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Abstract

In this paper, locally asymptotic stability of g-fractional order nonlinear dynamical systems is
introduced and studied. The sufficient conditions for local stability of such dynamical systems
are obtained. Also, useful definitions of fractional order g-integrals and g-derivatives are
recalled. Finally, a g-fractional order nonlinear dynamical model is considered.

Keywords: g- calculus; fractional g-integral; fractional g-derivative; g-fractional system;
stability

MSC 2010 No.: 05A30; 34A08; 93D20

1. Introduction

Fractional calculus, a branch of mathematical analysis, has gained popularity and
importance during the last three decades. Fractional differential equations are an important
application area of fractional calculus. The first book on fractional calculus is the book written
by Oldham and Spanier (1974). One of the most popular books on fractional calculus is the
book by Podlubny (1999). Fractional differential equations are very useful and important tools
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in physics (Hilfer (2011)), engineering (Sun et al. (1984)), mathematical biology (Ahmed and
Elgazzar (2007), Ozalp and Demirci (2011)), interpersonal relationships (Ozalp and Koca
(2012), Koca and Ozalp (2014)) and finance (Laskin (2000)).

The development of g-analysis started in the 1740s. g-calculus is a methodology centered on
deriving g-analogous of the classical calculus results without using limits. The main tool of g-
calculus is g-derivative. As a survey about g-calculus we refer to Ernst (2000). Starting from
the work of Agarwal (1969) and Al Salam (1966, 1967), the g-fractional calculus is defined
and many properties of g-fractional calculus are obtained.

Recently, stability of fractional dynamical systems has attracted increasing interest. In 1966,
Matignon (1966) first studied the stability of linear fractional differential systems with Caputo
derivative. Since then, many researchers have done further studies on the stability of linear
fractional differential systems. In g-calculus the stability of g-fractional dynamical systems
was investigated by Abdeljawad and Baleanu (2011) and Jarad et al. (2011). In Jarad et al.
(2011), sufficient conditions for the Mittag-Leffler stability of g-fractional nonlinear
dynamical systems were obtained. To the best of our knowledge, the local stability of g-
fractional order nonlinear dynamical systems has not yet been studied. In this study, some
conditions are derived to discuss local stability of g-fractional order nonlinear systems. Also
an existence theorem for Caputo g-fractional differential equations is given.

We first recall some useful definitions of fractional order g-integrals and g-derivatives.
2. Preliminaries and Definitions

The definitions can be found in Gasper and Rahman (2000), Kac and Cheung (2002),
Stankovic et al. (2009) and Annaby and Mansour (2012).

Definition 1.

Let g be regarded as a real number with 0 < g < 1. g-number is defined by

X

[xlg = [x:q] = 2
We note that lim,_,[x], = x.
Definition 2.
For any x > 0, g-Gamma function is defined by
L) = [ 1E Y d,t . 1)

Here, g-analogue of the classical exponential function is defined by

oo i(j— J co
B = Efoq/U™ P e = 1+ (- @07,

where
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Using the Equation (1), the following is obtained:

Forany x>0, I;(x + 1) = [x]q [ (x),
r,(n) = f E;d st =EQ —E;” = 1.
0

So, for any nonnegative integer n, I;(n + 1) = [n],!.
Definition 3.

Let « > 0 and f be a function defined on [0,1]. The fractional g-integral of Riemann-Liouville
type is:

(Iaf) () = qua) Jr(xe = q)® i f (Ddgt, (e > 0,x € [0,1]),

with (Igf) (x) = f(x). Here and elsewhere I}, denotes the g-Gamma function.

Let a, B € R* , the fractional g-integration has the following property:

Ufaléaf) ) = (1522 F)) (@< ).
Definition 4.

The Riemann-Liouville type fractional g-derivative of a function f: (0, c) — R is defined by

« _ (175 ), a <0,
(P4)0) = {(DL“”!,?‘J‘“f)(x), a> 0,

where [a] denotes the smallest integer greater than or equal to «a.
Definition 5.

The Caputo type fractional g-derivative of a function f: (0, ) — R is defined by

(179 1) (), a <0,

(Dg,af)(x) = {(I(gﬂ—aD(ga]f)(x), a> 0.

Some of the main properties of the Riemann-Liouville type fractional g-integral and fractional
g-derivative are given below:
i) Let « € R, then for a < x,

(Dg,algfaf)(x) = f(x)

Also, let @ € RT\N, then for a < x,

(I12,D%f)(x) = f(x).
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ii) Leta € Rand B € R*, then fora < x,

(D2olf.f) ) = (DEF N,

Also, let « € R\N and 8 € R*, then for a < x,

(15.D8af)(0) = D5 ().

iii) Let « € R*, 1 € (—1, +0), then

a — D) = Fq@+1) — \(a+d)
Ga((t = )W) = 5 (E = )@, 0<a<t<b.

iv) Let @ > 0 and n be a positive integer, then
(1§aD3af) () = (Dgaldaf ) (x) — T2 om(Dkf)(o)

3. Locally Asymptotic Stability of g-Fractional Order Systems
Let « € (0,1] and consider the system:

Dgx;(t) = f1(x1, X2, s X)),
D&xy(t) = f2(x1, X2, e\ Xg),

(2)
D§x(t) = fk.(xl, Xy ey Xk ))

where the fractional derivative in System (2) is in the sense of g-Caputo. Let the initial values
of System (2) be given as

%q1(0) = %01, %42(0) = X2, ..., Xg (0) = X
The equilibrium solutions of (2) are obtained by equating the system to zero.
Let E* = (x7,x3, ..., xx) be an equilibrium point of System (2) and
xi(t) = xi + (1),

then
D(‘f(xf +&)=filxi +e,x5+&, ., x,+e), =12 ..,k

So, one can obtain
Dgei(t) = fi(x] + &1,x3 + &2, o0, X + &),

Using the g-Taylor expansion and the fact that
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fi(x1, x5, .., x5) =0,
we obtain:
a ~ dq fi dq fi dq fi
Dfei(t) = v leq€1 + mlquz + - +m leq €k

which reduces to the following system.

_81_

o laf  dah o dah ]
|dqx1 dq x> dq Xk |
Diei=Jge, e=| |, JgED =] : : .t 3)
dqfk dqfk dqfk |
gk l dq xq dgxy ' dgxg J

where ], is the g-Jacobian matrix evaluated at the equilibrium point E*(x3, x5, ..., x;) and
satisfies the following relation:

A, 0 0 ... 07
01, 0 .. 0
A_quA — B, B — . . . aes . ) (4)
000 0 A
where 44, 4, ..., 4 are eigenvalues of /, and A is the matrix of eigenvectors of J,.
System (3) has the initial values
£1(0) = x41(0) — x7,£5(0) = %g2(0) = x3, ..., £,(0) = x4 (0) — ;. (5)
Using (3) and (4), the following equalities are obtained:
Dfe = (ABA™ Ve, DZ(A™'e) =B.
Hence,
Din = Bn,n=A"en =[Ny, .. ] (6)
Therefore,
Dgny = A4m1, Dgnz = oMz, oo, Dyt = Ay (7)

The solutions of (7) are obtained by using g-Mittag-Leffler functions [Annaby and Mansour
(2012)]

m(6) = oo L5 ) (0) =4 Eo(A4%)n,(0), ®)

g(na+1)
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B )ntna B .
l(t) Z F ( + 1) 771(0) —q Ea(ﬂit )UL(O),

i =1,2,.., k. Using the result in Matignon (1996) and via g-generalization of Ahmed et al.
(2007), we see that if

larg@)| > =5 (i =12,...,k), )
then n; (t) are decreasing and consequently, ;(t) are decreasing.

Corollary 1.

The equilibrium point E*(x{, x5, ..., xx) is locally asymptotically stable if condition (9) is
satisfied.

4. Main Results

Consider the initial value problem (IVVP) given by

D¢x(t) = f(t,x(®),  (a>0), (10)

Dix(0Y)=b, (by €R;k=0,1,..,[a] — D).
The following theorem is given for (10) by Annaby and Mansour (2012).
Theorem 1.

Leta > 0,n = [a]. Let G be an open set in Cand f: (0,a] X G — R be a function such that
f(t,x) € C,[0,a] for any x € G,y < a —n + 1. If x € CF[0, a] then x(¢) satisfies (10), for
all t € (0,a], if and only if x(t) satisfies the g-integral equation:

x(0) = S ot g o (Fia) L fnx@)dgr (11)

k=0, (k+1) Tq(a)
forall t € [0, a].
Now consider the following Caputo g-fractional order dynamical system:
Dgx(t) = f(t,x(t)), x(to) = Xo,
where t > to; to,t €T;;0 < g <1land f: T, X R —> R™ is continuous in Xx.
For 0 < g <1, let T, be the time scale (Bohner and Peterson (2001)) defined by

T, ={q™:n € Z}u {0}
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Theorem 2. (Koca (2015))

Let ||. || denote any convenient norm on R™. For 0 < q <1, let T, be the time scale and
assume that f € C[R; € T, x R",R"], where R; =[(tX):0<t<aand|X— Xl <
bl f = (fu far o )T, X = (%1, %2, .., x,)T and let ||f (¢, X)|| < M on R,. Then there exists
at least one solution for the system of g-fractional differential equation given by

DEX(t) = f(t,X(D))
with the initial conditions:

X(0) = Xo,

brq(a+1), L
M

on 0 < t <, where § = min(a, | Ji )0 <@ < 1.

5. Equilibrium Points and Locally Asymptotic Stability of g-Fractional
Order Model

Consider the system of g-fractional nonlinear differential equations of order a, 0 < a < 1,
that models the interpersonal relationships:

Dgx,(t) = —ax; + Brx(1 — ex3) + Ay,
D§xy(t) = —azx; + o1 (1 — exf) + A, (12)
xq1(0) =0, x4,(0) =0,

where D is the Caputo type fractional g-derivative. a; > 0, §; and A;, (i = 1,2) are real
constants. These parameters are oblivion, reaction and attraction constants. In the equations
above, we assume that feelings decay exponentially fast in the absence of partners. The
parameters specify the romantic style of individuals 1 and 2. In the beginning of the
relationships, because they have no feelings for each other, initial conditions are assumed to
be zero. Detailed analysis of this model has been considered in Ozalp and Koca (2012) and
Koca and Ozalp (2013). Different from the mentioned references, in this paper, the model is
discussed with Caputo type fractional g-derivative.

To evaluate the equilibrium points of (12), let

Dgx1(t) = f1(x1,x3) =0,
{Dgxz(t) = fo(x1,x3) =0,

where

fi(xy, %) = —agxy + Brxy (1 — ex3) + Ay
and
f2(x1, %) = —azx; + Box, (1 — exf) + Aj.
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Then the equilibrium point is E; = (x7, x3).

g-Jacobian matrix /, for the system given in (12) is:

dqfl(xl’xz) dqfl(xl’xz) f1(qxq,x2)— fl(xl X2) J1(x1,qx2)—f1(x1,x2)
] _ dgxy dgx2 qx,1— qxz—X2
47 |dgfa(x1.x2) dqfa(x1,%2) f2(qxq,x2)— fz(x1 X2)  fo(x1,qx2)—fo(x1,%2) |
dgxy dgx2 qx1— qxX2—X2
Therefore,
Jo(Ey) = - B (1 — [3]4ex3%)
1) =
1 ,32(1_[ 59‘1 ) — a3

To discuss the local stability of the equilibrium E; = (x7, x3) of the system given with (12),
we consider the linearized system at E;. The characteristic equation of the linearized system is
of the form

CA) =2+ (g + @) + aya, — B1 (1 — [3 Iq ex;)(1— [ 59‘12) =0 (13)
Theorem 3.

The equilibrium point E; = (x7, x3) of the system given in (12) is asymptotically stable if one
of the following conditions holds for all eigenvalues of J,(E;):

() 1< —2£82 (1 _[3],ex32)(1 — [3]4ex72),

(a1—a3)?
o BBz o4 2 _ 2
(i) w1, (1—[3]4ex3")(1 [ lqex] )< 1.
Proof:

The equilibrium point E; = (x7, x3) of the system given in (12) is asymptotically stable if all
of the eigenvalues, 4;, i = 1,2, of J,(E;), satisfy the condition

larg@)| > =5, (i =12).
These eigenvalues can be determined by solving the characteristic equation
det(J,(E,) — Al) = 0.
Thus, we have the following equation:
A2+ KA+ L =0,
where
K = (a; + a3),

L=aa, — B1,(1—[3 ] gxzz)(l [ gxl )
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The roots of the characteristic equation are

LTk K2 — 4L
272 = 2

It is obvious that K = (a; + a;) > 0. If K — 4L < 0, then all of the eigenvalues, 4, ,, have

negative real parts and satisfy the condition given by (i). If K? > K? — 4L, then both of the

eigenvalues are negative and satisfy the condition given by (ii).

6. Conclusion

It is worth nothing that, g-derivative is the g-analogue of ordinary derivative. The g-analogues
in the literature find application areas in many fields of science, for example the multi-fractal
measures, entropy of chaotic dynamical systems and fractals. The connection between
dynamical systems and fractals is due to the fact that numerous fractal designs do have the
symmetries of Fuchsian group, generally speaking. The interpersonal relationships based
upon two individuals or three are represented by nonlinear dynamical systems. Therefore, in
order to include the entropy of chaotic dynamics into the mathematical model portraying the
dynamical relationship between two or three individuals, we use the g-derivative in this paper
and extend the model of interpersonal relationships to the scope of g-analogues. In this paper,
local asymptotic stability conditions in g-fractional order nonlinear systems have been
studied. These conditions have been applied to the system of g-fractional order nonlinear
dynamical model of interpersonal relationships of order «,0 < a < 1.
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