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Abstract 

In this article, a new numerical method is proposed for solving a class of fractional order optimal 
control problems. The fractional derivative is considered in the Caputo sense. This approach is 
based on a combination of the perturbation homotopy and parameterization methods. The control 
function u(t) is approximated by polynomial functions with unknown coefficients. This method 
converts the fractional order optimal control problem to an optimization problem. Numerical 
results are included to demonstrate the validity and applicability of the method. 

Keywords:  Fractional order optimal control, Homotopy perturbation method, Caputo 
fractional derivative. 
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1. Introduction 
 
Fractional optimal control problems (FOCPs) are optimal control problems associated with 
fractional dynamic systems. The fractional optimal control theory is a very new topic in 
mathematics. FOCPs may be defined in terms of different types of fractional derivatives. But the 
most important types of fractional derivatives are the Riemann-Liouville and the Caputo 
fractional derivatives. In Agrawal (2004), Agrawal and Baleanu (2007) the authors obtained 
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necessary conditions for FOCPs with the Riemann-Liouville derivative and were able to solve 
the problem numerically.  Agrawal (2008a) presented a quadratic numerical scheme for a class 
of fractional optimal control problems (FOCPs). In Agrawal (2008c), the FOCPs are formulated 
for a class of distributed systems where the fractional derivative is defined in the Caputo sense, 
and a numerical technique for FOCPs presented. Baleanu et al. (2009) used a direct numerical 
scheme to find a solution of the FOCPs.  In Biswas and Sen (2011a), FOCPs with fixed final 
time are considered and a transversely condition is obtained. FOCPs with dynamic constraint 
involving integer and fractional derivatives are also considered Biswas and Sen (2011b). Based 
on the expansion formula for fractional derivatives, a new solution scheme was proposed in 
Jelicic and Petrovacki (2009).  Lotfi et al. (2011) used Legendre orthonormal polynomial basis to 
solve the FOCPs. 

A direct method using Eigen functions to solve the FOCPs of a 2-dimensional system was 
presented in zdemir et al. (2009), where the Gr nwald-Letnikov approximation was used to 
approximate the fractional derivatives. Similar attempts have been made by several researchers 
for solving the FOCP of distributed systems (Hasan et al. (2011), Rapaic and Jelicic (2010)). 
Tricaud and Chen (2010a) presented a numerical scheme for FOCPs based on integer order 
optimal controls problem. 

In Youse et al. (2011) the usage of Legendre multiwavelet basis and collocation method was 
proposed for obtaining the approximate solution of FOCPs. Tricaud and Chen (2010b) proposed 
a rational approximation based on the Hankel data matrix of the impulse response to obtain a 
solution for the general time-optimal problem. The interested reader is referred to Evirgen and 

zdemir (2012), Wang and Zhou (2011), Jarad (2010), zdemir (2009), Agrawal (2008b), and 
Frederico et al. (2008) for further information. 

The homotopy perturbation method (HPM) was applied to solve ODE and PDE equations in He 
(2003), He (2005), Biazar and Ghazvini (2009). The numerical method for FOCPs presented in 
this paper follows the approach presented in Keyanpour and Azizsefat (2011), Keyanpour and 
Akbarian (2011), Borzabadi et al. (2010), Borzabadi and Azizsefat (2010). Of course in this 
paper we develop a hybrid of parametrization and modified homotopy perturbation method to 
solve FOCPs. 

This paper is organized as follows: In Section 2 we present some basic definitions. In section 3 
we describe our method. In section 4 we report our numerical results. Finally section 5 we 
conclude the paper. 

2.  Fractional Optimal Control Problem Statement 
 
2.1.  Basic Definitions 
 
We present some basic definitions related to fractional derivatives. The Left Riemann-Liouville 
derivative of fractional order mm  1  for a function )(tf is defined by: 
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while the Right Riemann-Liouville fractional derivative is given as: 
 

.)()()(
)(

1
)( 1 dttfxt

dx

d

m
xfD

b

x

mm
bt  


 


 

 

Another fractional derivative, the left Caputo fractional derivative, is defined as: 
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while the right Caputo fractional derivative given by: 
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where m . 
 

 
2.2.  Fractional Optimal Control Problem Formulation 
 
The FOCPs in the sense of Caputo are formulated as follows: 
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in which x  and u are the state and control variables respectively,  bat , stands for the time and 
f  and G  are given nonlinear functions.  Here, we assume that FOCPs have a unique solution.  

The basic existence and uniqueness follow from the Lipschitz condition by using contraction 
mapping theorem and a weighted norm with Mittag-Leffler in Yakar et al. (2012), 
Lakshmikantham and Mohapatra (2001), Podlubny (1999), Samko et al. (1993), Shaw and Yakar 
(1999). 
 
3. Description of Method 
 
In this section the proposed method is described and an associated algorithm is presented. The 
continuous control function )(tu  is approximated with a finite combination of elements of a 
basis Rudin (1976)  as follow: 
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Since the FOCPs are solved by homotopy perturbation method,  we construct a convex 
homotopy as follows: 
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and suppose the solution of Equation(6) has the following form: 
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where rjwwwtx rj ,,1,0),,,,,( 10    are unknown functions. Substituting Equation (10) into 

Equation (9) for )(tx , and equating the coefficients of the terms with identical powers of p , we 
derive: 
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As ,1p Equation (9) tends to Equation (6) and Equation (10), in most cases converges to an 
approximate solution of Equation (6), i.e., 
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By substitution of Equation (8) and Equation (12) into Equation (5) and Equation (7) we obtain 
an approximate solution of FOCPs as follows: 
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Let *
rJ  be the optimal value of Equation (13). A stopping criterion is proposed as follows: 
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where the small positive number   is chosen according to the accuracy desired. We propose the 
following  algorithm, which is presented in two stages. 
 
Algorithm:  
 
Initialization step: 
Choose   for the accuracy desired and set 1r , and go to the main step. 
 
Main step 
Step 1. Set )(tu  by Equation (8) and go to Step 2. 

Step 2. Compute )(tx  by Equation (12) and go to Step 3. 

Step 3. Then compute rr JJ inf*   by Equation (13). If 1r  go to step (5). Otherwise, go to 

Step 4. 

Step 4. If the stopping criterion Equation (14)  holds, then  stop; else , go to Step 5. 

Step 5.  1 rr  and go step 1. 

 
3.  Numerical Results 
 
In this section we apply the method presented in Section 3 to solve the following two test 
examples. All computations carried out by the package MAPLE 13. 
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                (13)
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Example 1. Consider the following time invariant problem 
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The exact solution for 1  is 
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with objective value .192909.0),(* uxJ  In Figure 1, the state variable )(tx  and the control 

variable )(tu  are plotted for .1  It is obvious that by applying the algorithm presented in 
section 3, the approximate values of )(tx  and )(tu  converge to the exact solutions. Figure 2 
shows the state )(tx  and the control input )(tu  as functions of time t  for different values of  . 

Choosing 510  , the results of the applying the given algorithm are presented in Table 1. 
 

Table 1. Numerical results in Example 1 

  r  n *J  

1 4 7 0.192909 
0.99 6 6 0.19153 
0.9 7 6 0.17952 
0.8 6 5 0.16729 

 

               (15)
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                     Figure 1. (a) Approximate solutions and exact solution of )(tu  for )1,7(  n   

       (b) Approximate solutions and exact solution of )(tx  for )1,7(  n  for Example 1 

 

 

(a)                                                                             (b) 

Figure.2: (a) State )(tx  as a function of t for different values of     

      (b) Control )(tu  as a function of t for different values of    for Example 1 

 

Example 2. In this example, a time varying FOCP is considered to find the control )(tu , which 
minimizes the performance index 
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with free terminal condition and the initial condition 
  

.1)0( x  
 
Figure 3 demonstrates the approximation of )(tx and )(tu  for different values of  . The results 
of  applying the algorithm are presented in Table 2. Figure 4 shows the state and the control 
variables, respectively, as a function of time for 8.0   for different values of n . It is obvious 
that the approximate values )(tx  and )(tu  converge to the exact solutions by increasing the 
values of n . 
 

Table 2. Numerical results in Example 2 

  r  n *J  

1 3 5 0.48427 
0.99 3 5 0.48347 
0.9 3 5 0.47605 
0.8 3 5 0.46722 

 

 

                                           (a)                                                                           (b) 

Figure 3. (a) State )(tx  as a function of t for different values of    

     (b) Control )(tu  as a function of t for different values of   for Example 2 

       (16)
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                                            (a)                                                                                                (b) 

Figure 2: (a) Convergence of the state variable for the time-varying system for 8.0  
      (b) Convergence of the control variable for the time- varying system for .8.0  

 

Test problems 1 and 2 were solved in Agrawal (2008a) in a different way. Our results, shown in 
Figures 1-4 are in good agreement with the results demonstrated in Agrawal (2008a). But, we 
achieved satisfactory numerical results in only 5 iterations while in Agrawal (2008a), the number 
of approximations starts in 10 and increases up to 320. So it is significant that we achieved our 
numerical results with a very small order of approximations. Also we find the approximate 
optimal value of the objective function for each . 

 
4. Conclusion 
 
In this paper, we have developed the homotopy perturbation and parameterization methods for 
solving a class of fractional optimal control problems. By the proposed method we are able to 
reduce the main problem to an optimization problem. The numerical results have demonstrated 
the high accuracy of the proposed method. 
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