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Abstract 
 

In this paper, we apply a new method for solving system of partial differential equations 

within local fractional derivative operators. The approximate analytical solutions are obtained 

by using the local fractional Laplace variational iteration method, which is the coupling 

method of local fractional variational iteration method and Laplace transform. Illustrative 

examples are included to demonstrate the high accuracy and fast convergence of this new 

algorithm. The obtained results show that the introduced approach is a promising tool for 

solving system of linear and nonlinear local fractional differential equations. Furthermore, we 

show that local fractional Laplace variational iteration method is able to solve a large class of 

nonlinear problems involving local fractional operators effectively, more easily and accurately; 

and thus it has been widely applicable in physics and engineering. 
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1. Introduction 
  

The local fractional variational iteration method was applied to solve the partial differential, 

integral and integro-differential equations arising in mathematical physics: Yang et al. 

(2013), Su et al. (2013), Yang et al. (2014) Wang et al. (2014), Baleanu et al. (2014) Chen, et 

al. (2014), Neamah (2014). Based on it, the local fractional Laplace variational iteration 

method had found successful applications in physics and applied mathematics as in the 

following examples: fractal heat conduction equation  by Liu (2014), fractal vehicular traffic 

flow by Li, et al. (2014), heat equation by Xu et al. (2014), linear partial differential 

equations by Yang (2014), nonlinear partial differential equations by Jafari and Jassim 

(2014), Fokker Planck equation by Jassim  (2015), diffusion-wave equations by Jassim et al. 

(2015). 

 

The local fractional calculus theory has attracted a lot of interest for scientists and engineers 

because it is applied to model some problems for fractal mathematics and engineering. It 

plays a key role in many applications in several fields, such as physics Yang (2012), 

Kolwankar and Gangal (1998), Yang et al. (2013), Zhao et al. (2013), Li et al. (2014), heat 

conduction theory Yang (2012), Yang et al. (2013), Xu et al. (2014), fracture and elasticity 

mechanics Yang (2012), fluid mechanics Yang (2012), Yang et al. (2013) and so on. The 

local fractional partial differential equations arising in mathematical physics described the 

non-differentiable behaviors of physical laws. Finding the non-differentiable solutions is a 

hot topic. Useful techniques were successfully applied to deal with local fractional 

differential equations.  

 

In this work, our aim is to use the local fractional Laplace variational iteration method to 

solve the system of linear and nonlinear local fractional partial differential equations. The 

structure of the paper is suggested as follows. In Section 2, we give analysis of the method 

used. In Section 3, some examples for systems of local fractional partial differential equations 

are given. Finally, the conclusions are considered in Section 4.        

 

2. Local Fractional Laplace Variational Iteration Method. 

In order to illustrate this method, we investigate system of local fractional partial differential 

equations as follows: 
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linear and nonlinear terms.                                                                              

 

According to the rule of local fractional variational iteration method Yang et al. (2013), Su et 

al. (2013), Jafari et al. (2015) the correction local fractional functional for (2.1) is constructed 

as  
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which leads up to 
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where  
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Applying the local fractional Laplace transform  on both sides of Equation (2.4), we get 
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or  
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Taking the local fractional variation of Equation (2.6) gives us  
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By using computation of Equation (2.7), we get: 
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Hence, from Equation (2.8) we get: 
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Therefore, we get 
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Hence, we have the following iteration algorithm: 
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Therefore, the local fractional series solution of Equation (2.1) is 

 

        ),(lim),( 1 yxuLLyxu im
m

i 



 .                                                                                    (2.13) 

 

3. Some Illustrative Examples                                               
 

In this section, we give some illustrative examples for solving system of local fractional 

partial differential equations to demonstrate the efficiency of  local fractional Laplace 

variational iteration method. 

 

Example 1.  
 

Let us consider the system of local fractional coupled partial differential equations with local 

fractional derivative Yang et al. (2014): 
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subject to the initial conditions 
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In view Equation (2.12) and Equation (3.1) the local fractional iteration algorithm can be 

written as follows: 
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which leads to  

       

 

  ,),(
),(1

),0(
1

),0(
1

),(

,),(
),(1

),0(
1

),0(
1

),(

2

2

2

)(

21

2

2

2

)(

21









































yxv
y

yxu
L

s
yv

s
yv

s
yxvL

yxu
y

yxv
L

s
yu

s
yu

s
yxuL

m
m

mmm

m
m

mmm



















                 (3.4)  

where the initial value reads: 
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Making use of Equation (3.4) and Equation (3.5), we get the first approximation, namely: 
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Hence, we have 
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From Equation (3.4) and Equation (3.7), we arrive the second approximation: 
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Therefore, we get 
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Consequently, the local fractional series solution is: 
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Example 2.  
 

Consider the system of local fractional coupled Burger's equations with local fractional 

derivative Yang et al. (2014): 
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subject to the initial conditions 
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From Equation (2.12) and Equation (3.12), we obtain 
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which leads to  
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where the initial value are: 
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Applying Equation (3.15) and Equation (3.16), we get the first approximation, namely: 
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Hence, we have 
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In view of Equation (3.15) and Equation (3.18), we arrive the second approximation: 
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Therefore, we have 
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Consequently, the local fractional series solution is: 
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Example 3.  
 

Let us consider the system of coupled partial differential equations involving local fractional 

operator: 
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with initial conditions 
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In view Equation (2.12) and Equation (3.23) we have 
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which leads to  
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where the initial value reads: 
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Making use of Equation (3.26) and Equation (3.27), we get the first approximation, namely: 
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Hence, we have 
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In view of Equation (3.26) and Equation (3.29), we arrive the second approximation reads: 
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Therefore, we have 
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Consequently, the local fractional series solution is: 
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4. Conclusions 
 

In this work we considered the coupling method of the local fractional variational iteration 

method and Laplace transform to solve the system of linear and nonlinear local fractional 

partial differential equations and their nondifferentiable solutions were obtained. The local 

fractional Laplace variational iteration method is proved to be an effective approach for 
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solving system of partial differential equations with local fractional derivative operators due 

to the excellent agreement between the obtained numerical solution and the exact solution. A 

comparison is made to show that the method has small size of computation in comparison 

with the computational size required in other numerical methods and its rapid convergence 

shows that the method is reliable and introduces a significant improvement in solving linear 

and nonlinear partial differential equations with local fractional derivative operators. 
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