
187

Available at
http://pvamu.edu/aam

Appl. Appl. Math.

ISSN: 1932-9466

Vol. 6, Issue 1 (June 2011) pp. 187 – 200
(Previously, Vol. 6, Issue 11, pp. 1927 – 1941)

Applications and Applied
Mathematics:

An International Journal
(AAM)

Shooting Neural Networks Algorithm for Solving

Boundary Value Problems in ODEs

Kais Ismail Ibraheem and Bashir M. Khalaf

Department of Computer science
Mosul University

Mosul, Iraq
kaisismail@yahoo.com

Received: July 12, 2010; Accepted: March 4, 2011

Abstract

The objective of this paper is to use Neural Networks for solving boundary value problems
(BVPs) in Ordinary Differential Equations (ODEs). The Neural networks use the principle of
Back propagation. Five examples are considered to show effectiveness of using the shooting
techniques and neural network for solving the BVPs in ODEs. The convergence properties of the
technique, which depend on the convergence of the integration technique and accuracy of the
interpolation technique are considered.

Keywords: Shooting, Neural Networks, Back propagation, BVPs, ODEs

MSC (2010) No.: 65L10, 30E25, 68T27, 92B20.

1. Introduction

Some well-known numerical method for solving BVPs in ODEs include i) the Finite different
method ii) the shooting method iii) the collocation method. The Finite difference method
consists of dividing the given interval of the independent variable by node and then
approximating the differential equation by a given set of finite difference formulas at each node
that will produce a set of algebraic equations mostly non-linear, which may be solved by Newton
iteration or one of its alternatives. [For more detail see Khalaf (1988) and Kais and Abudu
(2001, March 5)]. To get accurate results for these methods, we have to increase the number of
nodes which will produce a greater number of algebraic equations. This also increases the

188 Kais Ismail Ibraheem and Bashir M. Khalaf

complexity of the solution and takes a lot of computer time. Mostly, the iteration processes at the
nodes create a noisy set of data that is accumulated by the iteration processes and tends to render
the solution meaningless.

The Shooting method consists of dividing the integration interval into subintervals. At the
beginning of each subinterval, values are estimated for the given dependent variables then and
the ODEs of the problem integrated using the estimated values and then at the end of each
subinterval the corresponding estimated and the integrated values of the corresponding
dependent variables are matched, i.e., at the end of each subinterval matching functions are
defined. The estimated values are then readjusted by Newton iteration or one of its alternatives.

The problem with these methods is that the estimated values need to be very close to the real
solution, otherwise the iteration processes will diverge. [For more detail see, for example, Keller
(1968), Barto & Sutton (1981), Khalaf (1990)]. The collocation methods [see Mattheij et al.
(1988) and Khalaf (1997)] based on approximating the solution of the ODE by a linear
combination of a set of independent simple functions. The coefficients of the combination may
then be estimated (using the boundary conditions BCs and substituting the differentiation of the
approximate solution at the given nodes of the iterative methods). Hence the iteration will
mostly diverge if there are noises or error in the combination coefficients; so we seek here to
develop a new method for solving BVDs in ODEs that uses integration and interpolation instead
of iteration processes. The results offer a significant contribution to the field by successfully
developing Neural Network methods for solving BVPs.

2. Artificial Intelligence

Artificial intelligence (AI) is a broad field that includes topics such as expert systems [Shu-Hsien
(2005)] fuzzy logic [Turksen (1997)] artificial neural networks [Meireles and Simoes (2003)],
evolutionary computing [Dolin and Merelo (2002)] and data mining [Zaslavsky and
Krishnaswamy (2005)]. Each of these activities strives to enable a computer to complete tasks
which normally require human intelligence. The classic definition of AI from the Turing test
[Turing (1950)] requires simply that a human observer fail to distinguish between artificial and
human responses to the same task. For instance, passengers would be hard-pressed to
differentiate between human pilots and autopilots in a commercial airliner. A so-called
intelligent system as defined by the Turing test is relatively simple to develop as long as the
operating domain is kept small; the human pilot must take control when the operating conditions
stray outside the bounds that the artificial system was developed to handle such as during
inclement weather.

The Turing test requires only that an artificial system behave like a human, and not necessarily
think like a human. Many believe that the latter must be true as well, for a system to truly be
intelligent. Artificial neural networks (ANNs) are based on biological neural networks composed
of interconnected neurons which communicate with each other by transmitting binary electrical
pulses. Biological neural networks contain billions of such neurons which act in parallel with an
individual switching speed of approximately a millisecond, where a larger brain generally
signifies higher intelligence.

AAM: Intern. J., Vol. 6, Issue 1 (June 2011) [Previously, Vol. 6, Issue 11, pp. 1927 – 1941] 189

ANNs are based on this model but have at most hundreds of neurons operating with continuous
signals in series at speeds in the nanosecond range, where the principle of Occam’s razor dictate
that the smallest network capable of solving the problem provides the best solution. Critics of
ANNs maintain that they hardly resemble their biological counterparts: not only they do not
think like a human, but they are black boxes whose inner workings are impossible to interpret
even when they do produce reasonable responses. ANNs were conceived before significant
computing power was available [Khalaf (1990) and Khanna and Noback (1963)] but their
research did not begin to blossom [Kuznetsova et al. (1980) and Barto (1981)], until the advent
of the personal computer after which they have been applied to vast numbers of engineering
problems [McFall (2006)].

3. The New Method

3.1. Shooting Technique

Let us consider a two point BVP (this will not affect the generality of the method):

2
'

2
(, ,), () , y() , (,).

d y
f x y y y a b x a b

dx
     (1)

That above problem can be reduced to the following system:

2
1 y

dx

dy


'2
1 1 1(, ,), y () , ()

dy
f x y y a y b

dx
    . (2)

To integrate system (2) in the interval (a, b) we need a value of y2 (a) which is unknown. To get
this value, we proceed as follows:

Process 1: Estimate a value S for y2(a) and integrate the system (2) in the interval (a, b), we get
y1(b) = m0

.

Process 2: Estimate another different value 1s for y2 (a) and integrate the system (2) in the
interval (a, b), we get y1 (b) =m1 and so on.
.
.
.
Process n: Estimate another different value ns for y2 (a) and integrate the system (2) in the

interval (a, b), we get y1(b) = mn.

Hence, we get the following table of data:

Table 1-a.

190 Kais Ismail Ibraheem and Bashir M. Khalaf

ns … 2s 1s 0s  aysi 2

nm … 2m 1m 0m  bymi 1

We can write the above table as:

Table 1-b.

nm … 2m 1m 0m P

ns … 2s 1s 0s T

Then, by using neural networks, we can find the value of  ay2 corresponding to   by1 by.

3.2. Neural Networks Technique

Step 0. Initialize weights. (Set to small random values).

Step 1. While stopping condition is false, do Steps 2-9.

Step 2. For each training pair, do Steps 3-8.

Feed Forward

Step 3. Each input unit (mi, i=1,…, n) receives. Input signal xi and broadcasts this signal to all
units in the layer above (the hidden units).

Step 4. Each hidden unit (zj, j=1,…,r) sums its weighted input signals, 



n

i
ijjojj vmvinz

1

and

applies its activation function to compute its output signals)(jj inzfz  and sends this signal

to all units in the layer above (output units).

Step 5. Each output unit (ph. k = 1, …, r) sums 



n

i
jkjojk wzwiny

1

and applies its activation

function to compute its output signal)(kk inyfy  .

Back propagation of error:

Step 6. Each output unit (, 1,...,)ky k m receives a target pattern corresponding to the input

training pattern, computes its error information term)()(kkkk inyfyt  . Calculates its

weight correction term (used to update jkw later) jkjk zw  , and sends Sh to units in the layer

AAM: Intern. J., Vol. 6, Issue 1 (June 2011) [Previously, Vol. 6, Issue 11, pp. 1927 – 1941] 191

oclow. Each hidden unit (, 1,...,)kz j p sums its delta inputs (from units in the layer)

kakw  and sends Sh to units in the layer oclow.

Step 7. Each hidden unit),.......,1,(pjz j  sums its Delta inputs (from units in the layer above)





m

k
jkkj win

1

 multiplies by the derivative of its activation function to calculate its error

information term. Calculates its weight correction term (used to updated later) and calculators its
bias correction term (used to update later))(jjj inzfin   . Update weights and biases:

ijij x  and jj   0 .

Step 8. Each output unit (, 1,...,)kz k p updates its bias and weights (0,...,)j p :

jkjkjk woldwneww )()(. Each hidden unit (, 1,...,)jz j r updates its bias and

weights (0,...,)i n : ijijij voldvnewv )()(.

Step 9. Test stopping condition. [Fausett (1994)].

4. Convergence Properties of the Technique

The convergence properties of integration and interpolation technique are well studied by Khalaf
(2008). Here, we summarize their study: Convergence of integration algorithm accuracy of the
new technique.

5. Testing the New Method

In this section of the research, five examples are considered to test the new algorithm for the
determination of the results and the Magnitude of error. The network's input ranges from [0 to 5].
The first layer has neurons; the second layer has one Purelin-neuron.

Example 1. (Linear Problem)

Consider the following linear BVPs:

y
dx

dy

dx

yd
2

2

2

 , y(0)=1, y(1)=e.

Exact solution (xey ).

192 Kais Ismail Ibraheem and Bashir M. Khalaf

We can reduce the problem to the following form: to integrate system by the new method, we
give the following value for   3,2,0,102 y and we integrate the system by Runge-Kutta
method we get the following table:

Table 2-a.

3 2. 1 0 -1  ay2
4.4402 3.5793 2.7183 1.8573 0.9963  by1

We can write the above table as:

 Table 2-b.

4.4402 3.5793 2.7183 1.8573 0.9963 P
3 2. 1 0 -1 T

Here is a problem consisting of inputs P and targets T that we would like to solve with neural
network.

Figure1a. Learning curve of NN for Example 1

AAM: Intern. J., Vol. 6, Issue 1 (June 2011) [Previously, Vol. 6, Issue 11, pp. 1927 – 1941] 193

Figure1b. Curve of NN and exact for Example 1

The result obtained by the neural network  02y is 1 where the exact  02y is 1. The accuracy of

the final value of  02y can be increased by reducing the step size and increasing the number of
estimations or the accuracy can be increased by using higher order integration method. The
maximum error value is NNexact yy max =1.2089E-008

Example 2. (Non-linear Problem)

Consider the following nonlinear BVPs:

)2(
2

1 23
22

2

yy
xdx

yd
 ,

4
(1) 1, y(2)

3
y   .

 )
1

2
(solution Exact




x

x
xy .

 12y = -1, 0, 2, 3, and we integrate the system by Range-Kutta method using step h=0.5 we get

the following table:

Table 3-a.

3 2. 1 0 -1  ay2
4.1382 2.8977 1.8307 0.8499 -0.1026  by1

194 Kais Ismail Ibraheem and Bashir M. Khalaf

We can write the above table as:

Table 3-b.

4.1382 2.8977 1.8307 0.8499 -0.1026 P
3 2. 1 0 -1 T

Figure2a. Learning curve of NN for Example 2

Figure2b. Curve of NN and exact for Example 2

AAM: Intern. J., Vol. 6, Issue 1 (June 2011) [Previously, Vol. 6, Issue 11, pp. 1927 – 1941] 195

The result obtained by the neural network  12y is 0.4997 where the exact  12y is 0.5. The

accuracy of the final value of  12y can be increased by reducing the step size and increasing the
number of estimations or the accuracy can be increased by using higher order integration
method. Maximum error value is NNexact yy max 44.3729E-004.

Example 3. (Linear Problem)

Consider the following linear BVPs:

, (0) 0, y(1) 1.9y   .

xxy 9.0solution Exact 3  .

 02y =-1, 0, 2, 3, and we integrate the system by Runge-Kutta method we get the following
table:

Table 4-a.

3 2. 1 0 -1  ay2
4.7071 3.3713 2.0356 0.7000 -0.6309  by1

We can write the above table as:

Table 4-b.

.4.7071 3.3713 2.0356 0.7000 -0.6309 P
3 2. 1 0 -1 T

Figure3a. Learning curve of NN for Example 3

xy
dx

dy
x

dx

yd
2.43

2

2



196 Kais Ismail Ibraheem and Bashir M. Khalaf

Figure3b. Curve of NN and exact for Example 3

The result obtained by the neural network  02y is 0.9266 where the exact  02y is 0.9. The

accuracy of the final value of  02y can be increased by reducing the step size and increasing the
number of estimations or the accuracy can be increased by using higher order integration
method. The maximum error value is NNexact yy max =5.9884E-004.

Example 4. (Non-linear Problem)

Consider the following nonlinear BVPs:

,

3

1
y(2)

2

1
)1(y .

1
Exact solution .

1
y

x




 02y =-1, 0, 2, 3, and we integrate the system by Runge-Kutta method, we get the following

table:
Table 5-a.

3 2. 1 0 -1  ay2
 3.8444 2.4812 1.4510 0.5564 -0.3953  by1

dx

dy
yy

dx

yd
 3

2

2

AAM: Intern. J., Vol. 6, Issue 1 (June 2011) [Previously, Vol. 6, Issue 11, pp. 1927 – 1941] 197

We can write the above table as:

Table 5-b.

 3.8444 2.4812 1.4510 0.5564 -0.3953 P
3 2. 1 0 -1 T

Figure 4a. Learning curve of NN for Example 4

Figure 4b. Curve of NN and exact for Example 4

The result obtained by the neural network  02y is 0.2082 where the exact

 02y is 0.25. The accuracy of the final value of  02y can be increased by reducing

198 Kais Ismail Ibraheem and Bashir M. Khalaf

the step size and increasing the number of estimations or the accuracy can be
increased by using higher order integration method. The maximum error value is

NNexact yy max =0.0097.

Example 5.

Consider the following linear BVPs:

 , y (2) =y (3)=0.

)
36

519(
38

1
solution Exact 2

x
xxy  .

y2(2)=-1,0,2,3,and we integrate the system by Rungge-Kutta method .we get the following table:

Table 5-a.

3 2. 1 0 -1  ay2
 2.9444 1.8889 0.8333 -0.2222 -1.2778  by1

We can write the above table as:

Table 5-b.

 2.9444 1.8889 0.8333 -0.2222 -1.2778 P
3 2. 1 0 -1 T

Figure 4a. Learning curve of NN for Example 5

xx

y

dx

yd 12
22

2



AAM: Intern. J., Vol. 6, Issue 1 (June 2011) [Previously, Vol. 6, Issue 11, pp. 1927 – 1941] 199

Figure5b. Curve of NN and exact for Example 5

The result obtained by the neural network  22y is 0.2101 where the exact  22y is 0.2105. The

accuracy of the final value of  22y can be increased by reducing the step size and increasing the
number of estimations or by using higher order integration method. The maximum error value is

NNexact yy max =0.1 E-006.

6. Conclusion

The result, in this research, for solving BVPs in ODEs obtained by using (integration and
interpolation techniques) and Neural Networks we tabulated. Software developed, called (SNN),
helps the user to specify and solve their problems. The system is developed using Matlab. Five
examples are considered to show the effectiveness of the ANN for solving BVPs. The Maximum
error and solution time of the technique is computed for each problem.

Table 6. Maximum error and time for each example

No. Of Examples Maximum error Time
1 1.2089E-008 5.9070
2 44.3729E-004 3.8750
3 5.9884E-004 6.4380
4 0.0097 5.7660
5 0.1 E-006 4.5110

REFERENCES

200 Kais Ismail Ibraheem and Bashir M. Khalaf

Barto, A. and Sutton, R. (1981). "Landmark learning: an illustration of associative search",
Biological Cybernetics vol. 42, pp. 1-8.

Bushor, W. (1960). "The perceptron-an experiment in learning", Electronics vol. 33, pp. 56-59.
Dolin, B. and Merelo, J. (2002). "Resource review: a web-based tour of genetic programming",

Genetic Programming and Evolvable Machines vol. 3 pp. 311-313.
Fausett, L. (1994). "Fundamentals of Neural Network Architectures Algorithms and

applications", Prentice-Hall Englewood Cliffs.
Grant, E. and Zhang, B. (1989). "A neural-net approach to supervised learning of pole

balancing", presented at IEEE International Symposium on Intelligent Control Albany, NY
USA.

Kais, I. I. and Abudu, R.M. (2001, March 5). "Solving Stiff Two Point Boundary Value Problem
by Use of Shooting Method Problems", a. paper presented to the 2nd International Seminar
on Numerical Analysis in Engineering University of North Sumatra Medan, 14-15, 24 – 31.

Keller, H. (1968). "Numerical methods for two-point BVPs ", Blaisdeell Mass.
Khalaf, B. (1988). "Boundary Value Techniques in continues system simulation", M. Phil Thesis

Bradford University.
Khalaf, B. (1990). "Parallel numerical algorithm for solving ODEs", Ph.D. Thesis Leeds

University.
Khalaf, B. (1997). "Techniques for controlling the stability of numerical solution of initial

value", Raf. Jour. Sci. Vol.27, pp. 135-146.
Khalaf, B. and Al-Nema, M. (2008). Generalized Parallel Algorithms for BUPs in ODEs, The

Proceeding of The second Conference on Mathematical Sciences (CMS 2008) Jordan, pp.
275-284.

Khanna, S. and Noback, C. (1963). "Neural nets and artificial intelligence", Artificial
 Intelligence, pp. 83-88.
Kuznetsova, Kuzmenko V. and Tsygelnyi, I. (1980). "Problems and future trends in neuron

engineering", Otbor i Peredacha Informatsii vol. 62 pp. 49-55.
Mattheij, Ascher U. R. and Russel, R. (1988). "Numerical Solution of Boundary for ODEs",

Prentice-Hall New Jersey.
Maxwell, T.C., Giles, Y. Lee and Chen, H. (1986)."Nonlinear dynamics of artificial neural

systems", presented at Neural Networks for Computing Snowbird UT USA.
McFall, Kevin S. (2006). "An Artificial Neural Network Method For Solving Boundary Value

Problems With Arbitrary Irregular Boundaries", Ph.D. Thesis Georgia Institute of
Technology.

Meireles, M.P. Almeida and Simoes, M. (2003). "A comprehensive review for industrial
applicability of artificial neural networks", IEEE Transactions on Industrial Electronics vol.
50, pp. 585-601.

Shu-Hsien, L. (2005). "Expert system methodologies and applications-a decade review from
1995 to 2004", Expert Systems with Applications vol. 28.

Tsoi, A. (1989). "Multilayer perceptron trained using radial basis functions", Electronic Letters
Turing, A. (1950). "Computing machinery and intelligence", Mind vol. 59, pp. 433-460.
Turksen, I. (1997). "Fuzzy logic: review of recent concerns", presented at IEEE International

Conference on Systems Man and Cybernetics. vol. 25, pp. 1286-1297.
Zaslavsky, Gaber M.A. and Krishnaswamy, S. (2005). "Mining data streams: a review",

SIGMOD Record vol. 34, pp. 18-26.

