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Abstract 

In this paper, locally asymptotic stability of q-fractional order nonlinear dynamical systems is 

introduced and studied. The sufficient conditions for local stability of such dynamical systems 

are obtained. Also, useful definitions of fractional order q-integrals and q-derivatives are 

recalled. Finally, a q-fractional order nonlinear dynamical model is considered. 
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1. Introduction  

Fractional calculus, a branch of mathematical analysis, has gained popularity and 

importance during the last three decades. Fractional differential equations are an important 

application area of fractional calculus. The first book on fractional calculus is the book written 

by Oldham and Spanier (1974). One of the most popular books on fractional calculus is the 

book by Podlubny (1999). Fractional differential equations are very useful and important tools 
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in physics (Hilfer (2011)), engineering (Sun et al. (1984)), mathematical biology (Ahmed and 

Elgazzar (2007), Ozalp and Demirci (2011)), interpersonal relationships (Ozalp and Koca 

(2012), Koca and Ozalp (2014)) and finance (Laskin (2000)).  

The development of q-analysis started in the 1740s. q-calculus is a methodology centered on 

deriving q-analogous of the classical calculus results without using limits. The main tool of q-

calculus is q-derivative. As a survey about q-calculus we refer to Ernst (2000). Starting from 

the work of Agarwal (1969) and Al Salam (1966, 1967), the q-fractional calculus is defined 

and many properties of q-fractional calculus are obtained.  

Recently, stability of fractional dynamical systems has attracted increasing interest. In 1966, 

Matignon (1966) first studied the stability of linear fractional differential systems with Caputo 

derivative. Since then, many researchers have done further studies on the stability of linear 

fractional differential systems. In q-calculus the stability of q-fractional dynamical systems 

was investigated by Abdeljawad and Baleanu (2011) and Jarad et al. (2011). In Jarad et al. 

(2011), sufficient conditions for the Mittag-Leffler stability of q-fractional nonlinear 

dynamical systems were obtained. To the best of our knowledge, the local stability of q-

fractional order nonlinear dynamical systems has not yet been studied. In this study, some 

conditions are derived to discuss local stability of q-fractional order nonlinear systems. Also 

an existence theorem for Caputo q-fractional differential equations is given.  

We first recall some useful definitions of fractional order q-integrals and q-derivatives.  

 

2. Preliminaries and Definitions 
 

The definitions can be found in Gasper and Rahman (2000), Kac and Cheung (2002), 

Stankovic et al. (2009) and Annaby and Mansour (2012). 

 

Definition 1.  

 

Let q be regarded as a real number with 0 < 𝑞 < 1. q-number is defined by 

 

                                                         [𝑥]𝑞 = [𝑥: 𝑞] =
1−𝑞𝑥

1−𝑞
. 

We note that lim𝑞→1[𝑥]𝑞 = 𝑥. 

Definition 2.  

 

For any x > 0, q-Gamma function is defined by 

  

                                                      𝛤𝑞(𝑥) = ∫ 𝑡𝑥−1𝐸𝑞
−𝑞𝑡𝑑𝑞𝑡 .

∞

0
                                                            (1) 

 

Here, q-analogue of the classical exponential function is defined by  

 

                                         𝐸𝑞
𝑥 = ∑ 𝑞𝑗(𝑗−1)/2 𝑥𝑗

[𝑗]𝑞!
= (1 + (1 − 𝑞)𝑥)𝑞

∞∞
𝑗=0 , 

 

where 

[𝑚]𝑞! = [1]𝑞[2]𝑞 … [𝑚 − 1]𝑞[𝑚]𝑞 . 
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Using the Equation (1),  the following is obtained: 

For any x > 0, 𝛤𝑞(𝑥 + 1) = [𝑥]𝑞 𝛤𝑞(𝑥), 

                                               𝛤𝑞(1) = ∫ 𝐸𝑞
−𝑞𝑡𝑑𝑞𝑡 = 𝐸𝑞

0 − 𝐸𝑞
−∞ = 1.

∞

0

 

So, for any nonnegative integer n, 𝛤𝑞(𝑛 + 1) = [𝑛]𝑞!. 

Definition 3.  

Let 𝛼 ≥ 0 and f be a function defined on [0,1]. The fractional q-integral of Riemann-Liouville 

type is: 

                       (𝐼𝑞,𝑎
𝛼 𝑓)(𝑥) =

1

𝛤𝑞(𝛼)
∫ (𝑥 − 𝑞𝑡)𝛼−1𝑓(𝑡)𝑑𝑞𝑡

𝑥

𝑎
 ,                    (𝛼 > 0, 𝑥 ∈ [0,1]), 

with (𝐼𝑞
0𝑓)(𝑥) = 𝑓(𝑥). Here and elsewhere 𝛤𝑞 denotes the q-Gamma function.  

Let 𝛼, 𝛽 ∈ 𝑅+ , the fractional q-integration has the following property: 

                           (𝐼𝑞,𝑎
𝛽

𝐼𝑞,𝑎
𝛼 𝑓)(𝑥) = (𝐼𝑞,𝑎

𝛼+𝛽
𝑓)(𝑥)        (𝑎 < 𝑥). 

Definition 4.  

The Riemann-Liouville type fractional q-derivative of a function 𝑓: (0,∞) → 𝑅 is defined by 

                                     (𝑫𝑞,𝑎
𝛼 𝑓)(𝑥) = {

(𝐼𝑞,𝑎 
−𝛼 𝑓)(𝑥),                       𝛼 ≤ 0,

(𝑫𝑞
⌈𝛼⌉

𝐼𝑞,𝑎
⌈𝛼⌉−𝛼𝑓)(𝑥),                      𝛼 >  0,        

 

where ⌈𝛼⌉ denotes the smallest integer greater than or equal to 𝛼. 

Definition 5.   

The Caputo type fractional q-derivative of a function 𝑓: (0,∞) → 𝑅 is defined by 

(𝐷𝑞,𝑎
𝛼 𝑓)(𝑥) = {

(𝐼𝑞,𝑎 
−𝛼 𝑓)(𝑥),                        𝛼 ≤ 0,

(𝐼𝑞,𝑎
⌈𝛼⌉−𝛼𝐷𝑞

⌈𝛼⌉
𝑓)(𝑥),                     𝛼 >  0 .       

 

Some of the main properties of the Riemann-Liouville type fractional q-integral and fractional 

q-derivative are given below: 

i) Let 𝛼 ∈ 𝑅+, then for 𝑎 < 𝑥, 

                                                         (𝑫𝑞,𝑎
𝛼 𝐼𝑞,𝑎

𝛼 𝑓)(𝑥) = 𝑓(𝑥). 

Also, let 𝛼 ∈ 𝑅+\𝑁, then for 𝑎 < 𝑥, 

                                                         (𝐼𝑞,𝑎
𝛼 𝑫𝑞,𝑎

𝛼 𝑓)(𝑥) = 𝑓(𝑥). 
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ii) Let 𝛼 ∈ 𝑅 and 𝛽 ∈ 𝑅+, then for 𝑎 < 𝑥, 
 

                                                  (𝑫𝑞,𝑎
𝛼 𝐼𝑞,𝑎

𝛽
𝑓)(𝑥) = (𝑫𝑞,𝑎

𝛼−𝛽
𝑓)(𝑥). 

 

Also, let 𝛼 ∈ 𝑅\𝑁 and 𝛽 ∈ 𝑅+, then for 𝑎 < 𝑥, 
 

                                                  (𝐼𝑞,𝑎
𝛽

𝑫𝑞,𝑎
𝛼 𝑓)(𝑥) = (𝑫𝑞,𝑎

𝛼−𝛽
𝑓)(𝑥). 

 

iii) Let 𝛼 ∈ 𝑅+, 𝜆 ∈ (−1,+∞), then  

 

                              𝐼𝑞,𝑎
𝛼 ((𝑡 − 𝑎)(𝜆)) =

Γq(λ+1)

Γq(α+λ+1)
(𝑡 − 𝑎)(𝛼+𝜆),               0 < 𝛼 < 𝑡 < 𝑏. 

 

iv) Let 𝛼 > 0 and n be a positive integer, then  

 

                         (𝐼𝑞,𝑎
𝛼 𝐷𝑞,𝑎

𝑛 𝑓)(𝑥) = (𝐷𝑞,𝑎
𝑛 𝐼𝑞,𝑎

𝛼 𝑓)(𝑥) − ∑
𝑥𝛼−𝑛+𝑘

Γ𝑞(𝛼+𝑘−𝑛+1)
(𝐷𝑞

𝑘𝑓)(0).𝑛−1
𝑘=0  

 

3. Locally Asymptotic Stability of q-Fractional Order Systems 
Let 𝛼 ∈ (0,1] and consider the system:  

 

                                                             𝐷𝑞
𝛼𝑥1(𝑡) = 𝑓1(𝑥1, 𝑥2, … , 𝑥𝑘), 

                                                            𝐷𝑞
𝛼𝑥2(𝑡) = 𝑓2(𝑥1, 𝑥2, … , 𝑥𝑘), 

. 

. 

. 

                                                            𝐷𝑞
𝛼𝑥𝑘(𝑡) = 𝑓𝑘(𝑥1, 𝑥2, … , 𝑥𝑘), 

 

where the fractional derivative in System (2) is in the sense of  q-Caputo. Let the initial values 

of System (2) be given as  

 

𝑥𝑞1(0) = 𝑥01, 𝑥𝑞2(0) = 𝑥02, … , 𝑥𝑞𝑘(0) = 𝑥0𝑘 . 

 

The equilibrium solutions of (2) are obtained by equating the system to zero.  

 

Let 𝐸∗ = (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑘
∗) be an equilibrium point of System (2) and  

 

                                                                     𝑥𝑖(𝑡) = 𝑥𝑖
∗ + 𝜀𝑖(𝑡), 

 

then  

                                 𝐷𝑞
𝛼(𝑥𝑖

∗ + 𝜀𝑖) = 𝑓𝑖(𝑥1
∗ + 𝜀1, 𝑥2

∗ + 𝜀2, … , 𝑥𝑘
∗ + 𝜀𝑘),      𝑖 = 1,2, … , 𝑘. 

 

So, one can obtain  

 

𝐷𝑞
𝛼𝜀𝑖(𝑡) = 𝑓𝑖(𝑥1

∗ + 𝜀1, 𝑥2
∗ + 𝜀2, … , 𝑥𝑘

∗ + 𝜀𝑘).  
 

Using the q-Taylor expansion and the fact that  

 

(2) 
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𝑓𝑖(𝑥1
∗, 𝑥2

∗, … , 𝑥𝑘
∗) = 0, 

 

we obtain:  

 

𝐷𝑞
𝛼𝜀𝑖(𝑡) ≈

𝑑𝑞 𝑓𝑖

𝑑𝑞 𝑥1
|𝑒𝑞𝜀1 +

𝑑𝑞 𝑓𝑖

𝑑𝑞 𝑥2
|𝑒𝑞𝜀2 + ⋯+

𝑑𝑞 𝑓𝑖

𝑑𝑞 𝑥𝑘
|𝑒𝑞𝜀𝑘, 

 

which reduces to the following system. 

 

                 𝐷𝑞
𝛼𝜀𝑖 = 𝐽𝑞𝜀,   𝜀 =

[
 
 
 
 
 
𝜀1

𝜀2

.

.

.
𝜀𝑘]

 
 
 
 
 

 ,   𝐽𝑞(𝐸
∗) =

[
 
 
 
 
𝑑𝑞 𝑓1

𝑑𝑞 𝑥1
           

𝑑𝑞 𝑓1

𝑑𝑞 𝑥2
    …    

𝑑𝑞 𝑓1

𝑑𝑞 𝑥𝑘
   

.                     .                      ..                     .                      ..                     .                      .
𝑑𝑞 𝑓𝑘

𝑑𝑞 𝑥1
           

𝑑𝑞 𝑓𝑘

𝑑𝑞 𝑥2
    …    

𝑑𝑞 𝑓𝑘

𝑑𝑞 𝑥𝑘 ]
 
 
 
 

,                       (3) 

where 𝐽𝑞 is the q-Jacobian matrix evaluated at the equilibrium point 𝐸∗(𝑥1
∗, 𝑥2

∗, … , 𝑥𝑘
∗) and 

satisfies the following relation: 

                                   𝐴−1𝐽𝑞𝐴 = 𝐵,   𝐵 =

[
 
 
 
 
 
𝜆1   0   0  …    0
0   𝜆1   0  …    0
.     .     .    …   .
.     .     .    …   .
.     .     .    …   .

0   0   0    0    𝜆𝑘]
 
 
 
 
 

,                                                       (4) 

 

where 𝜆1, 𝜆2, … , 𝜆𝑘 are eigenvalues of 𝐽𝑞 and A is the matrix of eigenvectors of 𝐽𝑞 . 
System (3) has the initial values 

 

            𝜀1(0) = 𝑥𝑞1(0) − 𝑥1
∗, 𝜀2(0) = 𝑥𝑞2(0) − 𝑥2

∗, … , 𝜀𝑘(0) = 𝑥𝑞𝑘(0) − 𝑥𝑘
∗ .                        (5)   

 

Using (3) and (4), the following equalities are obtained: 

 

𝐷𝑞
𝛼𝜀 = (𝐴𝐵𝐴−1)𝜀,    𝐷𝑞

𝛼(𝐴−1𝜀) = 𝐵. 

Hence, 

  

                                    𝐷𝑞
𝛼𝜂 = 𝐵𝜂, 𝜂 = 𝐴−1𝜀, 𝜂 = [𝜂1, 𝜂2, … , 𝜂𝑘]𝑇 .                                            (6) 

 

Therefore, 

 

                                       𝐷𝑞
𝛼𝜂1 = 𝜆1𝜂1, 𝐷𝑞

𝛼𝜂2 = 𝜆2𝜂2, … , 𝐷𝑞
𝛼𝜂𝑘 = 𝜆𝑘𝜂𝑘.                                      (7) 

 

The solutions of (7) are obtained by using q-Mittag-Leffler functions [Annaby and Mansour 

(2012)] 

 

                                     𝜂1(𝑡) = ∑
(𝜆1)𝑛𝑡𝑛𝛼

Γ𝑞(𝑛𝛼+1)
𝜂1(0)∞

𝑛=0 =𝑞 𝐸𝛼(𝜆1𝑡
𝛼)𝜂1(0),       (8) 

. 

. 

. 



AAM: Intern. J., Vol. 11, Issue 1 (June 2016)                                                                                                    179 

 

                                    𝜂𝑖(𝑡) = ∑
(𝜆𝑖)

𝑛𝑡𝑛𝛼

Γ𝑞(𝑛𝛼 + 1)
𝜂𝑖(0) =𝑞 𝐸𝛼(𝜆𝑖𝑡

𝛼)𝜂𝑖(0)

∞

𝑛=0

, 

 

𝑖 = 1,2, … , 𝑘. Using the result in Matignon (1996) and via q-generalization of Ahmed et al. 

(2007), we see that if  

                                                 |arg (𝜆𝑖)| >
𝛼𝜋

2
,       (𝑖 = 1,2, … , 𝑘),         (9) 

then 𝜂𝑖(𝑡) are decreasing and consequently, 𝜀𝑖(𝑡) are decreasing. 

Corollary 1.  

The equilibrium point 𝐸∗(𝑥1
∗, 𝑥2

∗, … , 𝑥𝑘
∗) is locally asymptotically stable if condition (9) is 

satisfied.  

4.  Main Results 
 

Consider the initial value problem (IVP) given by  

                                               𝐷𝑞
𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)),          (𝛼 > 0), 

                                    𝐷𝑞
𝑘𝑥(0+) = 𝑏𝑘        (𝑏𝑘 ∈ 𝑅; 𝑘 = 0,1, … , ⌈𝛼⌉ − 1). 

The following theorem is given for (10) by Annaby and Mansour (2012).  

Theorem 1.  

Let 𝛼 > 0, 𝑛 = ⌈𝛼⌉. Let G be an open set in ℂ and 𝑓: (0, 𝑎] × 𝐺 → 𝑅 be a function such that 

𝑓(𝑡, 𝑥) ∈ 𝐶𝛾[0, 𝑎] for any 𝑥 ∈ 𝐺, 𝛾 ≤ 𝛼 − 𝑛 + 1. If 𝑥 ∈ 𝐶𝑞
𝑛[0, 𝑎] then 𝑥(𝑡) satisfies (10), for 

all 𝑡 ∈ (0, 𝑎], if and only if 𝑥(𝑡) satisfies the q-integral equation:  

                                 𝑥(𝑡) = ∑
𝑏𝑘

Γ𝑞(𝑘+1)
𝑡𝑘𝑛−1

𝑘=0 +
𝑡𝛼−1

Γ𝑞(𝛼)
∫ (

𝑞𝜏

𝑡
; 𝑞)

𝛼−1
𝑓(𝜏, 𝑥(𝜏))𝑑𝑞𝜏

𝑡

0
                      (11) 

for all 𝑡 ∈ [0, 𝑎]. 

Now consider the following Caputo q-fractional order dynamical system: 

𝐷𝑞
𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)),    𝑥(𝑡0) = 𝑥0, 

where 𝑡 ≥ 𝑡0;  𝑡0, 𝑡 ∈ 𝑇𝑞; 0 < 𝑞 < 1 𝑎𝑛𝑑 𝑓: 𝑇𝑞 × 𝑅 → 𝑅𝑛 is continuous in x.  

For 0 < 𝑞 < 1, let 𝑇𝑞 be the time scale (Bohner and Peterson (2001)) defined by 

𝑇𝑞 = {𝑞𝑛: 𝑛 ∈ 𝑍} ∪ {0}. 

 

(10) 
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Theorem 2.  (Koca (2015))  

Let ‖. ‖ denote any convenient norm on 𝑅𝑛 . For 0 < 𝑞 < 1,  let 𝑇𝑞  be the time scale and 

assume that 𝑓 ∈ 𝐶[𝑅1 ∈ 𝑇𝑞 × 𝑅𝑛, 𝑅𝑛],  where 𝑅1 = [(𝑡, 𝑋): 0 ≤ 𝑡 ≤ 𝑎 𝑎𝑛𝑑 ‖𝑋 − 𝑋0‖ ≤

𝑏], 𝑓 = (𝑓1, 𝑓2, … , 𝑓𝑛)𝑇 , 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇  and let ‖𝑓(𝑡, 𝑋)‖ ≤ 𝑀  on 𝑅1. Then there exists 

at least one solution for the system of q-fractional differential equation given by  

                                                                    𝐷𝑞
𝛼𝑋(𝑡) = 𝑓(𝑡, 𝑋(𝑡)) 

with the initial conditions:  

                                                                𝑋(0) = 𝑋0, 

on 0 ≤ 𝑡 ≤ 𝛽, where 𝛽 = min (𝑎, [
𝑏Γq(α+1)

𝑀
]

1

2𝛼−1 ) , 0 < 𝛼 < 1. 

 

5. Equilibrium Points and Locally Asymptotic Stability of q-Fractional 

Order Model 

Consider the system of q-fractional nonlinear differential equations of order 𝛼, 0 < 𝛼 ≤ 1, 

that models the interpersonal relationships: 

                                                  {

𝐷𝑞
𝛼𝑥1(𝑡) = −𝛼1𝑥1 + 𝛽1𝑥2(1 − 𝜀𝑥2

2) + 𝐴1,

𝐷𝑞
𝛼𝑥2(𝑡) = −𝛼2𝑥2 + 𝛽2𝑥1(1 − 𝜀𝑥1

2) + 𝐴2,

𝑥𝑞1(0) = 0, 𝑥𝑞2(0) = 0,

 

where 𝐷𝑞
𝛼  is the Caputo type fractional q-derivative. 𝛼𝑖 > 0 , 𝛽𝑖  and 𝐴𝑖 , (𝑖 = 1,2)  are real 

constants. These parameters are oblivion, reaction and attraction constants. In the equations 

above, we assume that feelings decay exponentially fast in the absence of partners. The 

parameters specify the romantic style of individuals 1 and 2. In the beginning of the 

relationships, because they have no feelings for each other, initial conditions are assumed to 

be zero. Detailed analysis of this model has been considered in Ozalp and Koca (2012) and 

Koca and Ozalp (2013). Different from the mentioned references, in this paper, the model is 

discussed with Caputo type fractional q-derivative.  

To evaluate the equilibrium points of (12), let 

 

 {
𝐷𝑞

𝛼𝑥1(𝑡) = 𝑓1(𝑥1, 𝑥2) = 0,

𝐷𝑞
𝛼𝑥2(𝑡) = 𝑓2(𝑥1, 𝑥2) = 0,

 

 

where 

 

𝑓1(𝑥1, 𝑥2) = −𝛼1𝑥1 + 𝛽1𝑥2(1 − 𝜀𝑥2
2) + 𝐴1 

and 

𝑓2(𝑥1, 𝑥2) = −𝛼2𝑥2 + 𝛽2𝑥1(1 − 𝜀𝑥1
2) + 𝐴2. 

 

(12) 
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Then the equilibrium point is 𝐸1 = (𝑥1
∗, 𝑥2

∗). 

q-Jacobian matrix 𝐽𝑞 for the system given in (12) is:  

                      𝐽𝑞 = [

𝑑𝑞𝑓1(𝑥1,𝑥2)

𝑑𝑞𝑥1
      

𝑑𝑞𝑓1(𝑥1,𝑥2)

𝑑𝑞𝑥2

𝑑𝑞𝑓2(𝑥1,𝑥2)

𝑑𝑞𝑥1
      

𝑑𝑞𝑓2(𝑥1,𝑥2)

𝑑𝑞𝑥2

] = [

𝑓1(𝑞𝑥1,𝑥2)−𝑓1(𝑥1,𝑥2)

𝑞𝑥1−𝑥1
     

𝑓1(𝑥1,𝑞𝑥2)−𝑓1(𝑥1,𝑥2)

𝑞𝑥2−𝑥2

𝑓2(𝑞𝑥1,𝑥2)−𝑓2(𝑥1,𝑥2)

𝑞𝑥1−𝑥1
     

𝑓2(𝑥1,𝑞𝑥2)−𝑓2(𝑥1,𝑥2)

𝑞𝑥2−𝑥2

]. 

Therefore, 

                               𝐽𝑞(𝐸1) = [
−𝛼1                              𝛽1(1 − [3]𝑞𝜀𝑥2

∗2)

𝛽2(1 − [3]𝑞𝜀𝑥1
∗2)                           − 𝛼2                     

]. 

To discuss the local stability of the equilibrium 𝐸1 = (𝑥1
∗, 𝑥2

∗) of the system given with (12), 

we consider the linearized system at 𝐸1. The characteristic equation of the linearized system is 

of the form 

            𝐶(𝜆) = 𝜆2 + (𝛼1 + 𝛼2)𝜆 + 𝛼1𝛼2 − 𝛽1𝛽2(1 − [3]𝑞𝜀𝑥2
∗2)(1 − [3]𝑞𝜀𝑥1

∗2) = 0 

Theorem 3.  

The equilibrium point 𝐸1 = (𝑥1
∗, 𝑥2

∗) of the system given in (12) is asymptotically stable if one 

of the following conditions holds for all eigenvalues of 𝐽𝑞(𝐸1): 

(i) 1 <
−4𝛽1𝛽2

(𝛼1−𝛼2)2
(1 − [3]𝑞𝜀𝑥2

∗2)(1 − [3]𝑞𝜀𝑥1
∗2), 

(ii) 
𝛽1𝛽2

𝛼1𝛼2
(1 − [3]𝑞𝜀𝑥2

∗2)(1 − [3]𝑞𝜀𝑥1
∗2) < 1. 

Proof:   

The equilibrium point 𝐸1 = (𝑥1
∗, 𝑥2

∗) of the system given in (12) is asymptotically stable if all 

of the eigenvalues, 𝜆𝑖, 𝑖 = 1,2, of 𝐽𝑞(𝐸1), satisfy the condition  

                                                |arg (𝜆𝑖)| >
𝛼𝜋

2
,       (𝑖 = 1,2). 

These eigenvalues can be determined by solving the characteristic equation  

                                                     det(𝐽𝑞(𝐸1) − 𝜆𝐼) = 0. 

Thus, we have the following equation: 

                                                       𝜆2 + 𝐾𝜆 + 𝐿 = 0, 

where  

                                                         𝐾 = (𝛼1 + 𝛼2), 

                                   𝐿 = 𝛼1𝛼2 − 𝛽1𝛽2(1 − [3]𝑞𝜀𝑥2
∗2)(1 − [3]𝑞𝜀𝑥1

∗2). 

(13) 
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The roots of the characteristic equation are  

𝜆1,2 =
−𝐾

2
±

√𝐾2 − 4𝐿

2
. 

It is obvious that 𝐾 = (𝛼1 + 𝛼2) > 0. If 𝐾2 − 4𝐿 < 0, then all of the eigenvalues, 𝜆1,2, have 

negative real parts and satisfy the condition given by (i). If 𝐾2 > 𝐾2 − 4𝐿, then both of the 

eigenvalues are negative and satisfy the condition given by (ii). 

 

6.  Conclusion 
 

It is worth nothing that, q-derivative is the q-analogue of ordinary derivative. The q-analogues 

in the literature find application areas in many fields of science, for example the multi-fractal 

measures, entropy of chaotic dynamical systems and fractals. The connection between 

dynamical systems and fractals is due to the fact that numerous fractal designs do have the 

symmetries of Fuchsian group, generally speaking.  The interpersonal relationships based 

upon two individuals or three are represented by nonlinear dynamical systems. Therefore, in 

order to include the entropy of chaotic dynamics into the mathematical model portraying the 

dynamical relationship between two or three individuals, we use the q-derivative in this paper 

and extend the model of interpersonal relationships to the scope of q-analogues. In this paper, 

local asymptotic stability conditions in q-fractional order nonlinear systems have been 

studied. These conditions have been applied to the system of q-fractional order nonlinear 

dynamical model of interpersonal relationships of order 𝛼, 0 < 𝛼 ≤ 1.   
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