝜓 

𝜕𝑦2
−

𝜕𝜏

𝜕𝑦
),                       (11) 

𝜕𝜓̅

𝜕𝑦̅
 
𝜕𝜃̅

𝜕𝑥̅
 −   

𝜕𝜓̅

𝜕𝑥̅
 
𝜕𝜃̅ 

𝜕𝑦̅
 −  

1

𝑃𝑟
  

𝜕2𝜃̅ 

𝜕𝑦̅2    = ₦2(𝑎) ( 
𝜕𝜓

𝜕𝑦
  

𝜕𝜃

𝜕𝑥
−  

𝜕𝜓

𝜕𝑥
 
𝜕𝜃 

𝜕𝑦
−   

1

𝑃𝑟
  

𝜕2𝜃

𝜕𝑦2   ),                 (12) 

 ℱ ( ̅ ,
𝜕2𝜓̅ 

𝜕𝑦̅2  )  =  ₦3(𝑎)   ℱ ( ̅ ,
𝜕2𝜓̅ 

𝜕𝑦̅2  ).                                                                                (13) 

Applying chain rule for transforming the derivatives under the group (10), we get 

(
₡𝜓

₡𝑦)
𝜕𝜓

𝜕𝑦
(

₡𝜓

₡𝑥₡𝑦)
𝜕2𝜓

𝜕𝑥𝜕𝑦
− (

₡𝜓

₡𝑥 ) 
𝜕𝜓

𝜕𝑥
 (

₡𝜓

₡𝑦2)
𝜕2𝜓 

𝜕𝑦2 −  (
₡𝜏

₡𝑦)
𝜕𝜏

𝜕𝑦
  

                                                     =  ₦1(𝑎) (
𝜕𝜓

𝜕𝑦
 

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑥
 
𝜕2𝜓 

𝜕𝑦2 −
𝜕𝜏

𝜕𝑦
 ),                              (14) 

(
₡𝜓

₡𝑦) 
𝜕𝜓

𝜕𝑦
 (

₡𝜃

₡𝑥) 
𝜕𝜃

𝜕𝑥
−  (

₡𝜓

₡𝑥 ) 
𝜕𝜓

𝜕𝑥
  (

₡𝜃

₡𝑦) 
𝜕𝜃 

𝜕𝑦
−   

1

𝑃𝑟
(

₡𝜃

₡𝑦2) 
𝜕2𝜃

𝜕𝑦2    

                                                    =  ₦2(𝑎) ( 
𝜕𝜓

𝜕𝑦
  

𝜕𝜃

𝜕𝑥
−  

𝜕𝜓

𝜕𝑥
 
𝜕𝜃 

𝜕𝑦
−  

1

𝑃𝑟
  

𝜕2𝜃

𝜕𝑦2 ),                        (15) 

ℱ ( ₡𝜏 ,   (
₡𝜓

₡𝑦2) 
𝜕2𝜓 

𝜕𝑦2    )   =   ₦3(𝑎)   ℱ ( ,
𝜕2𝜓 

𝜕𝑦2  ).                                      (16) 

For the invariance of above Equations (14)-(16),   

 
₡𝜓2

₡𝑥₡𝑦2  =   
₡𝜏

₡𝑦  =   ₦1(𝑎),                                         (17a) 

 
₡𝜓₡𝜃

₡𝑥₡𝑦   =   
₡𝜃

₡𝑦2  =   ₦2(𝑎),                            (17b) 

 ₡𝜏 =  1 =    
₡𝜓

₡𝑦2 =  ₦3(𝑎)  𝑎𝑛𝑑   ₭𝜏 = 0,                                 (17c) 

The invariance of boundary conditions (9a) and (9b) give, 

  
₡𝜓

₡𝑦 = ₡𝑢 𝑤  ,    ₡𝜃 =  1   and      ₭𝑦 =  ₭𝜃  = ₭𝑢 𝑤 = 0,                                                (18) 

On solving the Equations (17a), (17b), (17c) and (18) simultaneously, we obtained  

₡𝑥 = ₡𝑦3
  ,       ₡𝜓 =  ₡𝑦2

 ,      ₡𝜏 = 1  , ₡𝑢 𝑤  = ₡𝑦,                 

₭𝑦 = ₭𝜏 =   ₭𝜃 =  ₭𝑢 𝑤 = 0. 
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Finally, we get the one-parameter group  𝐺̅ , which transforms invariantly the differential 

Equation (6)-(8) and the auxiliary conditions (9a) and  (9b). This group  𝐺̅ is of   the form: 

 𝐺̅ :          𝑥̅ = ₡𝑦3(𝑎) 𝑥 + ₭𝑥(𝑎),               𝑦̅ = ₡𝑦(𝑎) 𝑦,              𝜏̅ = 𝜏,                    

              𝜓̅ = ₡𝑦2(𝑎) 𝜓 +  ₭𝜓(𝑎),             𝜃̅ = 𝜃,               𝑢 𝑤̅̅ ̅̅̅ = ₡𝑦(𝑎) 𝑢 𝑤.                        (19) 

 

3.3.   The complete set of absolute invariants  

Now, we try to obtain a complete set of absolute invariants so that the original problem will be 

transformed into an ordinary differential equation in a similarity variable via group theoretic 

method. We have applied Hamad (2010) formulations for PDEs of 2-independent variables. By 

considering 

   x1 =  x,  x2 = y ,  y1 = 𝜓  , y2 = 𝜃, y3 = 𝜏 ,  y4 =  𝑢 𝑤   

and  the definitions of  ∝𝑖   , 𝛽𝑖 ;   𝑖 = 1 to 6,    we  get  

∝𝑖  =  
𝜕₡𝑖

𝜕𝑎
|

𝑎 = 𝑎0

   and   𝛽𝑖 =  
𝜕₭𝑖

𝜕𝑎
|

𝑎 = 𝑎0

 ;      𝑖 = 1 to 6,                                                        (20) 

where 𝑎0 denotes the value of a which yield the identity element of the group. The generator is 

given by 

𝑋 =  (∝1  𝑥1 +  𝛽1 )
𝜕𝑔

𝜕𝑥1
 + (∝2  𝑥2 +  𝛽2)

𝜕𝑔

𝜕𝑥2
 +  (∝3  𝑦1 +  𝛽3 )

𝜕𝑔

𝜕𝑦1 
            

                        + (∝4  𝑦2 +  𝛽4 )
𝜕𝑔

𝜕𝑦2
  +  (∝5  𝑦3 + 𝛽5 )

𝜕𝑔

𝜕𝑦3
+ (∝6  𝑦4 + 𝛽6)

𝜕𝑔

𝜕𝑦4
 .          (21) 

Hence, the characteristic equation becomes 

𝑑𝑥

∝1 𝑥+ 𝛽1
=   

𝑑𝑦

∝2 𝑦
 =    

𝑑𝜓

∝3 𝜓+ 𝛽3
 =  

𝑑𝜃

0
 =  

𝑑𝜏

0
 =   

𝑑 𝑢 𝑤

∝6  𝑢 𝑤
 .                                                        (22) 

On solving this and using the relations between  ∝𝑖 ′s  &   𝛽𝑖 ′s  from Equations (19) and (20), we 

obtain similarity variables, Jain and Timol (2015), as follow 

  

 

𝜂 =   𝑦 ᴫ− 
1

3,     where    (𝑥 +  𝛽) =  ᴫ  , 𝛽  =  
𝛽1 

∝ 1 
,

𝜓 =  ᴫ 
2

3  𝐹(𝜂) – 
𝛽3 

∝3 
 ,                                                     

𝜃 =   𝐻(𝜂),                                                                     

𝜏 =   𝐺 (𝜂),                                                                    

𝑢 𝑤 =  ᴫ 
1

3 .                                                                     
 

                                                        (23)                                    
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3.4.   The reduction to an ordinary differential equation 

The similarity transformations (23) maps Equations (6) to (9a) and (9b) into the following non-

linear ordinary differential equations: 

   𝐹′2 − 2 𝐹𝐹′′ − 3𝐺′  = 0,                                                                                         (24) 

   𝐻′′ +
2 𝑃𝑟

3
  𝐹  𝐻′ = 0,                                                                                                         (25) 

  ℱ (𝐻 ,   𝐹′′) =  0,                                                                                                                (26) 

  𝐹(0) = 𝐾,      𝐹′ (0) = 1 ,    𝐻 (0)   =  1,                                                                         (27a)      

 𝐹′  = 0,     𝐻  =  0     𝑎𝑡    𝜂 → ∞.                                                                                     (27b)                                    

4.   Numerical solution and result discussion 

To find the numerical solution, we have consider the non-Newtonian Prandtl fluid model.  

Mathematically, this model is given as   

  =   𝐴 𝑠𝑖𝑛−1 (
1

𝐶
  

𝜕𝑢

𝜕𝑦
).                                                            (28)                     

Introducing the dimensionless quantities (defined in Section 3) and applying the similarity 

variables from (23) 

 𝐺′ =  𝛼′  𝐹′′′

√1 − 𝛽  𝐹′′2
 ,                                                                              (29) 

where 

 𝛼 ′ =
𝐴

 3µ 𝐶 
  and 𝛽 =  

𝑈0 
3

𝐶2 𝜈  𝐿
  

 

are dimensionless numbers and can be referred to as flow parameters. Substituting Equation (29) 

into Equation (24), we get   

  𝐹′′′  =  
(1 − 𝛽   𝐹′′2)

1 2⁄

𝛼′  
(𝐹′2 − 2 𝐹 𝐹′′) .                                                                               (30) 

Equations (30) and (25) are nonlinear ordinary differential equations and constitute the nonlinear 

boundary value problem along with the boundary conditions (27a) and (27b). As no specific 

method is available to solve this problem we opt for numerical method. We applied the Adams-

Moulton procedure along with the shooting method due to Nachtsheim and Swigert (1965) based 

on the least square convergence criterion. The asymptotic boundary conditions are satisfied at the 

edge of the boundary layer by adjusting the initial conditions so that the mean square error 

between the computed variables and asymptotic values is minimized. Integration is carried out 

using the step size 0.5 starting from η = 0 until 𝜂𝑠𝑡𝑜𝑝= 3. However, the success of this method 

depends greatly on the initial guesses made for  𝐹′′(0) and 𝐻′(0) to begin the shooting method 

and such guesses are not made arbitrarily but vigilantly. 
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Figure 2 depicts the velocity variation 𝐹′(𝜂) for different values of K > 0 (suction) for the fixed 

non-dimensional numbers 𝛼′ = 10, β = 15 × 10
-3 

and Pr = 0.7(air). Whereas by keeping the 

same 𝛼′, 𝛽 and 𝑃𝑟, for different 𝐾 > 0(suction ), temperature variation 𝐻(𝜂)  is displayed in 

Figure 3. It is seen that both velocity and temperature decreases with the increase in suction. 

Figures 4 and 5 demonstrate velocity and temperature profiles for different values of 𝐾 < 0 

(injection), again for the fixed 𝛼′, 𝛽 and 𝑃𝑟. In this case velocity and temperature are increasing 

as K becomes more negative. It has been observed that 𝛼′ and  𝛽 have great influence on the 

velocity and temperature distributions of the Prandtl fluids. Again, keeping 𝛼′  and 𝛽  fixed, 

velocity and temperature variations are elucidated through Figures 6 to 9 for different Prandtl 

number for both suction and injection case. This time Prandtl number has no effect on velocity 

distribution but 𝛼′  is affecting the solution for temperature profile. As the Prandtl number 

increases, the thickness of thermal boundary layer decreases. All graphs are plotted in terms of 

dimensionless parameters. The physical quantity of interest are the coefficient of local skin 

friction 𝐶𝑓 and Nusslet number Nu  which are plotted in Figures 10 and 11 and calculated as   

𝐶𝑓   =   
2  𝜏𝑤 

√𝑅𝑒
,             where   𝜏𝑤 =   

𝛼 

3√𝛽
  𝑠𝑖𝑛−1(√𝛽  𝐹′′(0)),                                            (31) 

 𝑁𝑢  =  − 
𝑥

𝑇 𝑤− 𝑇 
  

𝜕𝑇

𝜕𝑦
|

𝑦=0
=   −  √𝑅𝑒  𝐻′ (0).                    (32)   

From the graphs it is clear that skin friction coefficient and Nusselt number decrease when 

Reynolds number increases.  

5.   Conclusion  

In the present work, the problem of non-Newtonian Prandtl flow over a nonlinear stretching 

permeable surface with variable temperature is studied. This Prandtl fluid is one of the 

pseudoplastic visco-inelastic fluid out of 26 (could be more) non-Newtonian fluids [Kapur et al. 

(1982)]. Solving each of non-Newtonian fluid flow problems is an intellectual challenge. We 

were motivated for the present study from the natural instinct to accept the challenges of solving 

unsolved problem and to get insight into the flow behaviors of non-Newtonian fluids. Further, 

Pop and Na (1998) considered linear velocity at the boundary edge while we have considered 

general form of this velocity as 𝑢𝑤. 
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                  Figure 2.  Velocity  profile  for  K > 0                         Figure 3.  Temperature  profile for  K > 0  

         

Figure 4.  Velocity  profile  for  K< 0                              Figure 5. Temperature  profile  for  K < 0  

         

Figure  6.  Velocity  profile  for  K > 0                            Figure 7. Temperature profile for  K> 0 
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   Figure  8.  Velocity  profile  for  K < 0                          Figure 9. Temperature  profile  for  K< 0 

 

            

Figure 10.  Skin Friction   coefficient   Cf                           Figure 11.  Nusselt number Nu for     
                   for suctionn- injection together                                            suction- injection together     
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