
217 
 

 

Available at 
http://pvamu.edu/aam 

Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 9, Issue 1 (June  2014),  pp. 217-245 

Applications and Applied 
Mathematics:  

An International Journal 
(AAM) 

 

 
 

Dynamics of Phytoplankton, Zooplankton and  
Fishery Resource Model 

 
 

B. Dubey and Atasi Patra  
Department of Mathematics  
BITS Pilani-333031, India 

bdubey@pilani.bits-pilani.ac.in ; atasimaths@gmail.com  

 
R. K. Upadhyay 

Department of Applied Mathematics  
ISM Dhanbad-826004, India 

ranjit_ism@yahoo.com   
 
 

Received: May 29, 2013; Accepted: August 21, 2013 
 
Abstract  
 
In this paper, a new mathematical model has been proposed and analyzed to study the interaction 
of phytoplankton- zooplankton-fish population in an aquatic environment with Holloing’s types 
II, III and IV functional responses. It is assumed that the growth rate of phytoplankton depends 
upon the constant level of nutrient and the fish population is harvested according to CPUE (catch 
per unit effort) hypothesis. Biological and bionomical equilibrium of the system has been 
investigated. Using Pontryagin’s Maximum Principal, the optimal harvesting policy is discussed. 
Chaotic nature and bifurcation analysis of the model system for a control parameter have been 
observed through a numerical simulation. 
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1.  Introduction    
 
The study of prey-predator models have been of great interest for ecologists in the past few 
decades. The prey-predator models have also been used in phytoplankton-zooplankton-fish 
interactions to study the spatiotemporal pattern [Steele and Henderson (1981); Scheffer (1991); 
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Pascual (1993)] and local and temporal chaos [Sherratt et al. (1995); Petrovskii and Malchow 
(1999, 2001); Malchow et al. (2002); Upadhay et al. (2008)]. Modeling of phytoplankton-
zooplankton interaction takes into account zooplankton grazing with saturating functional 
response to phytoplankton abundance called Michaelis-Menten models of enzyme kinetics 
[Michaelis and Menten (1913)]. The oscillatory behavior of phytoplankton and zooplankton has 
extensively been studied by several researchers [Steele and Handerson (1981, 1992a, 1992b), 
Scheffer (1991, 1998), Truscott and Brindley (1994a, 1994b)]. Dubois (1975) proposed a 
nonlinear partial differential equation model with the Lotka-Volterra type ecological interaction 
taking into account advection and eddy diffusivity. Vilar et al. (2003) showed that biotic 
fluctuations and turbulent diffusion in standard prey-predator models are able to explain plankton 
field observations which include not only the spatial pattern but also its temporal evolution. 
Morozov and Arashkevich (2008) proposed a simple model explaining the observed alternations 
of functional response. They observed that the overall response of zooplankton exhibits different 
behavior compared to the patterns of the local response. 
 
To study the effects of space and time on the interacting species, Jansen (1995) extended the 
scope of the simple Lotka-Volterra system and Rosenzweig-McAurthur model to a patchy 
environment. Temporal and spatiotemporal chaos in population dynamics have been observed by 
many authors [Hanski et al. (1993); Becks et al. (2005); Xiao et al. (2006); Liu et al. (2008); 
Malchow et al. (2008)]. Upadhyay et al. (2008) proposed a phytoplankton- zooplankton -fish 
interaction model with Holling type IV functional response and studied the wave of chaos and 
pattern formation. Comparing with the empirical evidence from a different predator-prey model, 
Skalski and Gilliam (2001) pointed out that the predator-dependent functional responses could 
provide better descriptions of predator feeding over a range of predator-prey abundance, and in 
some cases, the Beddington –DeAngelis type functional response performed even better [Liu and 
Edoardo (2006)]. Upadhyay et al. (2009, 2010) investigated the wave phenomena and nonlinear 
non-equilibrium pattern formation in a spatial plankton-fish system with Holling type II and IV 
functional responses. 
 
Holling type III functional response has also been used to demonstrate cyclic collapses for 
representing the behavior of predator hunting [Real (1977); Ludwig et al. (1978)]. This response 
function is sigmoid, rising slowly when prey are rare, accelerating when they become more 
abundant, and finally reaching a saturated upper limit. Keeping the above mentioned properties 
in mind, we have considered the zooplankton grazing rate on phytoplankton and the zooplankton 
predation by fish follows a sigmoidal functional response of Holling type III. Misra (2011) also 
studied the depletion of dissolved oxygen due to algal boom in a lake with Holling type III 
interaction. Shukla et al. (2011) proposed and analyzed a mathematical model to study the 
depletion of a renewable resource by population and industrialization. They showed that density 
of the resource biomass decreases due to increase in densities of population and industrialization. 
It decreases further as the resource dependent industrial migration increases. However, the 
resource biomass can be maintained at an appropriate level if suitable technological efforts are 
applied for its conservation. Recently, Shukla et al. (2012) studied the effect of acid rain formed 
by precipitation on the plant species. They showed that the plant species may become extinct if 
the rate of formation of acid rain is very high. In these studies [Misra (2008, 2011); Shukla et al. 
(2007, 2011, 2012)] the interaction considered are either linear or bilinear. Kar and Chudhuri 
(2004) studied the bio-economic equilibrium and optimal harvesting policy of Lotka-Volterra 
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model consisting of two prey species in the presence of a predator. In this article, they have 
considered the predator functional response in which the feeding rate of the predator increases 
linearly with the prey density. Kar et al. (2009) further extended the above idea for two prey and 
one predator system by considering the predator functional response as Holling type I for one 
prey while for the other prey it is of Holling type II. Kar et al. (2010) further proposed a prey-
predator model with non-monotonic functional response and showed the existence of super 
critical Hopf bifurcation. 
 
In this paper, we extend the two-dimensional model studied by Upadhyay et al. (2010) into a 
three-dimensional model by considering the fish population as a dynamical variable. We assume 
that the grazing rate of zooplankton is dependent on the phytoplankton concentration according 
to a type IV functional response [Upadhyay et al. (2008)] while the predation rate of fish on 
zooplankton is of type III and on phytoplankton is of type II (Gentleman et al. (2003)). We 
further assume that the fish population is growing logistically and is harvested according to 
catch-per-unit-effort (CPUE) hypothesis (Clark (1976)). It may be pointed out here that our 
model proposed in this paper is much more general than those studied in Kar and Choudhuri 
(2004) , Kar et al. (2009, 2010)  and Upadhyay et al. (2010).  
 
 

2.   The Mathematical Model  
 
Let us consider a habitat consisting of the phytoplankton of density P, zooplankton of density 
Z and fish population of density F, at any time 0T  . Keeping the assumptions discussed in the 
introduction in our mind, and following our previous work [Upadhyay et al. (2010)], the 
dynamics of the system may be governed by the following system of differential equations:  
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Interactions involved in the minimal model system (1a)-(1b) are pictorially represented in 
Figure1.  
 

 
Figure 1. Interactions incorporated in the model system 

 



220                                                                                                                                                            B. Dubey et al. 
                                                                                                                 

The interaction part of the model system investigated is depicted by solid arrows. The interaction 
involving dotted arrows indicates that either of the positive or negative effects involved is 
considered in the model. 
 
In this model system (1a)-(1c), N  is the nutrient level of the system which is assumed to be 
constant. The nutrient level is increased due to eutrophication. The phytoplankton require both 
inorganic (phosphorous, nitrogen, iron, silicon, etc.) and organic (vitamins) nutrients for growth. 
However, excessive nutrients in coastal water can cause excessive growth of phytoplankton, 
microalgae and macroalgae. An excessive increase in phytoplankton and algae can lead to severe 
secondary impacts such as – (i) reduction of light which decreases the subaquatic vegetation, (ii) 
inhibition of the growth of coral reef as nutrient levels favor algae growth over coral larvae, (iii) 
reduction in the level of dissolved oxygen forming an oxygen-depleted water zone which may 
cause the ecosystem to collapse. In the present paper, we assume that the phytoplankton grows 
with a Monod type of nutrient limitation. Growth limitations by different nutrients are same. 
Instead, it is assumed that there is an overall carrying capacity which is a function of the nutrient 
level of the system and the phytoplankton do not deplete the nutrient level.   is the maximum 

per capita growth rate of prey population, NH  is the phytoplankton density at which specific 

growth rate becomes half its saturated value.  is the intraspecific interference coefficient  of 
phytoplankton population , c  is the rate at which phytoplankton is grazed and it follows Holling 
Type IV functional response, i  is the direct measure of the predator’s immunity from or 
tolerance of the prey, a  is the half saturation constant in the absence of any inhibitory effect, b is 
the conversion coefficient from individuals of phytoplankton into individuals of zooplankton, m  
is the morality rate of zooplankton.  
 
It is assumed that the zooplankton population is predated by fish which follows Holling Type III 
functional response and zH  is the zooplankton density at which specific growth rate becomes 

half its saturation value. It is further assumed that phytoplankton is predated by fish according to 
type II functional response. The fish population grows logistically with intrinsic growth rate 

0s and carrying capacity 0K . 0 1and   are conversion coefficients ( 0 10 , 1   ) of 

phytoplankton and zooplankton respectively. The fish population is harvested according to catch-
per unit-effort (CPUE) hypothesis and 1q is the catchability coefficient. Here harvesting effort is 

a control variable. 
        
 We introduce the following substitution and notations to bring the system of equations into non-
dimensional form 
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Using these parameters, the model system (1a)-(1c) in dimensionless form reduced to 
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with initial condition (0) 0,  (0) 0,  (0) 0.u v x     
 
  is the parameter measuring the ratio of the predator’s immunity from or tolerance of the prey 
to the half-saturation constant in the absence of any inhibitory effect,   is the parameter 
measuring the ratio of product of conversion coefficient with grazing rate to the product of 
intensity of competition among individuals of phytoplankton with carrying capacity,   is the per 
capita predator death rate. 
 
In the next section, we present the analysis of model (2a)-(2c). 
 
3.  Stability Analysis 
 
 In the following lemma, we state a region of attraction for the model system (2a)-(2c). 
 
Lemma 1.  
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is a region of attraction of all solutions initiating in the interior of positive octant  , where 
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The above lemma shows that all solutions of the model (2a)-(2c) are non-negative and bounded, 
which shows that the model is biologically well-behaved. 
 
Proof: 
 
The proof of this lemma is similar to Freedman and So (1985), Shukla and Dubey (1997), hence 
omitted. 
 
Now, we discuss the equilibrium analysis of the model. The model (2a)-(2c) has six non-negative 
equilibrium points, viz, 
 

* * *
0 1 2 3 4 ˆ ˆ(0,0,0),  (1,0,0),  (0,0, ),  ( , ,0),  ( ,0, ) and ( , , ).P P P x P u v P u x P u v x  

 
It may be noted here that the equilibrium points 0 1,  and  P P  always exist. 

 

For the point 2P , x is given by ( )
K

x s qE
s

   and it exists iff .s qE  

 
In the equilibrium point 3P ,  and u v  are the positive solutions of the following equations: 
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From (4a) and (4b) we get 
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and 
 

2 ( ) 0u u         .                                                                                                                        (4d) 
 

From (4d), we note the following: 
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then equation (4d) has two distinct positive real roots, namely, 
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Thus, in this case we have two equilibrium points 2 3
3 2 2 3 3 3( , ,0) and ( , ,0)P u v P u v , where 

2 3 and v v are calculated from equation (4c). 

 
Now, to show the existence of the equilibrium point 4 ˆ ˆ( ,0, )P u x , we note that ˆ ˆ and u x are the 
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Clearly, 0  if  1x u   .                                                                                                                          (5d) 
 
Substituting the value of x from (5c) into (5b), we get 
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Using the Decarte’s rule of sign, it may be noted that equation (5e) has a positive real root if 
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This shows that 4 ˆ ˆ( ,0, )P u x  exists under conditions (5d) and (5f).     

                                                                                                                                    
Existence of interior equilibrium point * * * *( , , )P u v x : in this case * * *,  and u v x are the positive 
solutions of following three equations: 
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0v  if 1 0(1 )(1 )u u x    ,                                                                                               (6e) 

 
Putting the value of v from (6d) into equations (6b and 6c) we get two equation in  and u x . 
 
These two functions are given below: 
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From (7a), we note the following: 
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We note that 0ax  if 0 1.                                                                                                               (8a) 
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From (7b), we note the following: 
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From the above analysis, we note that the isoclines (7a) and (7b) intersect at a unique point 

* *( , )u x , if in addition to conditions (8a)-(9b), the following condition 
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This completes the existence of interior equilibrium * * * *( , , )P u v x . 
 
Now we discuss the local and global stability behavior of these equilibrium points. For local 
stability analysis, first we find the variational matrices with respect to each equilibrium point. 
Then, by using eigenvalue method and the Routh-Hurwitz criteria, we get the following results. 
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unstable manifold in the u -direction. 
 

iv)    If the following inequalities hold: 
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a) 
  

1
1

2
  , 

 

  b)    
2

0 1 2 1
2 2

1 1 1

,
1

v u
qE s

v u

 
 

  
 

 

 

1 1where ,  (1 )(2 ),u v      then the point 1
3 1 1( , ,0)P u v is locally 

asymptotically stable. Otherwise, 1
3 1 1( , ,0)P u v  is a saddle point with stable 

manifold in the v  direction and unstable manifold in the ux  plane. 
 

v) If the following inequalities hold: 
 

22
2

0 222
12 2

(1 ) 1

a)   0,
1

(1 ) 1

i
i i

i

ii
i i

u
u u

u
s qE

uu
u u


 






 
   

    
 

    
 

 

 

b) 
2 1,iu    

 

c) 

2
(1 )

3iu   , 

 

   where i = 2, 3, then 3 ( , ,0)i
i iP u v is locally asymptotically stable. 

 

vi)   The point 4 ˆ ˆ( ,0, )P u x is locally asymptotically stable if 
2ˆ

ˆ ˆ( 1).
u

u u 


    

 

If 
2ˆ

ˆ ˆ( 1)
u

u u 


   , then 4P  is a saddle point with stable manifold in the ux -plane and unstable 

manifold in the v -direction. 
 
The stability behavior of the interior equilibrium point *P is not obvious from the variational 
matrix. However, with the help of Liapunov’s direct method, we are able to find sufficient 
conditions for *P to be locally asymptotically stable. We state these results in the following 
theorem. 
 
We use the following notations: 
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2 2

2 (1 ) (1 )
,

( )

u u u u
c c

v v x

     
  

 
 


 ,                                                                  (10c) 

 
2 2

* 2
22 * *
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22 2
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2 4

2 (1 ) (1 )
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( ) 2

v
K u u
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

    
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 .                       (10d)                  

 
Theorem 1.  
 
Let the following inequalities hold: 
 

1 1L  ,                                                                                                                                 (11a) 
 

*v  ,                                                                                                                                (11b) 
 

2
*2

*

* * * 2 *2
*

1 1 12 2 *2 2*2 *2
* *

1
( )

( )
1 1

u
v

u v x v
c c u L

vu uu u


 


 

  
                            

 ,                                       (11c) 

    
then *P is locally asymptotically stable. 
 
Proof: 
 
Proof of this theorem is given in Appendix-A. 
 
Theorem 2. 
 
 Let the following inequalities hold in  : 
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2 1L  ,                                                                                                                                 (12a) 
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2
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01 1

1 2*2 2
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2
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2( 1)
1 1 ,

4
1 ( )

vd u u d x
d L

u
u v

   
  

 

  
                                   

            (12c) 

 
then *P is globally asymptotically stable with respect to all solutions initiating in the interior of 
the positive octant  . 
 
Proof: 
 
Proof of this theorem is given in Appendix-B. 
 
4.   Numerical Simulation Results 
 
For the numerical integration of the model system, we have used the Runge-Kutta fourth order 
procedure on the MATLAB 7.0 platform. The dynamics of the model system (2) is studied with 
the help of numerical simulation. We choose the following set of values of parameters: 
 

0 1 0

2

0.2,  0.001,  3.33,  0.25,  2.5,  1.9,  150,  4.1,  

5.5,  3.9,  0.17.

s K

qE

     
 

       
  

               (13a)   

    
These parameter values are selected on the basis of values given by Letellier and Aziz-Alaoui 
(2002). It is observed that model system (2) has a chaotic solution for the above set of parameter 
values (see Figure 2). The time series for these populations are presented in Figure 3. The chaotic 
nature of the model system is confirmed by SIC test and is presented in Figure 4a and 4b. 
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Figure 2. Chaotic attractor for the                                      Figure 3. Time series for u, v, x species 
                               parameter values given in (13a) 
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Figure 4a. SIC in species u                                                   Figure 4b. SIC in species v 
 
The stable focus is obtained [see Figure 5] for the following set of parameter values 
 

0 1

0 2

1.8,  0.25,  0.001,  4.93,  0.25,  2.5,  3.2,  150,

 5.2,  5.5,  3.8.

s K

qE

     
 
       
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               (13b) 
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Figure 5. Time series for u, v, x species showing the stable focus for the parameter values   given   in (13b) 

 
A bifurcation diagram of model system (2) is plotted in Figure 6 and the blow-up bifurcation 
diagram is presented in Figure 7 and 8 in the different ranges for the control parameter,  , 
measuring the ratio of the predator’s immunity from or tolerance of the prey to the half-
saturation constant in the absence of any inhibitory effect. This figure exhibits the transition from 
chaos to order through a sequence of period halving bifurcations. The blow-up bifurcation 
diagrams show that the model system possesses a rich variety of dynamical behavior including 
KAM tori for bifurcation parameter    in the ranges [0.34, 0.36] and [0.33, 0.35]. Closed curve 
in this diagram correspond to invariant KAM tori in the phase space. Later on, theses curves 
break and give rise to chaotic dynamics. The chaotic behavior of the system is not continuing 
further, as the unstable period-3 orbits which originate at the time of saddle-node bifurcation do 
not allow it to move further. The bifurcation diagram are plotted with the help of software – 
“Dynamics: Numerical exploration” developed by Nusse and Yorke (1994). 
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Figure 6. Bifurcation diagram in the                                Figure 7. Magnified bifurcation diagram in the 
                        ranges [ 2,2],  [0.1,3]u    .                                      ranges [ 2,2],  [0.34,0.36]u     

 

 
Figure 8. Magnified bifurcation diagram in the ranges [ 2, 2],  [0.33,0.35]u     

 
5.   Bionomical Equilibrium 
 
The net economic revenue at time t is given by 
 

( , , ) ( ) ,x E t pqx c E                                                                                                         (14a) 
 
p is the price per unit harvested fish and c is the cost per unit effort. The bionomical equilibrium 

is ( , , , )P u v x E     , where , ,  and u v x E    are positive solutions of 

 

0u v x 
  

    .                                                                                                               (14b) 
 

Solving (14a) we get ,
c

x
pq  substituting this value in (6a) & (6b), these equations reduce to 
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0
2

1

1 0
(1 )

1

cv
u

u pq u
u









 


   
 

,                                                                              (14c) 

 

2 2 2
0

( )
1

u cv

u pq v
u

 




 

 


  
 

.                                                                                   (14d) 

 
We show that the above two isoclines (14c) and (14d) intersect at a unique point in the interior of 
the positive quadrant. For this purpose we note the following from (14c): 
 

i) When 0,u   then 0
11

c
v v

pq


     (say), 

1 0v    if 0 .c pq   
 

ii) When 0v  ,then  1u u   is given by 

 
2 2 2

1 1 1 0
1

1

(1 ) (1 ) 4 ( )
0,

2

pq p q pq c pq
u

pq

   


     
 

 
 

iii) Assume that 0.
dv

du




  

 
Now from equation (14d), we note the following: 
 

iv) When 0u  , then 2v v  is given by 

 
2 2 2 2 2

2

4
.

2

c c p q
v

pq

 


  


 
 

We note that 2v  is always real and negative if 2 .c pq   
 

v) When 0,v  then 2u u  is given by 

 
2

2
2

2
( ) ( )

2
u

    
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           
. 
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If 
2

(1 ) 


  , then 2u  is always positive. 

 

vi) Assume that 0.
dv

du




  

 
The above analysis shows that the two isoclines (14c) and (14d) intersect at a unique point 
( , )u v  if in addition to assumptions (i-vi), the following holds: 

 

2 1 .u u   
 
After knowing the values of u and v , we may calculate E from (6c), that is, 
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It is clear that 0E  if pqK c . 

 
This shows that bionomical equilibrium ( , , , )P u v x E     exists. 

 
 
6.  Maximum Sustainable Yield 
 
It is well known [Clark (1976)] that the value of Maximum sustainable yield (MSY) in absence 
of any alternative resource is  
 

0

4MSY

sK
h   . 

 
In the present case when the fish population depends on phytoplankton and zooplankton both, 
then we have 
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Thus, we have  
 

2
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v usK
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From the above equations, if * * 0u v  , then 0

4MSY MSY

sK
h h  . This result matches with the 

result of Clark (1976). Thus, MSYh h , then it denotes the overexploitation of fish population and 

if  MSYh h  , then the fish population is under exploitation. 

 
 
7.   Optimal Harvesting Policy 
 
In this section, we explain the optimal harvesting policy to be adopted by a regulatory agency. 
The net economic revenue to the fisherman  
 

= revenues obtained by selling the fishes – cost of harvesting, 
 

= ( ) ( ) ( ) ( ( ) ) ( ).pqx t E t cE t pqx t c E t     
 
Now, our objective is to solve the following optimization problem:  
 

max J , 

 
subject to the state equation (6a)-(6c) and to the control constraints max0 E E  , where  

 

0

( ( ) ) ( ) tJ e pqx t c E t dt


    

 
is the continuous time-stream of revenues and  is instantaneous rate of annual discount.  
 
Now to find the optimal level of equilibrium we use Pontryagins’s Maximum Principle. The 
associated Hamiltonian function is given by 
 

2
0

1 22 2 2 2
1

2

3 0 22 2
1

( ( ) )

( ) (1 ) ( )
1

1 1

( ) 1 ,
1

tH e pqx t c E

uxuv uv xv
t u u t v

u uu v
u u

x xv ux
t sx qEx

K v u



   
 

 

  
 

 

   
   

         
             

            

                  (15) 
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where 1 2 3,  and    are adjoint variables, 3( ) ( )tt e pqx c qx     is the switching function. 

 
The optimal control ( )E t which maximizes H must satisfy the condition 

 
 
 
 
 
 
 

Now the usual shadow price is 3
te and the net economic revenue on a unit harvest is 

c
p

qx
 . 

Thus, if the shadow price is less than the net economic revenue on a unit harvest, then maxE E , 

the shadow price is greater than the net economic revenue on a unit harvest, then 0E  and when 
shadow price equals the net economic revenue on a unit harvest, i.e., ( ) 0t  , then the 

Hamiltonian becomes independent of the control variable ( )E t i.e., 0
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This is necessary condition for singular control * ( )E t to be optimal over control set 
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Hence, the optimal harvesting policy is 
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For the singular control to be optimal, we must have ( ) 0
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According to this principle, the adjoint equations are 
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From the first adjoint equation, we have 
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Using equation (6a), this equation becomes 
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The second adjoint equation can be written as 
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Using equation (6b), this equation becomes 
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


  

  
  

 

                                                        (20) 

 
The third adjoint equation can be written as 
 

22
3 0 0 2

1 2 32 2 2 2
1 1

2
1 .

(1 ) (1 )
td u v uv x

e pqE s qE
dt u v K v u

     
   

                    
 

Using equation (6c), this equation becomes 
 

2
3 0

1 2 32 2
1

.
(1 )

td u v sx
e pqE

dt u v K
   

 
    

 
                                                             (21) 

 
From (17), differentiating with respect to t , we have 
 

3
3,

d

dt

                                                                                                                            (22) 
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with the help of (22), equation (21) reduces to 
 

2
0

1 2 2 2
1

.
1

tu v sx c
e pqE p

u v K qx
  

 
                  

                                              (23) 

 
Putting the values of 1 in (20), we get 

 

2
1 2 2

td
A A e

dt
     ,                                                                                                          (24) 

 
where 
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21
.
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A pqE p p

K qx qx vu
u
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




                           
    

 

Solving (24), we get 12
2 0

1

.A ttA
e k e

A



 


 

We note that when t  , then shadow price 2
te is bounded if 0 0k  . Thus,  

 

2
2

1

.
tA e

A











                                                                                                                   (25) 

 
Putting the values of 2 3 and   in equation (19), we get 

 

1
1 1 2 ,td

B B e
dt

                                                                                                                (26) 

 
where 
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Solving (26), we get 
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1 1

1

.
t

B tB e
k e

B








 


  

 
We note that when t  , then shadow price 1

te is bounded if and only if 1 0k  . Thus we 

have 
 

2
1

1

.
tB e

B











                                                                                                                          (27) 

 
After knowing the values of 1 2 ,    and 3 , the value of E can be calculated from equation (21), 

and it is given by 
 

2
02 2

2 2
1 1 1

1
,

( ) (1 ) ( ) ( )

uB Ac sx v
E E p

pq qx K B u A v


   
                  

                       (28) 

 
where E =optimal level of effort. Hence, solving the equation (6a)-(6c) with the help of (28), we 

get an optimal solution ( , , )u v x   and the optimal harvesting effort E E . 

 
 
8.   Conclusion 
 
In this paper, a mathematical model to study the dynamics of phytoplankton, zooplankton, fish 
population has been proposed and analyzed in which functional responses are considered to be of 
Holling type II, III and IV. The fish population is harvested according to CPUE hypothesis and 
harvesting effort is a control variable. The existence of equilibrium points and their stability 
analysis have been discussed with the help of stability theory of ordinary differential equations. 
The positive equilibrium point is locally and globally asymptotically stable under a fixed region 
of attraction when certain conditions are satisfied. We have observed that model system (2) has a 
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chaotic solution for the chosen set of parameter values. For the different  values  , measuring 
the ratio of the predator’s immunity from or tolerance of the prey to the half saturation constant 
in the absence of any inhibitory effect, the system exhibits bifurcation phenomena. The 
bifurcation and blow-up bifurcation diagrams exhibit the transition from chaos to order through a 
sequence of periods having bifurcation. The blow-up bifurcation diagram shows that the model 
system possesses a rich variety of dynamical behavior. The chaotic behavior of the system is not 
continuing further, as the unstable period-3 orbits which originate at the time of saddle-node 
bifurcation do not allow it to move further. Birge (1897) observed the marine habitat to be highly 
heterogeneous in factors such as light, nutrients, temperature and oxygen. In lakes, both the 
medium (e.g. water and sediments) and the organisms are highly dynamic; currents, wave action 
and turbulence render spatial patterns highly ephemeral (Downing (1991)). It becomes clear 
early in the study of temperate aquatic habitats that they varied in composition spatially and 
temporally. The most important temporal variations were perceived to be seasonal developments 
of pelagic communities mediated by annual cycles of temperature (Downing (1991)).  
 
We have discussed the bionomical equilibrium of the model and found the sustainable yield (h) 
and maximum sustainable yield (hMSY). It has been shown that if h > hMSY, then the over-
exploitation of fish population takes place and if h < hMSY, then the fish population is under 
exploitation. By constructing an appropriate Hamiltonian function and using Pontryagin’s 
Maximum Principal, the optimal harvesting policy has been discussed. We also found an optimal 
equilibrium solution. The idea contained in the paper provides a better understanding of the 
relative role of different factors; e.g., different predation rate of phytoplankton and zooplankton 
by fish population and intensity of interference among individual of predator. 
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APPENDIX A 
 
  
Proof of Theorem 1:   
 
First of all, we linearize the model system (2a)-(2c) by using the following transformation: 
 

* * *,  ,  u u U v v V x x X      ,  
 
where ( , , )U V X  are small perturbations about the interior equilibrium * * *( , , )u v x . 
Then the model system (2a)-(2c) can be written as 
 

11 12 13

21 22 23

31 32 33

dU
M U M V M X

dt
dV

M U M V M X
dt
dX

M U M V M X
dt

    

   

   

  ,                                                                                        (A1) 
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    (A2) 

 
Let  

 
2 2 2

1 2

1 1 1

2 2 2
W U c V c X  
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be a positive definite function, where 1 2&c c are positive constants as chosen in (10c). 

Differentiating W with respect to time along the solution of model (A1), a little algebraic 
manipulation yields 
 

2 2
11 12 1 21 1 22

2 2
11 13 2 31 2 33

2 2
1 22 1 23 2 32 2 33

1 1
( )

2 2
1 1

         ( )  
2 2
1 1

         ( ) .
2 2

dW
M U M c M UV c M V

dt

M U M c M UX c M X

c M V c M c M VX c M X

    

   

   

                                                    (A3) 

 

Sufficient conditions for 
dW

dt
to be negative definite are that the following inequalities hold: 

 
0,     1, 2.iiM i                                                                                                                  (A4) 

 

 2

12 1 21 1 11 22 ,M c M c M M                                                                                                  (A5) 

 

 2

13 2 31 2 11 33 ,M c M c M M                                                                                                 (A6) 

 

 2

1 23 2 32 1 2 22 33.c M c M c c M M                                                                                            (A7) 

 
For the values of 1 2&c c , as given in equation (10c),we note that condition (A6) and (A7) are 

satisfied, and (11a) implies 11 0M  and (11b) implies 22 0M  . Thus (A4) holds true. Again 

(11c) implies (A5). This shows that 
dW

dt
is negative definite under conditions stated in Theorem 

1. This completes the proof of theorem. 
 
 

 
APPENDIX B 

 
Proof of Theorem 2: 
 
Let us choose a positive definite function 
 

* * * * * *
1 1 2* * *

ln ln ln ,
u v x

W u u u d v v v d x x x
u v x

                  
     

                               (B1)  

where 1 2 and d d are some positive constant as given in equation (10d ). 
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Differentiating 1W with respect to time along the solution of model (2a)-(2c), a little algebraic 

manipulation yields 
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Sufficient conditions for 1dW

dt
to be negative definite is that the following inequalities hold: 

 
0,       1, 2.iia i                                                                                                                  (B3) 

 
2
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23 22 33.a a a                                                                                                                          (B6) 
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For the chosen values of 1 2&d d (see eq. (10d)), condition (B5) and (B6) are satisfied. We further 

note that (12a) implies 11 0a   and (12b) implies 22 0a  . After substituting the values of  ija  in 

Equation (B4), we maximize the LHS and minimize the RHS using Lemma 1. Then we note that 
(12c) implies (B4). Thus 1W is a Liapunov function for all solutions initiating in the interior of 

the positive constant whose domain contains the region of attraction  , proving the theorem. 

 


