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Abstract

We have studied the locally rotationally symmetric (LRS) Bianchi type-I line element in f(R, T )

(R is the Ricci scalar and T is the trace of the stress energy tensor) theory of gravity in presence
of EoS parameter. The simplest case of f(R, T ) gravity, i.e. first choice, is considered. The
“gamma-law” equations of state are considered to explore the role of particle creation in the
early universe. The exact solutions of the field equations are obtained using the scalar expansion
proportional to the shear. The physical and kinematical properties of the model are studied.
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1. Introduction

The eternal human quest to comprehend the origin and content of the Universe has seen significant
and exciting progress in recent years. There is a dramatic convergence of observation and theory
as high precision probes like the Cosmic Microwave Background, the two supernovae projects by
Reiss (1998) and Perlmutter (1999), have further refined the observational abilities in consonance
with the theoretical work. This direct knowledge reaffirms that the accelerated expansion as well
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as the existence of dark energy and dark matter as the major components of the Universe and
the Baryonic matter (Einstein et al. 2005) as only a tiny fraction of the existence. A web of
interlocking observations has established that the expansion of the Universe is speeding up and
not slowing, revealing the presence of some form of repulsive gravity. Within the context of
general relativity the cause of cosmic acceleration is a mysterious strong negative pressure termed
as “dark energy” accounting for about 73% of the Universe. The simplest explanation for dark
energy is that it is a cosmological constant or vacuum energy.

A cosmological model is a mathematical representation of the Universe describing the geometry
of space and time and the distribution and nature of matter within the framework of the Einstein
theory of gravitation. The three assumptions that the Universe is expanding, isotropic and spatially
homogeneous, form the basis of the cosmological explorations to date. Cosmological models that
obey these assumptions were first described by Friedmann (1924) as well as Lemaitre (1931) and
later analyzed from a geometrical perspective by Robertson (1936) and Walker (1937). These
models may or may not cater to the cosmological constant. The Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric or the more commonly used Friedmann-Roberson-Walker (FRW) metric
thus defines the geometry of a isotropic, homogeneous, expanding Universe. The dynamics are
driven by the energy content of the Universe and the equation of state of the components that
make up energy density. Of late, it has not been sufficient to merely study the standard universes
but there is a need to focus on the universe which is homogeneous but not always isotropic. In
such cases the allowed solutions of the equations of general relativity are called Bianchi models,
after the Italian mathematician Luigi Bianchi (1898). The recent advances in the high precision
cosmology raise the issue of exact isotropy. Bianchi models are being widely used as a deviation
from the FRW models. Hence a Bianchi type I cosmological model in f(R, T ) gravity will be
the basis of our hypothesis.

In 1905, Albert Einstein proposed that the laws of physics are the same for all non-accelerating
observers, and that the speed of light in a vacuum was independent of the motion of all observers.
This theory was termed as “the theory of special relativity.” It laid a new structure for all of
physics and suggested new concepts of space and time. Einstein then spent ten years trying to
incorporate acceleration in the theory and published his theory of General Relativity (GR) in
1915.

Despite the great success of Einstein’s theory of General Relativity, the limitation was that it
could not explain the late time acceleration, as the universe is believed to have higher accelerated
expansion in the latter half of its lifetime. This late time acceleration could be due to an exotic
dark energy (Mishra and Sahoo 2014) component or a modification of Einstein’s laws of gravity.

The once-discarded Einstein cosmological constant (Weinberg 1989; Peebles et al. 2003) regained
its popularity due to the late time acceleration. This expansion is sought to be catered to by
adding a term in the Einstein Field Equations or by considering scalar field contribution thus
attempting to evolve consistent cosmological models. Besides this, since late time acceleration
brings a fundamental challenge to gravitational theories, there are attempts to modify the GR
theory also by modifying the underlying geometry. One of the simplest modifications has been
the replacement of the standard Einstein-Hilbert action by an arbitrary function of the Ricci scalar
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R. Bertolami et al. (2007) have introduced an explicit coupling between the arbitrary function
of the Ricci scalar and the matter Lagrangian density. These are the f(R) theories.

Modified gravity models have been proposed in the works of Carroll et al. (2004), Sotiriou et
al. (2010), and Nojiri et al. (2007) and references therein. In these proposed modifications,
f(R) theory of gravity is considered as appropriate, due to cosmologically important f(R)

models. Bertolami (2007) proposed a generalization of f(R) modified theories of gravity has
been described by including in the theory an explicit coupling of an arbitrary function of the
Ricci scalar R with the matter Lagrangian density Lm. As a result of the coupling the motion of
the massive particles is non-geodesic, and an extra force orthogonal to the four velocity arises.

Nojiri and Odintsov (2011) have reviewed various modified gravity theories that are considered
as gravitational alternatives for dark energy. In addition, Multamaki (2006, 2007), Clifton et al.
(2012) and Mishra (2014) have investigated f(R) gravity in a different context. Shamir (2010)
has proposed a physically viable f(R) gravity model, which show the unification of early time
inflation and late time acceleration.

In another extension Harko et al. (2011) have proposed another extension of GR, where the
gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and of the trace
T of the stress-energy tensor. It has been suggested that due to the coupling between matter
and geometry, the theory should depend on a source term, representing the variation of the
matter-stress-energy tensor with respect to the metric.

The utility of late time acceleration in f(R, T ) gravity has been the focus of several recent
investigations. Recently, Sahoo et al. (2016) has obtained Kaluza-Klein cosmological model in
f(R, T ) gravity with Λ(T ). In the framework of f(R, T ) gravity, Nath et al. (2016a) have
discussed Bianchi type III cosmological model while Mishra and Sahoo (2014) and Reddy
and Shanthikumar (2013) studied Bianchi type III dark energy model and some anisotropic
cosmological models, respectively. Ahmed and Pradhan (2014) have studied Bianchi type-V
string and perfect fluid cosmological models respectively by consdering f(R, T ) = f1(R)+f2(T ).
Besides, Sharif (2012), Alvarenga (2013), Biswal (2015), and Myrzakulov (2012, 2012a) have
investigated different aspects of f(R, T ) gravity. Recently, Singh et al. (2016) has studied the
cosmological constant Λ in the frame work of f(R, T ) gravity.

Therefore, the cosmic acceleration in the results of f(R, T ) gravity, is from both geometric effects
and matter contribution. The f(R, T ) has several interesting features promising to resolve issues
of significant interest in cosmology.

2. A review of f(R, T ) gravity

The modified gravity with f(R, T ) action is

S =
1

16π

∫
f(R, T )

√
−gd4x+

∫
Lm
√
−gd4x, (1)

where f(R, T ) is an arbitrary function of the Ricci scalar R, T the trace of energy-momentum
tensor Tij of the matter, Lm corresponds to the matter Lagrangian. The energy momentum tensor
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Tij of matter is defined as

Tij = − 2√
−g

δ(
√
−gLm)

δgij
(2)

and its trace T = gijTij . Here, the matter Lagrangian Lm depends only on the metric tensor gij
rather than its derivatives. Hence, we can write

Tij = gijLm −
∂Lm
∂gij

. (3)

The equations of motion of f(R, T ) gravity are obtained by varying the action S with respect
to gij .

fR(R, T )Rij −
1

2
f(R, T )gij+(gij2−∇i∇j)fR(R, T )

= 8πTij − fT (R, T )Tij − fT (R, T )Θij,
(4)

where
Θij = −2Tij + gijLm − 2glm

∂2Lm
∂gij∂glm

. (5)

Here
fR(R, T ) =

∂f(R, T )

∂R
, fT (R, T ) =

∂f(R, T )

∂T
,

the d’Alembert operator 2 ≡ ∇i∇i, where ∇i denotes the covariant derivative. Using a contrac-
tion of indices in equation (4),

fR(R, T )R + 32fR(R, T )− 2f(R, T ) = (8π − fT (R, T ))T − fT (R, T )Θ, (6)

where Θ = gijΘij . The field equations of f(R, T ) gravity depends on the physical nature of Θij .
Hence depending on the nature of the matter source, one can obtain several theoretical models
corresponding to matter source. Harko et al. (2011) explained three possible models as follows

f(R, T ) =


R + 2f(T )

f1(R) + f2(T )

f1(R) + f2(R)f3(T ).

(7)

Here we have considered the first model, i.e., f(R, T ) = R + 2f(T ), where f(T ) is arbitrary
function of the trace of matter source and it represents the interaction between curvature and
matter. Let us assume f(T ) = λT , where λ is a constant. In this case the field equations (4) can
be written as

Rij −
1

2
Rgij + (gij2−∇i∇j)λ = 8πTij − 2(Tij + Θij)fT (R, T ) + f(T )gij. (8)

Assuming (gij2−∇i∇j)λ = 0, we get

Rij −
1

2
Rgij = 8πTij − 2(Tij + Θij)fT (R, T ) + f(T )gij. (9)

In this paper we consider the natural unit system with G = c = 1, where G is the Newtonian
gravitational constant and c is the speed of light in vacuum.
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3. Metric and Field Equations

We consider a homogeneous and anisotropic symmetric Bianchi type-I metric (Sahoo 2015) as,

ds2 = dt2 − A2(dx2 + dy2)−B2dz2, (10)

where the scale factors A and B are functions of cosmic time t only. The metric has symmetry
to xy−plane. The average scale factor, spatial volume, scalar expansion for the above metric are,

a = (A2B)
1
3 , V = a3 = A2B, θ = ui;i = 2

A′

A
+
B′

B
, (11)

where ′ represents an ordinary derivative with respect to cosmic time t. The directional Hubble
parameters are H1 = A′

A
and H3 = B′

B
. The Hubble parameter H can be written as,

H =
1

3
(2H1 +H3). (12)

In the presence of particle creation, the energy-momentum tensor is given by,

Tij = (ρm + pm + pc)uiuj − (pm + pc)gij, (13)

where ρm, pm, pc are the energy density, thermodynamical pressure and supplementary pressure
respectively. The supplementary pressure is considered as a part of cosmological pressure which
enters into the Einstein field equations. The supplementary pressure pc is known as the creation
pressure of particles and defined as (Calvao et al. 1992)

pc = −(ρm + pm)

n

dN

dV
, (14)

where N is the particle number, V is volume, and n = N
V

is the particle number density. From
literature it is observed that the value of pc is either negative or zero depending on the presence
of particle creation. ui = (0, 0, 0, 1) is the four velocity vector satisfying the condition uiui = 1

and ui∇jui = 0. The particle flux vector is of the form

Nα = nuα (15)

and this satisfies the balance equation (Pregogine et al. 1989)

Nα
;α = ψ, (16)

where ψ is a particle source term which may be positive or negative depending whether there is
production or annihilation of particles. In cosmology, ψ is usually considered to be zero. Here
we have considered the relation between V and the particle number n as matter creation (decay)
process. For the metric (10), equation (16) is

n′ + 3nH = ψ. (17)

Now equation (14) for adiabatic matter creation takes the form

pc = −(ρm + pm)

3nH
ψ. (18)



234 P. Shukla and A. Jayadev

The stress energy tensor for perfect fluid in presence of particle creation is given by

T = ρm − 3(pm + pc). (19)

From literature there is no unique definition of the matter Lagrangian, it can be assumed as
Lm = −(pm+pc). By help of energy-momentum tensor and matter Lagrangian, equation (5) can
be written as

Θij = −2Tij − (pm + pc)gij. (20)

Using this, the field equation (9) can be written as

Gij = 8πTij + 2[Tij + (pm + pc)gij]fT (R, T ) + f(T )gij. (21)

Thus, the field equations for space time (10) and energy-momentum tensor (13) are,

H2
1 +H2

3 +H ′
1 +H ′

3 +H1H3 = −8π(pm + pc) + λT (22)

3H2
1 + 2H ′

1 = −8π(pm + pc) + λT (23)

H2
1 + 2H1H3 = 8πρm + 2(ρm + pm + pc)λ+ λT. (24)

4. Solutions of the field equations

In order to get the exact solution to the field equations (22)-(24), i.e., three equations with five
unknowns, namely A,B, ρm, pm, pc, two more assumptions are needed. Equation (18) gives the
value of pc from ρm and pm, which implies we required only one additional assumption. To
solve the set of field equations, we have considered the shear scalar is proportional to the scalar
expansion. This yields

H3 = lH1, (25)

where l 6= 1 is a constant. For l = 1, the model is isotropic and anisotropic otherwise. From
equations (22) and (23) we obtain

H1 =
1

(2 + l)t+ k1
, (26)

where k1is integration constant. Using equation (26) in equation (25), we get

H3 =
l

(2 + l)t+ k1
. (27)

The metric potentials A(t) and B(t) are

A(t) = k2[(2 + l)t+ k1]
1

2+l (28)

and
B(t) = k3[(2 + l)t+ k1]

l
2+l , (29)

where k2, k3are integrating constants. The metric (10) becomes

ds2 = dt2 − k22[(2 + l)t+ k1]
2

2+l (dx2 + dy2)− k23[(2 + l)t+ k1]
2l
2+ldz2, (30)
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which is the anisotropic model of the universe in f(R, T ) gravity. Here we have considered the
EoS parameter of perfect fluid which is known as gamma-law in cosmological domain as

pm = (γ − 1)ρm, (31)

where γ is a constant lies in [0, 2]. Using (26), (27) and (31) in the set (22)-(24), the energy
density of matter, particle creation pressure and the pressure of the matter are given by

ρm =
1 + 2l

(2λ+ 8π)[(2 + l)t+ k1]2
, (32)

pc =
(1 + 2l)(2− γ)

(2λ+ 8π)[(2 + l)t+ k1]2
(33)

and
pm =

(1 + 2l)(γ − 1)

(2λ+ 8π)[(2 + l)t+ k1]2
. (34)

From (12), the Hubble parameter H can be written as

H =
2 + l

3[(2 + l)t+ k1]
. (35)

The volume V is obtained as
V = k22k3[(2 + l)t+ k1]. (36)

It is observed that the Hubble parameter decreases while the spatial volume increase with increase
in time. The values scale factor, scalar expansion and the shear scalar are obtained as

a = k4[(2 + l)t+ k1]
1
3 , k4 = (k22k3)

1
3 , (37)

θ =
2 + l

(2 + l)t+ k1
(38)

and
σ2 =

(1− l)2

3[(2 + l)t+ k1]2
. (39)

The anisotropy parameter ∆ = 6
(
σ
θ

)2 is

∆ =
1− l2

3(l + 2)
. (40)

4. Conclusion

We have constructed LRS Bianchi type I cosmological model in f(R, T ) gravity with the equation
of state (EoS) parameter. We have restricted γ between [0,2], so that the energy density behavior
for both the positive and negative pressure can be studied. We have observed that the scalar
expansion of the model decreases with increase in time for l > 0. As the mean anisotropy
parameter is constant, which is a measure of deviation from isotropic expansion, the universe
does not represent isotropic. However, for l = 1, one can obtain the isotropic behavior of the
model.
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