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Abstract 
 
In longitudinal studies with missingness, shared parameter models (SPM) provide appropriate 

framework for the joint modeling of the measurements and missingness process. These models use a 

set of random effects to account for the interdependence between two processes. Sometimes the 

longitudinal responses may not be fitted well by using a linear model and some non-parametric 

methods have to be used. Also, parametric assumptions are typically made for the random effects 

distribution, and violation of those may affect the parameter estimates and standard errors. To 

overcome these problems, we propose a semi-parametric model for the joint modelling of 

longitudinal markers and a missing not at random mechanism. In this model, because of the 

flexibility in nonparametric regression models, the relationship between the response variables and 

the covariates has been modeled by semi-parametric mixed effect model. Also, we do not assume any 

parametric assumption for the random effects distribution and we allow it to be unspecified. The 

parameter estimations are made using a vertex exchange method. In order to evaluate the 

performance of the proposed model, we compare SPM using regression spline (Spline-SPM) and 

semi-parametric SPM (SpSPM) models. We also conduct a simulation study with different 

parametric assumptions for the random effects distribution. A real example from a recent HIV study 

is analyzed for illustration of the proposed approach.  

 

Keywords:  Joint modeling; Longitudinal data; Missing mechanism; Nonparametric model; 
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1. Introduction 
 

In longitudinal studies, individuals are followed over a duration of time and for each individual, 

data are collected at multiple time points. These repeated measurements may share a common 

characteristic and may be correlated, although measurements on different individuals could be 

assumed to be independent. Consideration of correlations within measurements of the same 

individual expresses the key characteristic of longitudinal data. 

 

Missingness is a problem of longitudinal data. In some cases, a subject may be missing in one or 

several measurement occasions. Rubin (1976) provided a framework for the incomplete data by 

introducing the important classification of missing data mechanisms, which consist of missing 

completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR). 

A mechanisms is called MCAR if the missing mechanism is independent of the unobserved and 

also observed data, MAR if, conditional on the observed data, the missing mechanism is 

independent of the missing measurements; otherwise the missing process is termed MNAR. As 

an example of MNAR, a patient decides not to show up at some of the scheduled visits because 

of her/his very bad current health conditions. The missingness depends on unobserved responses. 

In such cases, analyzing the longitudinal measurements for disease evaluations using, e.g., a 

mixed effects model, where ignoring the missingness process, leads to biased inferences. 

 

For the joint modeling of these two processes, Shared Parameter Model (SPM) (Wu and Carroll, 

1988; Follmann and Wu, 1995) can be used. In this approach, the two models are linked through 

some common unknown variables. Shared parameter models suppose that a set of random effects 

induce the interdependence. In particular, consider the vector Y  as a complete longitudinal 

response and based on the missingness process, R  divide it into two parts of 
oY  and 

mY  which 

are the observed and missing components, respectively. Under the SPM framework, the joint 

density of the measurement process Y  and the missingness process R  may be completed as  

 

,)|(),|(),|,(=)|,,( dbbfbRfbYYfRYYf bRY

momo

                     
 (1) 

 

where (.)f  denotes a probability density function, b  is a vector of random effects, and 
'

b
'

R
'

Y
' ),,(=  . In  , Y  is the parameter vector of the model for Y  given b , R  is the 

vector of parameters of R  given b  and b  is the vector of parameters of the distribution of 

.b This factorization shows that given the random effect b , the vector of response variable )(Y  

and missingness process )(R  are independent. According to De Gruttola and Tu (1994)  and 

Little (1995) , SPMs are appropriate when missingness is due to an underlying process by which 

the longitudinal responses are measured with error. The size of this measurement error 

determines the strength of the dependence of the missingness on the latent variable b . The 

construction of an SPM missingness mechanism leads to a missing not at random (Rubin, 1976) 

process, where the missing data mechanism (1) is given by 

  

,),,|(),|(=),,|( bdYYbfbRfYYRf b

mo

R

mo    
                      (2) 
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which shows that the probability of nonresponse depends on ),,|( b

mo YYbf  . Therefore, the 

random effects are the main component in the modeling of the missing data. However, 

misspecification for distribution of random effects can severely affect our inference. Finding 

suitable parametric distribution assumption for the random effects is however  difficult.  

 

Because, the potential dependence of the random effects on unobserved covariates induces 

heterogeneity that cannot be captured by common parametric assumptions (Tsonaka et al., 2009). 

Several authors have proposed joint models that are not dependent on strong parametric 

assumptions for the random effects, and are also robust to some distributional assumptions. In 

particular, in the context of joint modeling of longitudinal measurements and survival data, Song 

et al. (2002) have given a shared latent component which is the product of a polynomial term and 

the standard normal density. In missing data analysis, Lin et al. (2000) and Beunckens et al. 

(2008) assume that the random effects have a finite mixture of normal distribution. Also they 

offer some insight in the shape of the random effects distribution, which helps in determining a 

potential subpopulation structure in the data, and produces enhanced subject-specific predictions.  

In this paper, we propose to leave the random effects distribution completely unspecified. The 

estimation of this model is based on a semi-parametric method that assumes the random effects 

distribution to be discrete with unknown support sizes. To effectively maximize the log-

likelihood with respect to the random effects distribution, we apply the Vertex Exchange Method 

(VEM) (Bohning, 1985). For longitudinal data, parametric mixed-effects models, such as linear 

and nonlinear mixed-effects models are a natural tool. Linear mixed-effects (LME) models are 

used when the relationship between a longitudinal response variable and its covariates can be 

expressed via a linear model. Nonlinear mixed-effects (NLME) models are used when the 

relationship between a longitudinal response variable and its covariates cannot be expressed via a 

linear model. 

 

A parametric regression model requires an assumption that the form of the underlying regression 

function is known except for the values of a finite number of parameters. A disadvantage of 

parametric modeling is that a parametric model may be too restrictive in some applications. The 

use of an inappropriate parametric model leads to misleading results. For such a longitudinal data 

set, we do not assume a parametric model for the relationship between the response variable and 

the time as a covariate. Instead, we just assume that the individual and the population mean 

functions are smooth functions of time t , and let the data themselves determined the form of the 

underlying function.  

 

There are many nonparametric regression and smoothing method. The most popular methods, 

theincline kernel smoothing, local polynomial fitting, regression spline, smoothing spline and 

penalized splines (Zhang et al., 1998; Wu and Zhang, 2002). Tsonaka et al. (2009) use LME 

model for measurements process, called the  SpSP model (semi-parametric shared parameter 

model). But, the process that the data are generated from (such as our data) may not be linear, 

thus for analyzing this kind of data set, the LME model is inapplicable. Therefore, for 

measurements process the modeling we use is the regression spline for nonparametric fixed-

effects component of the semi-parametric model. We called it the Spline-SpSP model (semi-

parametric shared random effects model using regression spline). Also, the VEM is used for joint 

modeling of the missingness process and longitudinal measurements.  
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The paper is organized as follows: the nonparametric regression for longitudinal data is 

considered in Section 2. Section 3 presents the proposed modeling framework. Also, this Section 

summarizes some theoretical results and gives the details for the estimation procedure. The 

performance of the proposed method is evaluated via some simulation studies in Section 4. The 

proposed approach is applied for analyzing a real data set in Section 5. The final section includes 

some concluding remarks. 

 

2. Semi-parametric mixed-effects model 
 

The parametric models are usually restrictive and less robust against modification of model 

assumption, but they are advantageous and efficient when models are correctly specified. In 

contrast, nonparametric models are more robust against the model assumption than a parametric 

model, but they are usually more complex and less efficient. Semi-parametric models are 

performs well and retain nice features of both parametric and nonparametric models. In semi-

parametric models the parametric components are often used to model important factors that 

affect the responses parametrically and the nonparametric components are often used for 

nuisance factors which are usually less important (Wu and Zhang, 2004). 

 

2.1. Models specification 

 

A longitudinal data set can be expressed in a common form as  

 

,, ... 1,2,= ,, ... 1,2,=),,( iijij njniyt
         

           (3) 

 

where ijt  denotes designsated time points, ijy  the observed response at time ijt , in  the number of 

observations for the i th subject and n  is the number of subjects. In the semi-parametric mixed-

effects model (SpME), the mean response function at time ijt  depends on time ijt  

nonparametrically via a smooth function )(t , and linearly on some other observable covariates 
'

ijpijij ccc ),...,(=
0

1 , where 0p  is the number of covariates observed at time ijt . The random effect 

components at time ijt  may depend on time ijt  nonparametrically via a smooth process (.)i  and 

linearly on some other covariates, namely ,),...,(=
0

1

'

ijqijij hhh  where 00 pq  . The resulting 

model may be written as 

 

 ,, ... 1,=,, ... 1,=,)()(= ninjtbhtcy iijijiiij

'

ij

'

ijij    (4) 

 

where   and (.)  are smooth functions of time, 
'

iqii bbb ),...,(=
0

1  consists of the coefficients of 

the covariate vector ijh , )(ti  is smooth process of time, and ij  is the error at time ijt  that is not 

explained by either the fixed-effects component )( ij

'

ij tc    or the random effects component 

)( ijii

'

ij tbh  . Other special SpME models are obtained when one or two SpME components are 

dropped from the general SpME model (4). When only the nonparametric random-effects 
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component is dropped, the SpME model (4) reduces to the following SpME model  

 

 ., ... 1,=;, ... 1,=,)(= ninjbhtcy iiji

'

ijij

'

ijij    (5) 

 

Ruppert et al. (2003)  dealt with a simple version (with 1=0q ) of this type of SpME model 

using penalized splines. 

 

For the longitudinal responses iY , the SpME model can be written as  

 

                              
,= iiiiii bHCY                                          (6) 

 

where  
'

i
iniii yyyY ), ... ,,(= 21 , '

i
iniii ttt ))(, ... ),(),((= 21  , 

'

i
iniii cccC ), ... ,,(= 21 , '

i
iniii hhhH ), ... ,,(= 21  and )(0, ii N  . 

 

The error terms i  are assumed independent of ib  and 
i

ni I2= . We can approximately 

express )(t  as a regression spline. In regression spline smoothing, local neighborhoods are 

specified by a group of locations, say, 110 ,, ... ,, KK   in the range of interest, such that, an 

interval ],[ ba  can be considered as: 

 

 
.=<< ... <<= 110 ba KK 
                                 

   (7) 

 

These locations are known as knots; and Krr , ... 1,2,= ,  are called interior knots or simply 

knots. A regression spline can be constructed using the following so called k th degree truncated 

power basis with K  knots K , ... ,, 21  
 

 
,))(, ... ,)(,, ... ,(1,=)( 1

'k

K

kk

p ttttt   
                            

(8) 

 

where k  is chosen 2 or 3 and kk aa  )(=  denotes power k  of the positive part of a , 

)(0,= amaxa  and 1=  kKp  denotes the number of the basis functions involve which are 

called smoothing parameters. We can express ,)()(  '

p tt   where '

p ), ... ,(= 1   is the 

associated coefficients vector. For locating the knots, we can use equally spaced sample 

quantiles as knots. Let Mlt l , ... 1,2,=,)(  be the order statistics of the pooled design time points, 

where 

 

i

n

i

nM 
1=

= . 

 

Then the K  knots are defined as  
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,1,...,=,= 1)])/([(1 Krt KrMr 
                                   

(9) 

 

where ][a  denotes the integer part of a . For smoothing parameter selection, a good selector 

usually tries to select a good smoothing parameter p  to trade-off the goodness of fit of the 

smoother and its model complexity. Generalized cross-validation (GCV) is a smoothing 

parameter selector which is defined as follows 

  

 

.)/)/(1ˆ()ˆ(=)( 2

1=

MpyyyypGCV ii

T

ii

n

i

                            (10) 

 

Notice that the numerator in the GCV score, is the SSE  (sum of squared errors), representing the 

goodness of fit, and denominator is associated with the model complexity, where p  is the model 

complexity in regression spline.  

 

2.2. Specification of missingness model 

 

Consider a general pattern of missing data and let R  be the associated matrix of the missingness 

indicator related to the Y  matrix and 1=ijR  if ijY  is observed and otherwise 0=ijR . For the 

missingness process R , probability of response, )|1=(= iijij bRPrp , is modeled using a mixed 

effects logistic regression model as follows:  

 

                            
,=)( i

'

ij

'

ijij bzwplogit                                     (11) 

 

where '

ijw  is the j th row of the fixed effects design matrix iW ,   the regression coefficient 

vector, '

ijz  the j th row of iZ , and )(= diag . As above, covariates in iZ  are not included in 

iW . The measurements and missingness processes are linked through the random effects term 

and their association is quantified by the parameter vector  .  

 

3. Random effects estimate 
 

In this paper we make no parametric assumptions for the random effects distribution and leave it 

completely unspecified. We assume that Gbi  , with MG , where M  is the set of all 

distribution functions on the parameter space M  of ib  (Tsonaka et al., 2009). Thus marginal 

density for iY  and iR  is given by: 

 

 ).(),|(),|(=),|,( iRiiiYi
m

ii bdGbRfbYfGRYf                          (12) 

 

In general, G  can be a discrete or a continuous distribution. However, Laird (1978)  and 

Lindsay (1983)  have shown that the nonparametric maximum likelihood estimate )(NPMLE  of 
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the unknown G  is discrete with finite support and thus M  reduces to includes all discrete 

distributions. So, (12) would be  

        

),,|(),|(=),|,( RciYcic

c

ii RfYfGRYf                         (13) 

 

where ),(= RY   includes the parameter vector for the Y  and for all R  processes, 

,...),(= 21   is the support points and ,...),(= 21   is the corresponding weights of G . We 

call the model defined by equation (13) Spline semi-parametric shared parameter model (Spline-

SpSP). This is due to having parametric assumptions for the involved submodels, but we have 

the random effects distribution unspecified. 

 

3.1. Estimation Procedure 

 

 A two-step procedure has been developed that is iterated until convergence. In the first step, G  

is estimated for   fixed at its current estimate ̂  and in a second step   is updated by 

maximizing the profile likelihood )ˆ|( Gl  , where Ĝ  denote the estimated G  of the first step. 

The latter step can be easily implemented using an optimization method of R software. Estimate 

of G  can be obtained using a VEM algorithm. The VEM is a directional derivative-based 

algorithm that iteratively maximizes the log-likelihood )|( Gl  in the set 
M  of all discrete 

distributions over a prespecified grid ), ... ,,( 21 C  with C  large.  

 

The main idea of VEM is to search in each iteration for the direction that maximizes the log-

likelihood increase )()(= 01 GlGl   (where 0G  and 
1G  denote the current and updated 

estimates of G , respectively), and exchange weights between the grid points that contribute the 

least and the most to  . These points are identified based on the properties of the directional 

derivative of the log-likelihood from one distribution 0G  to another 
1G . When 

1G  is degenerate 

at Ccc , ... 1,=, , then .=1
c

GG 
 In particular, the directional derivative ),( 0

c
GGD 

 of )(Gl  at 

0G  in the direction of 
c

G
 is defined as 

  

            
.

)())((1
lim=),(

00

0

0

s

GlsGGsl
GGD

c

sc







                           (14) 

  

For each grid point c , with Cc , ... 1,= , we evaluate the directional derivative, for fixed )(ˆ it , in 

the case of the proposed Spline-SpSP model takes the form  

 

                

,
)ˆ,|,(

)ˆ,|,(
=),(

0
1=

0 n
GRYf

GRYf
GGD

ii

c
ii

n

i
c






                              (15) 

for proof, let  

      

),ˆ,|,(log=)ˆ,|,(log=)(
1=1=

 GRYfGRYfGl ii

n

i

ii

n

i

                    (16) 
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We use (14) and (16) for ),( 0

c
GGD  , so that 

 

                

0 0

0 =1

0

=1

1 ˆ ˆ( , ) = log [(1 ) ( , | , ) ( , | , )]lim

ˆlog ( , | , )

n

i i i i
c cs i

n

i i

i

D G G s f Y R G sf Y R G
s

f Y R G

  





 
  

 


 







    

           

0

0
0 =1

ˆ ˆ(1 ) ( , | , ) ( , | , )1
= log .lim ˆ( , | , ),

n
i i i i

c

s i i i

s f Y R G sf Y R G

s f Y R G

 



  
 
 


                     

(17) 

  

Using the L’hopital rule, equation (17) lead to (15). Also, we have  

 

                        

0

=1

ˆ ˆˆ( , | , ) = ( , | , ).
C

i i c i i c

c

f Y R G f Y R                              (18) 

 

So equation (18), for the each iteration, can be written as  

 

                 

.

)ˆ,|,(ˆ

)ˆ,|,(
=),ˆ(

)(

1=

1=

n

RYf

RYf
GGD

it

cii

it

c

C

c

it

cii
n

i
c

it 







                           (19) 

 

As a first step, we specify the grid c . ib  is a q  dimensional vector. Thus a grid for ib  defined 

in [ , ] = [ , ]  [ , ]q           with   of order 4 or 5 would in most cases be sufficient. For 

each c , with Cc , ... 1,= , we get a q  variate vector, where components must be chosen in 

4,4][U , such that kcc   )/2( 1 , with 0.1=k . Then, (19) is computed for all c s. Note that 

initial value for the parameters ),( 00

RY   of the Y  and R  processes, can be obtained by fitting the 

appropriate ignorable mixed effects models, i.e., a linear mixed model and a mixed effects 

logistic regression, respectively. Initial values for the corresponding weights of the support 

points c  are C1/ . After specifying all directional derivatives,   and   as follows 

 

 ),,ˆ(maxarg=),,ˆ(minarg= 





 GGDGGD it

c

it

c


                     (20) 

  

and their weights updated according to  

 

 ,ˆˆ=ˆ,ˆ)(1=ˆ )()(*1)()(*1)( ititititit ss 







 


                         (21) 

  

where [0,1])( * s  denote the step length defined as  
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}].ˆ|ˆ{}ˆ|)(ˆ{[maxarg= 1* itititit

s

GlsGls  
                           (22) 

 

The estimation of 
*s  is implemented using a line search method.  

 

Note that if 1=*s  then 0=ˆ


  and thus   is excluded from the grid and the grid size reduce 

to 1C .  

 

After estimating 
1)(ˆ itG  in the first step, in the second step by using for example “optim" function 

in the R  software, the   vector is estimated. These two steps are repeated iteratively until 

convergence. The algorithm converges when the following conditions are satisfied 




<),ˆ(max
)( GGD it

 which guarantees that  <)ˆ|ˆ()ˆ|ˆ( 1)(1)(1)()(   itititit GlGl .  

 

Note that the submodels (6) and (11) require the mean of the random effects to be zero, i.e., 

cc

C

c

ibE 
1=

=)( .  

 

To ensure identifiability, we fix through the optimization procedure that the models intercepts 

follow 

         

.ˆ=,ˆ=
1=

00

1=

00 cc

C

c

bnewcc

C

c

bnew SS                         (23) 

 

4. Simulation study 
 

A simulation study is implemented to investigate the performance of the proposed method. The 

performance of our model is evaluated with the use of various distributional assumptions for the 

random effects component. We compare the Spline-SpSP model with two other models. The first 

model is Spline-SPM, where the longitudinal process is modeled with the spline and the second 

model is the SpSPM, where the longitudinal process is modeled by a linear model. We show 

robustness of the Spline-SpSP model with respect to distribution assumptions of the random 

effects and nonlinearity of the model. The longitudinal process Y is simulated from the following 

semi-parametric model: 

 

 ,)()(= 5

2

24

2

13

2

210 ijiiijijijijij bttttY     (24) 

 

where the subscripts ni 1,...,=  denotes the subject, and N1,...,=j  denotes the repeated 

measurements, where 
i

i

nmax=N , ijt  is the time variable that takes values in [0,3] , i  is the 

binary covariate and ib  is the random effects component. The parameter vector is taken as 

2.5=0 , 2=1 , 0.4=2  , 1.8=3  , 2=4  and 1.5=5 . For the error component, we 

assume )(0, 2

Yij N    with 0.5=2

Y . Two sample sizes 200=n  and 500=n  with 5=N  

equally spaced visit times is assumed. 
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A model that set is for R  process is the non-monotone missingness model. The binary indicator 

ijR  is simulated from a mixed effects logistic regression  

 

,=)|1=( 210 iijiiij btbRlogitP  
 

 

 where 1.1=0 , 2=1  and 0.5.=2  Using this logistic model, we generate a matrix 

containing zero and one. This matrix is called the missingness matrix. The ijY  that corresponds to 

the zero elements of the matrix go to be missing values in the data set. 

 

The assumed values for the regression parameters are chosen such that they lead to 

approximately 20%  of the missing. The shared random intercepts ib  linked the Y  and R  

processes, also we assume 2.5= . For random effect ib  three scenarios are considered: a 

distribution (0,2)N , a mixture of two normal components, )(1.35,0.20.5)1.35,0.6(0.5 22 NN  , 

a discrete distribution with support at 1.7575,0.5,0.5,1.   and corresponding weights 0.32 , 

0.18 , 0.18  and 0.32 . For each of these three scenarios 200  and 500  samples are simulated. 

Each sample was fitted under Spline-SpSP, Spline-SP and SpSP models. The SpSP model which 

is used for analyzing the generated data set is:  

 

                           
.= 510 ijiiijij btY                                (25) 

  

Comparisons between estimates are based on the root mean squared error (RMSE) and relative 

biases (RB) which are defined as:  

 

 1).
ˆ

(
1

=)(,)ˆ(
1

=)(

*

1=
*

2

*

1=
*

 



 i

N

i

i

N

i N
RB

N
RMSE  

 

The results of this simulation are presented in Tables 1 and 2. These simulation studies show that 

the Spline-SpSP model is robust to the violation of distributional assumptions of the random 

effects. When the random effects distribution is normal, parameter estimates of Spline-SpSP and 

Spline-SP models are similar. But when the random effects distribution departs from normality 

assumption, difference of the two models are unfolded and the Spline-SpSP model gives 

parameter estimates that are closer to real values than parameter estimates in Spline-SP and SpSP 

models. Moreover, the RMSE and RB of Spline-SpSP model is lower than Spline-SP and SpSP 

models. Also it can be seen in Figure A.1 that our approach offers an informative insight on the 

assumed shape of the random effects distribution. 

 

5. Application 
 

We apply the Spline-SpSP, Spline-SP and SpSP models to the analysis of the HIV-1 RNA data 

(Sun and Wu, 2005 and Hammer et al., 2002) from an AIDS clinical trial study for comparing a 

single protease inhibitor (PI) versus a double-PI antiretroviral regimens in treating HIV-infected 

patients. In this study, all subjects start the antiretroviral treatment at time 0 and HIV-1 RNA 



AAM: Intern. J., Vol. 10, Issue 1 (June 2015)                                                                                                          205                                                                                                              

          

   

levels in plasma (viral load) was measured repeatedly over time. The scheduled visits for the 

measurements were at weeks 0, 2, 4, 8, 16 and 24. A total of 481 patients were entered in the 

listed study, with 2626 total visits. Individual profiles for 100 patient are shown in Figure 1. 

From this plot, it is difficult to attain any useful information. It can be seen that the individual 

RNA level are outright noisy in any time t . We usually expect that the RNA levels would 

increase if treatment was effective. But from this plot, it is not easy to see any patterns among the 

individual patients’ RNA levels. We will use nonparametric regression for the relationship 

between the response variable and time in the model. 

 

 
Figure 1.  Profile for 100 patients  

 

The response variable Y  is the change of the HIV-1 RNA level using a log10 scale at time t  

which showed the advance of a disease. As regards the relationship between the response 

variable Y  and time we see that it  cannot be expressed via a linear model. Therefore, we use the 

regression spline for considering it in the model. In this study, the four treatment groups are used 

for patients. We evaluate treatment groups and time in the response variable. 
1 , 

2  and 3  are 

indicator variables (dummy variables) such that 

 

 1

1 if treatment 1 is used
=

0 o.w.






 

 

 2

1 if treatment 2 is used
=

0 o.w.






 

and  

 3

1 if treatment 3 is used
=

0 o.w.






 

 

The semi-parametric model for measurements process can be written as  

 



206                                                                                                                                      Taban Baghfalaki et a1. 

 

 ,)()(= 372615

2

24

2

13

2

210 ijiiiiijijijijij btttty     

 

where ,481...1,=i , inj ,...1,=  and ,6...2,=in . We use the truncated power based on (8) with 

2=k , and adopted the “equally spaced sample quantiles as knots" method to specify the knots. 

Naturally, this model is jointed to the non-ignorable missingness model note that the percentage 

of missingness is around 10% . The probability of response is modeled using a mixed effects 

logistic regression as follows  

 

 .=))|1=(( 34231210 iiiiijiij btbrPrlogit    (26) 

 

The Y  and R  processes are linked through the shared random effect ib , and their association is 

measured by the parameter  . If 0= , the Y  and R  processes are independent. The estimated 

parameters and their standard deviations (computed by the bootstrap method) are presented in 

Table 3. These two models are compared by Akaike information criterion (Akaike 1973) and 

Bayesian information criterion (Schwartz 1978). These are defined as  

 

 ,)(2=,22= dfnlogLoglikBICdfLoglikAIC   

 

where Loglik is the logarithm of the likelihood function and df  is the model complexity which 

is the number of basis function p  together with 0p  covariates observed at time t  (Wu and 

Zhang, 2004). It can be seen in Table 3 that AIC and BIC of the Spline-SpSP model is smaller 

than those of the Spline-SP and SpSP models. The model produces reliable parameter estimates 

under any distributional assumption for the random effects. Also according to Table 3, the 

Spline-SpSP model shows that treatment 1 and treatment 2 are not significant. But, time is an 

efficient variable; such that the more time, the less viral load measurements. Also,   is a 

significant parameter, i.e. missingness is found to be non-ignorable. 

 

The fitted )(RNAlog  for some randomly chosen subjects are presented in Figure A.2. To 

summarize, these results suggest that the Spline-SpSP model provide precise prediction for the 

dataset thanthe  two other models.  

 

6. Conclusion 
 
In this paper, we have focused on the use of a semi-parametric model in longitudinal data. At 

first we explain shared parameter models as an appealing framework for the joint modeling of 

the measurements and missingness processes, particulary in the nonmonotone missingness case. 

We take a semi-parametric model for the measurment process and logistic regression as a model 

for missingness mechanism. With the usage of a NPMLE method also called a vertex exchange 

method, we estimate the random effect distribution. We use the Spline-SpSP model in some sets 

of simulated data and considered the various distributional assumptions for the random effects. 

Our study uses the Spline-SpSP model framework applying the nonmonoton non-ignorable 

missingness. Our simulation studies show that the proposed model is robust to the various 

distributional assumptions considered for the random effects. We also observed that the proposed 

model produces estimates with RMSE and S.E. which are lower than those obtained by the 
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Spline-SP and SpSP models. 
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Table 1.   Results of the simulation study: Evaluation of the Spline-SpSP model and comparison with the Spline-SPM and SpSP models. 

Mean (Est.), standard error (SE) and Root Mean Square Error (RMSE) for sample size 500  
    Spline-SpSP model Spline-SP model SpSP model 

Par Real Est.  S.E.  RMSE  RB Est. S.E RMSE RB  Est.  S.E. RMSE  RB 

     Normal distribution 
 

2.5 2.526 0.227 0.222 0.11 2.508 1.012 1.012 0.003 2.625 0.436 0.437 0.103 
 

2.0 1.976 0.685 0.685 -0.012 2.114 0.254 0.255 0.207 1.646 0.639 0.641 0.048 

 -0.4 -0.383 0.039 0.036 -0.152 -0.447 0.123 0.127 0.163  -   -  -  - 

 -1.8 -1.824 0.427 0.430 0.040 -1.814 0.541 0.562 -0.189  -   -   -  - 

 2.0 2.021 0.328 0.321 0.024 1.971 0.525 0.525 -0.015  -  -  -  - 

 1.5 1.503 0.054 0.053 -0.063 1.507 0.197 0.198 -0.015 1.272 0.213 0.214 -0.045 

 1.1 1.191 0.352 0.406 0.072 1.147 0.128 0.124 0.006 1.291 0.241 0.243 0.024 

 2.0 1.992 0.361 0.362 -0.039 2.020 0.014 0.013 0.002 1.745 0.125 0.129 0.043 

 0.5 0.501 0.121 0.126 0.001 0.497 0.164 0.161 -0.031 0.342 0.112 0.113 0.032 

 0.5 0.472 0.054 0.057 2.018 0.477 0.051 0.055 0.241 0.621 0.121 0.124 0.056 

 2.5 2.410 0.190 0.114 -0.231 2.564 0.541 0.543 -0.186 2.850 0.417 0.423 -0.074 
 

2.0 2.006 0.394 0.397 -0.036 1.991 0.314 0.14 -0.071 1.891 0.328 0.329 0.012 

      Mixture of two normal distributions 
 

2.5 2.503 0.644 0.644 0.001 2.625 0.704 0.712 0.034 2.738 0.504 0.506 -0.021 
 

2.0 2.073 0.231 0.238 0.026 1.998 0.532 0.532 -0.002 2.243 0.692 0.695 0.031 

 -0.4 -0.404 0.129 0.122 0.304 -0.382 0.051 0.052 -0.036  -  -  -  - 

 -1.8 -1.773 0.576 0.572 -0.048 -1.876 0.225 0.229 0.009  -  -  -  - 

 2.0 2.003 0.04 0.043 0.001 2.101 0.241 0.249 0.022   -  -  -  - 

 1.5 1.499 0.182 0.189 -0.034 1.498 0.151 0.157 -0.023 1.352 1.312 1.316 0.052 

 1.1 0.99 0.216 0.212 -0.04 1.083 0.713 0.715 0.062 1.235 0.312 0.313 -0.071 

 2.0 1.980 0.091 0.092 -0.016 1.967 0.501 0.513 -0.045 1.782 0.127 0.131 0.023 

 0.5 0.536 0.131 0.132 0.002 0.564 0.195 0.194 0.087 0.451 0.272 0.275 -0.056 

 0.5 0.491 0.054 0.067 0.024 0.472 0.046 0.097 0.052 0.481 0.381 0.382 -0.043 

 2.5 2.514 0.463 0.570 -0.277 2.452 0.370 0.785 -0.173 2.241 0.658 0.662 0.052 
 

2.0 2.016 0.128 0.122 -0.032 2.035 0.515 0.513 -0.490 1.769 0.412 0.414 0.201 

     Discrete distribution 
 

2.5 2.528 0.831 0.841 0.051 2.315 0.599 0.536 -0.074 2.451 0.782 0.785 0.005 
 

2.0 1.962 0.152 0.157 -0.069 2.204 0.461 0.534 0.092 1.682 0.931 0.932 -0.089 

 -0.4 -0.356 0.05 0.051 -0.010 -0.671 0.042 0.046 0.076   -  -   -   - 

 -1.8 -1.789 0.203 0.205 -0.012 -1.684 0.631 0.63 -0.176   -   -  -  - 

 2.0 1.992 0.18 0.187 -0.019 2.038 0.296 0.297 0.019  -  -  -   - 

 1.5 1.495 0.306 0.307 -0.017 1.432 0.484 0.493 -0.067 1.273 0.641 0.642 -0.078 

 1.1 1.117 0.112 0.116 0.015 1.025 0.776 0.777 -0.068 1.126 0.365 0.366 -0.015 

 2.0 2.028 0.116 0.119 0.034 2.210 0.435 0.447 0.100 2.391 0.245 0.246 -0.032 

 0.5 0.509 0.089 0.09 0.017 0.362 0.138 0.165 -0.277 0.437 0.194 0.194 0.013 

 0.5 0.495 0.042 0.047 0.033 0.512 0.051 0.073 0.530 0.451 0.237 0.238 -0.067 

 2.5 2.517 0.249 0.232 -0.093 2.593 0.349 0.309 -0.120 2.432 0.651 0.652 -0.052 
 

2.0 2.125 0.402 0.493 -0.036 2.001 0.312 0.341 -0.119 1.891 0.721 0.721 0.078 
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Table 2.   Results of the simulation study: evaluation of the Spline-SpSP model and comparison with the Spline-

SPM and SpSP models. Mean (Est.), standard error (SE) and Root Mean Square Error (RMSE) for 

sample size 200  

    Spline-SpSP model Spline-SP model SpSP model 

Par Real  Est.  S.E.  RMSE  RB Est. S.E RMSE RB  Est.  S.E.  RMSE  RB 

     Normal distribution 
 

2.5 2.655 0.516 0.538 0.062 2.312 0.465 0.501 -0.075 2.351 0.426 0.429 0.032 
 

2.0 1.881 0.114 0.122 -0.059 2.589 0.218 0.253 0.294 1.764 0.314 0.317 -0.049 

 -0.4 -0.363 0.045 0.046 -0.093 -0.475 0.183 0.187 0.088  -  -  -  - 

 -1.8 -1.789 0.183 0.183 -0.006 -1.478 0.248 0.252 -0.179  -  -  -  - 

 2.0 1.911 0.307 0.319 -0.044 1.999 0.301 0.301 0  -  -  -  - 

 1.5 1.523 0.131 0.132 0.015 1.327 0.224 0.283 -0.115 1.763 0.567 0.571 0.139 

 1.1 1.144 0.145 0.146 0.04 1.013 0.21 0.219 -0.079 1.211 0.113 0.115 0.023 

 2.0 2.121 0.846 0.855 0.06 1.941 0.221 0.224 -0.029 2.358 0.326 0.329 0.084 

 0.5 0.531 0.14 0.143 0.061 0.592 0.123 0.153 0.084 0.318 0.172 0.174 -0.003 

 0.5 0.491 0.023 0.025 0.089 0.545 0.076 0.077 0.027 0.451 0.107 0.108 -0.059 

 2.5 2.566 0.231 0.232 -0.152 2.731 0.334 0.342 -0.124 2.602 0.416 0.418 -0.074 
 

2.0 2.39 0.105 0.106 -0.035 1.999 0.002 0.024 -0.004 1.864 0.246 0.247 0.029 

     Mixture of two normal distributions 
 

2.5 2.573 0.135 0.139 0.029 2.108 0.139 0.189 -0.157 2.651 0.172 0.173 -0.035 
 

2.0 1.807 0.142 0.155 -0.096 2.241 0.48 0.471 0.171 1.763 0.762 0.765 0.119 

 -0.4 -0.391 0.089 0.085 -0.072 -0.517 0.124 0.127 0.543  -  -  -  - 

 -1.8 -1.936 0.131 0.139 0.075 -1.119 0.239 0.235 -0.378  -  -  -  - 

 2.0 2.084 0.469 0.476 0.042 1.955 0.317 0.32 -0.023  -  -  -  - 

 1.5 1.498 0.097 0.097 -0.001 1.450 0.161 0.168 -0.033 1.217 0.612 0.614 -0.094 

 1.1 0.882 0.158 0.156 -0.198 0.99 0.237 0.245 -0.100 1.013 0.032 0.033 -0.008 

 2.0 1.907 0.349 0.362 -0.046 2.245 0.633 0.679 0.123 1.819 0.264 0.267 0.023 

 0.5 0.497 0.127 0.127 -0.006 0.57 0.169 0.183 0.14 0.357 0.216 0.218 0.037 

 0.5 0.504 0.023 0.024 0.004 0.542 0.044 0.064 0.08 0.414 0.079 0.081 0.021 

 2.5 2.488 0.277 0.272 -0.237 2.752 0.405 0.481 0.102 2.713 0.136 0.138 -0.017 

 

 

2.0 2.088 0.303 0.362 -0.052 2.000 0.471 0.479 -0.715 1.89 0.172 0.173 0.028 
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Table 2.  Continues 
     Discrete distribution 

 

2.5 2.481 0.6 0.6 -0.007 2.136 0.424 0.559 -0.146 2.581 0.327 0.328 -0.032 
 

2.0 2.321 0.372 0.409 0.161 2.91 0.45 0.459 0.175 1.463 0.482 0.485 0.063 

 -0.4 -0.414 0.018 0.019 0.059 -0.492 0.117 0.163 0.123  -  -  -  - 

 -1.8 -1.687 0.115 0.117 -0.118 -1.374 0.43 0.445 -0.237  -  -  -  - 

 2.0 1.957 0.148 0.150 -0.021 2.184 0.303 0.314 0.042  -  -  -  - 

 1.5 1.543 0.101 0.104 0.029 1.417 0.152 0.173 -0.056 1.982 0.721 0.726 0.121 

 1.1 1.181 0.174 0.178 0.074 0.799 0.4 0.501 -0.273 1.153 0.129 0.129 

 2.0 2.092 0.111 0.116 0.046 2.48 0.758 0.898 0.24 2.361 0.485 0.490 -0.118 

 0.5 0.526 0.179 0.181 0.051 0.422 0.161 0.179 -0.157 0.219 0.216 0.217 -0.058 

 0.5 0.494 0.022 0.086 0.062 0.512 0.128 0.129 0.099 0.654 0.374 0.376 0.051 
 

2.5 2.635 0.41 0.44 -0.163 1.751 0.61 0.647 -0.058 2.251 0.269 0.271 -0.074 

 2.0 2.159 0.29 0.216 -0.037 2.23 0.393 0.398 -0.189 2.214 0.128 0.129 -0.024 

 
 

 

Table 3.  The random intercepts analysis of the AIDS clinical trial study. The estimates (Est.) 

and standard deviation (S.D.) are presented for the proposed Spline-SpSP, Spline-SP 

and the common SP models 

 Spline-SPSP model Spline-SP model SPSP model 

parameters Est. S.D. Est. S.D. Est. S.D. 
 

4.254 1.219 4.86 1.421 4.009 1.389 
 

-1.398 0.034 -1.386 0.056 -0.029 0.071 

 0.350 0.009 0.351 0.012  -   - 

 -0.351 0.010 -0.353 0.043  -  - 

 0.001 0.002 0.003 0.015  -   - 

 -0.153 0.172 -0.100 0.129 -0.108 0.351 

 -0.197 0.173 -0.225 0.131 -0.215 0.145 

 -0.159 0.072 -0.133 0.035 -0.132 0.102 

 -1.146 0.465 -1.357 0.751 6.656 1.562 

 -0.066 0.016 -0.064 0.014 -0.066 0.034 

 -0.427 0.547 -0.806 0.420 -0.805 0.821 

 -0.487 0.522 -0.523 0.315 -0.523 0.538 

 0.040 0.347 -0.106 0.216 -0.107 0.312 

 1.466 0.086 0.753 0.071 0.750 0.065 

 1.777 0.055 1.733 0.045 0.987 0.084 
 

4.194 1.203 2 1.569 4.352 1.349 

 16108.12 22916.74 27743.22 
 

16090.47 22885.51 27705.67 
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APPENDIX A 

 

 

 

 
Figure A.1.  True distribution (a) normal, (b) mixture of two normal 

distributions and (c) discrete: barcharts are of NPMLE of the 

random effects distribution for 1 randomly selected fitted data 

set  
 

 

 

 

 
Figure A.2.  Individual viral load trajectory estimates for six randomly 

chosen subjects after fitting the three models. The filled circles 

are the observed values for individuals 

 


