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Abstract 

In this paper, the tanh-coth method and the extended (G'/G)-expansion method are used to 
construct exact solutions of the nonlinear Modified Improved Kadomtsev-Petviashvili (MIKP) 
equation. These methods transform nonlinear partial differential equation to ordinary differential 
equation and can be applied to nonintegrable equation as well as integrable ones. It has been 
shown that the two methods are direct, effective and can be used for many other nonlinear 
evolution equations in mathematical physics. 
 
Keywords:  Tanh-Coth method, Extended (G'/G)-expansion method, Modified Improved 

Kadomtsev-Petviashvili (MIKP) equation 
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1.  Introduction 

The investigation of the exact solutions to nonlinear partial differential equations (NLPDEs) 
plays an important role in the study of many physical phenomena. With the help of exact 
solutions, when they exist, the mechanism of complicated physical phenomena and dynamical 
processes modeled by these NLPDEs can be better understood. They can also help to analyze the 
stability of these solutions and to check numerical analysis for these NLPDEs. 
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In recent years, reducing PDEs into ordinary differential equations (ODEs) has proved a 
successful idea to generate exact solutions of nonlinear wave equations. Many approaches to 
exact solutions in the literature follow such an idea, which contains the tanh and extended tanh 
methods [Malfliet (1992) , Malfliet and Hereman (1996), Wazwaz (2007), Taghizadeh and 
Mirzazadeh (2010), Taghizadeh et al. (2011)], (G'/G)-expansion method [Wang et al. (2008), 
Zhang et al. (2008), Zhu (2010), Taghizadeh and Mirzazadeh (2011), Biazar and Ayati (2011)], 
the homogeneous balance method [Wang (1995), Khalfallah (2009)], the Jacobi elliptic function 
method [Inc and Erg¨ut (2005)], the exp-function method [He and Wu (2006)], the F-expansion 
method [Zhang (2006)], the sine-cosine method [Wazwaz (2004)]and so on. 
 
As we know, over the past two decades or so, several expansion methods for finding travelling-
wave solutions to nonlinear evolution equations have been proposed, developed and extended. 
Two of the basic methods are the tanh-function expansion method [Malfliet (1992)] and the basic 
(G'/G)-expansion method [Wang et al. (2008)]. One extension of the former is the tanh-coth 
method [Wazwaz (2007)], and one extension of the latter is the extended (G'/G)-expansion 
method [Zhu (2010)]. In the present paper these two extended methods are applied to the 
modified improved Kadomtsev-Petviashvili (MIKP) equation in the form [Taghizadeh and 
Mirzazadeh (2010)] 
 

2( ) 0.t x xxx x yyu u u au bu     

 
The outcomes of the two methods are compared. 

2.  The Two Methods 

A PDE 
 

 ( , , , , , ,...) 0,x t xx xt xxxF u u u u u u                                                                                        (1) 

 
can be converted to an ODE 
 

 ( , ', '', ''',...) 0,G U U U U                                                                                                    (2)                   
 

upon using a wave variable  ( , ) ( ),u x t U   x ct   . If possible, integrating Equation (2) 
term by term one or more times yields constant(s) of integration. For simplicity the integration 
constant(s) can be set to zero . 
 
2.1.  The Tanh-Coth Method 
 
This method introduces a new independent variable 
 

tanh( ),Y                                                                                                                       (3) 
 
that leads to the change of derivatives: 
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2(1 ) ,
d d

Y
d dY



    

 
2 2

2 2 2 2 2
2 2

2 (1 ) (1 ) .
d d d

Y Y Y
d dY dY

 


                                                                  (4) 

 
The tanh-coth method admits the use of the finite expansion 
 

0 1

( ) ( ) ,
M M

k k
k k

k k

U S Y a Y b Y 

 

                                                                                   (5) 

 
where  M  is a positive integer,  in most cases, that will be determined. Expansion (5) reduces to 
the standard tanh method for  0,kb   ( 1,..., ).k M  Substituting (5) into the ODE (2) results 

in an algebraic equation in powers of  Y . 
 
To determine the parameter M, we usually balance the linear terms of the highest order in the 
resulting equation with the highest order nonlinear terms. We then collect all coefficients of 
powers of  Y in the resulting equation where these coefficients have to vanish. This will give a 
system of algebraic equations involving the parameters  ( 0,..., ),ka k M   ( 1,..., ),kb k M     

and c. Having determined these parameters we obtain an analytic solution ( , )u x t   in a closed 
form. 
 
2.2.  The Extended (G'/G)-Expansion Method 
 
Introduces the solution ( )U   of Equation (2) in the finite series form 
 

 
0 1

'( ) '( )
( ) ,

( ) ( )

i i
M M

i i
i i

G G
U

G G

   
 



 

   
    

   
                                                                       (6) 

 
where i  , i  are real constants to be determined, M is a positive integer to be determined, and 

the function ( )G   is the general solution of the auxiliary linear ordinary differential equation 
 

''( ) '( ) ( ) 0,G G G                                                                                                    (7) 

where  ,   are real constants to be determined. 
 
Expansion (6) reduces to the (G'/G)-expansion method for 0,i  ( 1,..., )i M . 

 
To determine the parameter M, we usually balance the linear terms of the highest order in the 
resulting equation with the highest order nonlinear terms. 
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Substituting (6) together with (7) into Equation (2) yields an algebraic equation involving powers 
of (G'/G). Equating the coefficients of each power of (G'/G) to zero gives a system of algebraic 
equations for i , i , ,  and c . Then, we solve the system with the aid of a computer algebra 

system, such as Maple, to determine these constants. On the other hand, depending on the sign of 
the discriminant 2 4    , the solutions of Equation (7) are well known to us. So, we can 
obtain exact solutions of equation (1). 
 

3.  Exact Solutions of MIKP Equation 

 
3.1.  Using the Tanh-Coth Method  

We consider the MIKP equation 
 

 2 22 0,tx x xx xxxx yyu uu u u au bu                                                                                  (8)                         

 
 using the variable  ( , ) ( )u x t U  ,  x ly t    , transforms Equation (8) into the ODE 
 

 2 2 2'' 2 ( ') '' '''' '' 0.U U U U U aU bl U                                                                      (9) 
 
Twice integrating Equation (9) and setting the constant of integrating to zero, we will have 
 

3
2( ) '' 0,

3

U
bl U aU     .                                                                                          (10)    

 

Balancing  ''U   with  3U   in Equation (10) gives 
 

2 3 ,M M   
 
then 1.M   In this case, the tanh-coth method in the form (5) admits the use of the finite 
expansion  
  

1
0 1( ) ( ) .

b
U S Y a aY

Y
                                                                                               (11) 

 
Substituting the form (11) into Equation (10) and using (4), collecting the coefficients of   Y we 
obtain: 

Coefficients of  3Y  :  3 2
1 1

1
2 .

3
a aa   

Coefficients of  2Y  :  2
0 1 .a a  

Coefficients of   1Y :  2 2 2 2
0 1 1 1 1 1( ) 2 .a a a b bl a aa      
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Coefficients of  0Y  :  3 2
0 0 1 1 0

1
2 ( ) .

3
a a a b bl a    

Coefficients of  1Y   :  2 2 2 2
0 1 1 1 1 1( ) 2 .a b a b bl b ab      

Coefficients of   2Y  :  2
0 1 .a b  

Coefficients of  3Y   :  3 2
1 1

1
2 .

3
b ab   

 
Setting these coefficients equal to zero, and solving the resulting system, using Maple, we find 
the following sets of solutions: 
 
The first set: (i) 

0 0,a       2
1 3( ),a bl        1 0,b       

2

.
2

bl

a

 
                                           (12) 

                                                                          
The second set: (ii) 

0 0,a       1 0,a       2
1 3( ),b bl        

2

.
2

bl

a

 
                                           (13)   

 
The third set: (iii) 
 

0 0,a      2
1

1
3( ),

2
a bl       2

1

1
3( ),

2
b bl       

21
.

2 2

bl

a

 
             (14) 

           
For  2 0bl    , 0a   the sets (12)-(14) give the solitons solutions 
 

2
2

1( , ) 3( ) tanh[ ( )],
2

bl
u x t bl x ly t

a

 
                                                      (15) 

 
2

2
2 ( , ) 3( ) coth[ ( )],

2

bl
u x t bl x ly t

a

 
                                                      (16) 

 

 

2
2

3

2

1 1
( , ) 3( ) tanh[ ( )]

2 2 2

1
coth[ ( )] .

2 2

bl
u x t bl x ly t

a

bl
x ly t

a

 

 

 
    




   


                                        (17) 

 
Note that, by use of the identity [Parkes (2010)] 
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tanh( ) coth( ) 2coth( ),
2 2

     

 
(17) is identical to (16). 
 
However, for  2 0bl   , we obtain the travelling wave solutions 
   

2
2

4 ( , ) 3( ) tan[ ( )],
2

bl
u x t bl x ly t

a

 
                                                        (18) 

 
2

2
5 ( , ) 3( ) cot[ ( )],

2

bl
u x t bl x ly t

a

 
                                                        (19) 

 
2

2
6

2

1 1
( , ) 3( ) tan[ ( )]

2 2 2

1
cot[ ( )] .

2 2

bl
u x t bl x ly t

a

bl
x ly t

a

 

 

 
    




   


                                           (20) 

 
Note that, by use of the identity [Parkes (2010)] 
 

cot( ) tan( ) 2cot( ),
2 2

   
 

 
(20) is identical to (19). 
 
 
3.2.   Using the Extended (G'/G)-Expansion Method 
 
Recall that  1M   as derived before. Using (6), the extended (G'/G)-expansion method admits 
the use of the finite expansion 
 

1

0 1 1

' '
( ) .

G G
U

G G
   


        
   

                                                                                   (21) 

Substituting (21) into (10), setting coefficients of   '
i

G
G  to zero, we obtain the following 

underdetermined system of algebraic equations for i , i , ,  and : 
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3
3
1 1

' 1
: 2 0,
3

G
a

G
     

   
 

2
2

0 1 1

'
: 3 0,

G
a

G
      

 
 

 
1

2 2 2
0 1 1 1 1

'
: ( 2 ) 0,

G
b a a

G
               

 
 

 
0

3
0 0 0 1 1 1 1

' 1
: ( ) 2 0,
3

G
b a a

G
               

 
 

 
1

2 2 2
0 1 1 1 1

'
: ( 2 ) 0,

G
b a a

G
       


        
 

 

 
2

2
0 1 1

'
: 3 0,

G
a

G
  


    
 

 

 
3

3 2
1 1

' 1
: 2 0.
3

G
a

G
  


    
 

 

 
Solving this system using Maple gives 
 
Case 1: 
 

0 6 ,
2

a
         1 6 ,a         1 0,       2 21

2 .
2

a a bl  
                        (22) 

 
Case 2: 
 

0 6 ,
2

a
         1 0,       1 6 ,a         2 21

2 .
2

a a bl  
                      (23) 

 
Case 3:  
 

0 6 ,
2

a
        1 6 ,a        1 6 ,a        2 21

8 .
2

a a bl  
               (24) 
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where   and    are arbitrary constants. Substituting Equation (22) into Equation (21) yields 
 

'
( ) 6 6 ,

2

G
U a a

G

        
 

                                                                                     (25) 

 

where 2 21
( 2 ) .

2
x ly a a bl t  

      

 
Substituting general solutions of Equation (7) into Equation (25), we have three types of 
traveling wave solutions of the MIKP equation as follow. 
 
When 2 4 0    

2 2

2
11

2 2

1 1
sinh[ 4 ] cosh[ 4 ]1 2 2( ) 6 ( 4 ) ,

1 12 cosh[ 4 ] sinh[ 4 ]
2 2

A B
u a

A B

   
  

   

    
    

   
 

              (26) 

 

where 2 21
( 2 ) .

2
x ly a a bl t  

      

 
When 2 4 0    

2 2

2
12

2 2

1 1
sin[ 4 ] cos[ 4 ]1 2 2( ) 6 (4 ) ,

1 12 cos[ 4 ] sin[ 4 ]
2 2

A B
u a

A B

     
  

     

     
    

   
 

                (27) 

where 2 21
( 2 ) .

2
x ly a a bl t  

      

 
When 2 4 0    
 

13

6
( ) ,

aB
u

A B





 


                                                                                                           (28) 

 

where 2 21
( 2 ) .

2
x ly a a bl t  

      

 
In solutions (26) − (28), A  and B are left as free parameters. 
 
 
In particular, if 0,A   0B   and 0  , then 11u  becomes 
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2

2
11( ) 3( ) tanh[ ( )],

2

bl
u bl x ly t

a

  
                                                         (29) 

 
where  2 0,bl   0a   and  12u  becomes 

 
2

2
12 ( ) 3( ) tan[ ( )],

2

bl
u bl x ly t

a

  
                                                           (30) 

 
where  2 0,bl    0a  . 
 
The solutions (29) and (30) are same the solutions (15) and (18) respectively. 
 
These special results show that the extended (G'/G)-expansion method obtains general solutions 
and it can be seen that the solutions obtained by using tanh-coth method, are special cases of 
these solutions. Our observations are in agreement with those in Biazar and Ayati (2011). 
 
Substituting Equation (23) into Equation (21) yields 
 

1
'

( ) 6 6 ,
2

G
U a a

G

 


       
 

                                                                               (31) 

 

where 2 21
( 2 ) .

2
x ly a a bl t  

      

 
Substituting general solutions of Equation (7) into Equation (31), we have three types of 
traveling wave solutions of the MIKP equation as follow. 
 
When 2 4 0    
 

21

1

2 2
2

2 2

( ) 6
2

1 1
sinh[ 4 ] cosh[ 4 ]4 2 26 ,

1 12 2cosh[ 4 ] sinh[ 4 ]
2 2

u a

A B
a

A B



     
   



  

      
    

       

           (32) 

 

where 2 21
( 2 ) .

2
x ly a a bl t  

      

When 2 4 0    
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22

1

2 2
2

2 2

( ) 6
2

1 1
sin[ 4 ] cos[ 4 ]4 2 26 ,

1 12 2cos[ 4 ] sin[ 4 ]
2 2

u a

A B
a

A B



       
     



  

       
    

       

             (33) 

 

where 2 21
( 2 ) .

2
x ly a a bl t  

      

 
When 2 4 0    
 

1

23( ) 6 6 ,
2 2

B
u a a

A B

  



 

       
                                                              (34) 

 

where 2 21
( 2 ) .

2
x ly a a bl t  

      

 
In solutions (32) − (34), A  and B are left as free parameters. 
 
 
In particular, if 0,A   0B   and 0  , then 21u  becomes 

 
2

2
21( ) 3( ) coth[ ( )],

2

bl
u bl x ly t

a

  
                                                        (35) 

 
where  2 0,bl   0a   and  22u  becomes 

 
2

2
22 ( ) 3( ) cot[ ( )],

2

bl
u bl x ly t

a

  
                                                          (36) 

 
where  2 0,bl    0a  . 
 
The solutions (35) and (36) are same the solutions (16) and (19) respectively. 
 
These special results show that the extended (G'/G)-expansion method obtains general solutions 
and it can be seen that the solutions obtained by using tanh-coth method, are special cases of 
these solutions. Our observations are in agreement with those in [Biazar and Ayati (2011)]. 
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Substituting Equation (24) into Equation (21) yields 
 

1
' '

( ) 6 6 6 ,
2

G G
U a a a

G G

 


            
   

                                                       (37) 

  

where  2 21
( 8 ) .

2
x ly a a bl t  

      

 
Substituting general solutions of Equation (7) into Equation (37), we have three types of 
traveling wave solutions of the MIKP equation as follow.                                  
 
When 2 4 0    
 

31

2 2
2

2 2

2 2
2

2 2

( ) 6
2

1 1
sinh[ 4 ] cosh[ 4 ]4 2 26

1 12 2cosh[ 4 ] sinh[ 4 ]
2 2

1 1
sinh[ 4 ] cosh[ 4 ]4 2 26

1 12 2cosh[ 4 ] sinh[ 4 ]
2 2

u a

A B
a

A B

A B
a

A B



     

   

     
   

  

      
    

       

      
    

   
 

1

,






  


           (38) 

 

where  2 21
( 8 ) .

2
x ly a a bl t  

      

 
When 2 4 0    
 

32

2 2
2

2 2

2 2
2

2 2

( ) 6
2

1 1
sin[ 4 ] cos[ 4 ]4 2 26

1 12 2cos[ 4 ] sin[ 4 ]
2 2

1 1
sin[ 4 ] cos[ 4 ]4 2 26

1 12 2cos[ 4 ] sin[ 4 ]
2 2

u a

A B
a

A B

A B
a

A B



       

     

       
     

  

       
    

       

       
    

       

1

,





             (39) 
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where  2 21
( 8 ) .

2
x ly a a bl t  

      

 
When 2 4 0    
 

1

33( ) 6 6 6 ,
2 2 2

B B
u a a a

A B A B

   
 


   

               
                       (40) 

 

where  2 21
( 8 ) .

2
x ly a a bl t  

      

 
In solutions (38) − (40), A  and B are left as free parameters. 
 
In particular, if 0,A   0B   and 0  , then  31u  becomes 

2
2

31

2

1 1
( ) 3( ) tanh[ ( )]

2 2 2

1
coth[ ( )] ,

2 2

bl
u bl x ly t

a

bl
x ly t

a

  

 

 
    




   


                                           (41) 

 
where  2 0,bl   0a   and  32u  becomes 

 
2

2
32

2

1 1
( ) 3( ) tan[ ( )]

2 2 2

1
cot[ ( )] ,

2 2

bl
u bl x ly t

a

bl
x ly t

a

  

 

 
    




   


                                             (42) 

 
where  2 0,bl    0a  . 
 
The solutions (41) and (42) are same as the solutions (17) and (20) respectively.  These special 
results show that the extended (G'/G)-expansion method obtains general solutions and it can be 
seen that the solutions obtained by using tanh-coth method, are special cases of these solutions. 
Our observations are in agreement with those in [Biazar and Ayati (2011)]. 
 
4.  Conclusion 

In this paper, the tanh-coth and the extended (G'/G)-expansion methods have been successfully 
applied to find the exact solutions for the modified improved Kadomtsev-Petviashvili equation. 
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The two methods are powerful and are applicable to many nonlinear evolution equation. 
Comparing the tanh-coth method with the extended (G'/G)-expansion method, shows that the 
two methods under special conditions are equivalent. In fact, the exact traveling wave solutions 
obtained by using the extended (G'/G)-expansion method are more general and the tanh-coth 
method is a special case of this method. 
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