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Abstract 
 
The objective of this paper is to use Neural Networks for solving boundary value problems 
(BVPs) in Ordinary Differential Equations (ODEs). The Neural networks use the principle of 
Back propagation. Five examples are considered to show effectiveness of using the shooting 
techniques and neural network for solving the BVPs in ODEs. The convergence properties of the 
technique, which depend on the convergence of the integration technique and accuracy of the 
interpolation technique are considered.  
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1.  Introduction  
 
Some well-known numerical method for solving BVPs in ODEs include i) the Finite different 
method  ii) the shooting method iii) the collocation method. The Finite difference method 
consists of dividing the given interval of the independent variable by node and then 
approximating the differential equation by a given set of finite difference formulas at each node 
that will produce a set of algebraic equations mostly non-linear, which may be solved by Newton 
iteration or one of its alternatives. [For more detail see Khalaf (1988) and Kais and Abudu 
(2001, March 5)]. To get accurate results for these methods, we have to increase the number of 
nodes which will produce a greater number of algebraic equations.  This also increases the 
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complexity of the solution and takes a lot of computer time. Mostly, the iteration processes at the 
nodes create a noisy set of data that is accumulated by the iteration processes and tends to render 
the solution meaningless.  
 
The Shooting method consists of dividing the integration interval into subintervals. At the 
beginning of each subinterval, values are estimated for the given dependent variables then and 
the ODEs of the problem integrated using the estimated values and then at the end of each 
subinterval the corresponding estimated and the integrated values of the corresponding 
dependent variables are matched, i.e., at the end  of each subinterval matching functions are 
defined.  The estimated values are then readjusted by Newton iteration or one of its alternatives. 
 
The problem with these methods is that the estimated values need to be very close to the real 
solution, otherwise the iteration processes will diverge. [For more detail see, for example, Keller 
(1968), Barto & Sutton (1981), Khalaf (1990)]. The collocation methods [see Mattheij et al. 
(1988) and Khalaf (1997)] based on approximating the solution of the ODE by a linear 
combination of a set of independent simple functions. The coefficients of the combination may 
then be estimated (using the boundary conditions BCs and substituting the differentiation of the 
approximate solution at the given nodes of the iterative methods). Hence the iteration will 
mostly diverge if there are noises or error in the combination coefficients; so we seek here to 
develop a new method for solving BVDs in ODEs that uses integration and interpolation instead 
of iteration processes. The results offer a significant contribution to the field by successfully 
developing Neural Network methods for solving BVPs.  
 
2.  Artificial Intelligence 
 
Artificial intelligence (AI) is a broad field that includes topics such as expert systems [Shu-Hsien 
(2005)] fuzzy logic [Turksen (1997)] artificial neural networks [Meireles and Simoes (2003)], 
evolutionary computing [Dolin and Merelo (2002)] and data mining [Zaslavsky and 
Krishnaswamy (2005)]. Each of these activities strives to enable a computer to complete tasks 
which normally require human intelligence. The classic definition of AI from the Turing test 
[Turing (1950)] requires simply that a human observer fail to distinguish between artificial and 
human responses to the same task. For instance, passengers would be hard-pressed to 
differentiate between human pilots and autopilots in a commercial airliner. A so-called 
intelligent system as defined by the Turing test is relatively simple to develop as long as  the 
operating domain is kept small; the human pilot must take control when the operating conditions 
stray outside the bounds that the  artificial system was developed to handle such as during 
inclement weather. 
 
The Turing test requires only that an artificial system behave like a human, and not necessarily 
think like a human. Many believe that the latter must be true as well, for a system to truly be 
intelligent. Artificial neural networks (ANNs) are based on biological neural networks composed 
of interconnected neurons which communicate with each other by transmitting binary electrical 
pulses. Biological neural networks contain billions of such neurons which act in parallel with an 
individual switching speed of approximately a millisecond, where a larger brain generally 
signifies higher intelligence.  
 



AAM: Intern. J., Vol. 6, Issue 1 (June 2011) [Previously, Vol. 6, Issue 11, pp. 1927 – 1941]                                  189 

 
ANNs are based on this model but have at most hundreds of neurons operating with continuous 
signals in series at speeds in the nanosecond range, where the principle of Occam’s razor dictate 
that the smallest network capable of solving the problem provides the best solution. Critics of 
ANNs maintain that they hardly resemble their biological counterparts: not only they do not 
think like a human, but they are black boxes whose inner workings are impossible to interpret 
even when they do produce reasonable responses. ANNs were conceived before significant 
computing power was available [Khalaf (1990) and Khanna and Noback (1963)] but their 
research did not begin to blossom [Kuznetsova et al. (1980) and Barto (1981)], until the advent 
of the personal computer after which they have been applied to vast numbers of engineering 
problems [McFall (2006)]. 
 
3.  The New Method 
 
3.1. Shooting Technique  
 
Let us consider a two point BVP (this will not affect the generality of the method): 
 

2
'

2
( , , ),   ( )  , y( ) ,    ( , ).

d y
f x y y y a b x a b

dx
                                                 (1) 

 
That above problem can be reduced to the following system: 
 

2
1 y

dx

dy
    

'2
1 1 1( , , ),         y ( ) ,     ( )

dy
f x y y a y b

dx
    .                                        (2) 

 
To integrate system (2) in the interval (a, b) we need a value of y2 (a) which is unknown. To get 
this value, we proceed as follows: 
 
Process 1:  Estimate a value S for y2(a) and integrate the system (2) in the interval (a, b), we get 
y1(b) = m0

. 
 
Process 2: Estimate another different value 1s for y2 (a) and integrate the system (2) in the 
interval (a, b), we get y1 (b) =m1 and so on. 
. 
. 
. 
Process n: Estimate another different value ns  for y2 (a) and integrate the system (2) in the 

interval (a, b), we get y1(b) = mn. 
 
Hence, we get the following table of data: 

 
 

Table 1-a. 
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ns      … 2s  1s  0s   aysi 2  

nm      … 2m  1m  0m   bymi 1  

 
We can write the above table as: 
 

Table 1-b. 

nm      … 2m  1m  0m  P 

ns      … 2s  1s  0s  T 

 
Then, by using neural networks, we can find the value of  ay2 corresponding to   by1 by. 

 
3.2. Neural Networks Technique 
 
Step 0.  Initialize weights. (Set to small random values). 
 
Step 1.  While stopping condition is false, do Steps 2-9. 
 
Step 2.  For each training pair, do Steps 3-8. 
 
 
Feed Forward 
 
Step 3.  Each input unit (mi, i=1,…, n) receives. Input signal xi and broadcasts this signal to all 
units in the layer above (the hidden units). 
 

Step 4. Each hidden unit (zj, j=1,…,r) sums its weighted input signals, 



n

i
ijjojj vmvinz

1

and 

applies its activation function to compute its output signals )( jj inzfz   and sends this signal 

to all units in the layer above (output units ). 
 

Step 5.  Each output unit (ph. k = 1, …, r) sums 



n

i
jkjojk wzwiny

1

and applies its activation 

function to compute its output signal )( kk inyfy  .   

 
Back propagation of error: 
 
Step 6.  Each output unit ( , 1,..., )ky k m  receives a target pattern corresponding to the input 

training pattern, computes its error information term )()( kkkk inyfyt  . Calculates its 

weight correction term (used to update jkw  later) jkjk zw  , and sends Sh to units in the layer 
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oclow. Each hidden unit ( , 1,..., )kz j p  sums its delta inputs (from units in the layer) 

kakw   and sends Sh to units in the layer oclow.  

 
Step 7.  Each hidden unit ),.......,1,( pjz j   sums its Delta inputs (from units in the layer above) 





m

k
jkkj win

1

 multiplies by the derivative of its activation function to calculate its error 

information term. Calculates its weight correction term (used to updated later) and calculators its 
bias correction term (used to update later) )( jjj inzfin   . Update weights and biases: 

ijij x   and jj   0 . 

 
Step 8.  Each output unit ( , 1,..., )kz k p  updates its bias and weights ( 0,..., )j p : 

jkjkjk woldwneww  )()( . Each hidden unit ( , 1,..., )jz j r updates its bias and 

weights ( 0,..., )i n : ijijij voldvnewv  )()( . 
 
Step 9. Test stopping condition. [Fausett (1994)].  
 
 
4.  Convergence Properties of the Technique 
 
 
The convergence properties of integration and interpolation technique are well studied by Khalaf 
(2008).  Here, we summarize their study: Convergence of integration algorithm accuracy of the 
new technique. 
 
 
5.  Testing the New Method  
 
 
In this section of the research, five examples are considered to test the new algorithm for the 
determination of the results and the Magnitude of error. The network's input ranges from [0 to 5]. 
The first layer has neurons; the second layer has one Purelin-neuron. 
 
Example 1. (Linear Problem) 
 
Consider the following linear BVPs: 
 

y
dx

dy

dx

yd
2

2

2

 ,      y(0)=1,   y(1)=e. 

 
Exact solution ( xey  ). 
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We can reduce the problem to the following form: to integrate system by the new method, we 
give the following value for   3,2,0,102 y  and we integrate the system by Runge-Kutta 
method we get the following table: 
 

Table 2-a. 

3 2. 1 0 -1  ay2  
4.4402 3.5793 2.7183 1.8573 0.9963  by1  

 
 
 
We can write the above table as: 
 
                          Table 2-b. 

4.4402 3.5793 2.7183 1.8573 0.9963 P 
3 2. 1 0 -1 T 

 
 
Here is a problem consisting of inputs P and targets T that we would like to solve with neural 
network. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1a. Learning curve of NN for Example 1 
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Figure1b. Curve of NN and exact for Example 1 
 

 
The result obtained by the neural network  02y is 1 where the exact  02y  is 1. The accuracy of 

the final value of  02y can be increased by reducing the step size and increasing the number of 
estimations or the accuracy can be increased by using higher order integration method. The 
maximum error value is  NNexact yy max  =1.2089E-008 

 
Example 2. (Non-linear Problem) 
 
Consider the following nonlinear BVPs: 
 

)2(
2

1 23
22

2

yy
xdx

yd
 , 

4
(1) 1,    y(2)

3
y    .  

 

  )
1

2
(solution  Exact 




x

x
xy  . 

 
 12y = -1, 0, 2, 3, and we integrate the system by Range-Kutta method using step h=0.5 we get 

the following table: 
 

Table 3-a. 

3 2. 1 0 -1  ay2  
4.1382 2.8977 1.8307 0.8499  -0.1026  by1  
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We can write the above table as: 
 

Table 3-b. 

4.1382 2.8977 1.8307 0.8499  -0.1026 P 
3 2. 1 0 -1 T 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure2a. Learning curve of NN for Example 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure2b. Curve of NN and exact for Example 2 
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The result obtained by the neural network  12y  is 0.4997 where the exact  12y  is 0.5. The 

accuracy of the final value of  12y  can be increased by reducing the step size and increasing the 
number of estimations or the accuracy can be increased by using higher order integration 
method. Maximum error value is NNexact yy max  44.3729E-004. 

 
Example 3. (Linear Problem) 
 
Consider the following linear BVPs: 

 
, (0) 0,    y(1) 1.9y    .  
 

xxy 9.0solution  Exact 3  .  
 

 02y =-1, 0, 2, 3, and we integrate the system by Runge-Kutta method we get the following 
table: 

Table 4-a. 

3 2. 1 0 -1  ay2  
4.7071 3.3713 2.0356 0.7000 -0.6309  by1  

 
We can write the above table as: 
 

Table 4-b. 

.4.7071  3.3713 2.0356 0.7000 -0.6309 P 
3 2. 1 0 -1 T 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure3a. Learning curve of NN for Example 3 

 

xy
dx

dy
x

dx

yd
2.43

2

2


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Figure3b. Curve of NN and exact for Example 3 
 
The result obtained by the neural network  02y  is 0.9266 where the exact  02y is 0.9. The 

accuracy of the final value of  02y can be increased by reducing the step size and increasing the 
number of estimations or the accuracy can be increased by using higher order integration 
method. The maximum error value is NNexact yy max  =5.9884E-004. 
 
Example 4. (Non-linear Problem) 
 
Consider the following nonlinear BVPs:  
 

 
, 
 

 

3

1
y(2)   

2

1
)1( y .  

1
Exact solution  .

1
y

x



  

 
 02y =-1, 0, 2, 3, and we integrate the system by Runge-Kutta method, we get the following 

table: 
Table 5-a. 

3 2. 1 0 -1  ay2  
  3.8444 2.4812 1.4510 0.5564 -0.3953   by1  

 

dx

dy
yy

dx

yd
 3

2

2
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We can write the above table as: 
 

Table 5-b. 

  3.8444 2.4812 1.4510 0.5564 -0.3953  P 
3 2. 1 0 -1 T 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4a. Learning curve of NN for Example 4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4b. Curve of NN and exact for Example 4 
 
The result obtained by the neural network  02y is   0.2082    where the exact 

 02y is 0.25. The accuracy of the final value of  02y can be increased by reducing 
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the step size and increasing the number of estimations or the accuracy can be 
increased by using higher order integration method. The maximum error value is 

NNexact yy max  =0.0097.  
 
Example 5. 
 
Consider the following linear BVPs:  

 
 ,      y (2) =y (3)=0. 
 

)
36

519(
38

1
solution  Exact 2

x
xxy   . 

 
y2(2)=-1,0,2,3,and we integrate the system by Rungge-Kutta method .we get the following table: 
 

Table 5-a. 

3 2. 1 0 -1  ay2  
  2.9444 1.8889 0.8333 -0.2222 -1.2778   by1  

 
We can write the above table as: 
 

Table 5-b. 

  2.9444 1.8889 0.8333 -0.2222  -1.2778  P 
3 2. 1 0 -1 T 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4a. Learning curve of NN for Example 5 
  
 

xx

y

dx

yd 12
22

2


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Figure5b. Curve of NN and exact for Example 5 
 
The result obtained by the neural network  22y  is 0.2101 where the exact  22y  is 0.2105. The 

accuracy of the final value of  22y  can be increased by reducing the step size and increasing the 
number of estimations or by using higher order integration method.  The maximum error value is 

NNexact yy max  =0.1 E-006. 

 
6.  Conclusion 
 
The result, in this research, for solving BVPs in ODEs obtained by using (integration and 
interpolation techniques) and Neural Networks we tabulated. Software developed, called (SNN), 
helps the user to specify and solve their problems. The system is developed using Matlab. Five 
examples are considered to show the effectiveness of the ANN for solving BVPs. The Maximum 
error and solution time of the technique is computed for each problem.   
                                          

Table 6. Maximum error and time for each example 

No. Of  Examples Maximum error Time 
1 1.2089E-008 5.9070 
2 44.3729E-004 3.8750 
3 5.9884E-004 6.4380 
4 0.0097 5.7660 
5 0.1 E-006 4.5110 
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