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Abstract

In this paper, we apply a new method for solving system of partial differential equations
within local fractional derivative operators. The approximate analytical solutions are obtained
by using the local fractional Laplace variational iteration method, which is the coupling
method of local fractional variational iteration method and Laplace transform. Illustrative
examples are included to demonstrate the high accuracy and fast convergence of this new
algorithm. The obtained results show that the introduced approach is a promising tool for
solving system of linear and nonlinear local fractional differential equations. Furthermore, we
show that local fractional Laplace variational iteration method is able to solve a large class of
nonlinear problems involving local fractional operators effectively, more easily and accurately;
and thus it has been widely applicable in physics and engineering.
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1. Introduction

The local fractional variational iteration method was applied to solve the partial differential,
integral and integro-differential equations arising in mathematical physics: Yang et al.
(2013), Su et al. (2013), Yang et al. (2014) Wang et al. (2014), Baleanu et al. (2014) Chen, et
al. (2014), Neamah (2014). Based on it, the local fractional Laplace variational iteration
method had found successful applications in physics and applied mathematics as in the
following examples: fractal heat conduction equation by Liu (2014), fractal vehicular traffic
flow by Li, et al. (2014), heat equation by Xu et al. (2014), linear partial differential
equations by Yang (2014), nonlinear partial differential equations by Jafari and Jassim
(2014), Fokker Planck equation by Jassim (2015), diffusion-wave equations by Jassim et al.
(2015).

The local fractional calculus theory has attracted a lot of interest for scientists and engineers
because it is applied to model some problems for fractal mathematics and engineering. It
plays a key role in many applications in several fields, such as physics Yang (2012),
Kolwankar and Gangal (1998), Yang et al. (2013), Zhao et al. (2013), Li et al. (2014), heat
conduction theory Yang (2012), Yang et al. (2013), Xu et al. (2014), fracture and elasticity
mechanics Yang (2012), fluid mechanics Yang (2012), Yang et al. (2013) and so on. The
local fractional partial differential equations arising in mathematical physics described the
non-differentiable behaviors of physical laws. Finding the non-differentiable solutions is a
hot topic. Useful techniques were successfully applied to deal with local fractional
differential equations.

In this work, our aim is to use the local fractional Laplace variational iteration method to
solve the system of linear and nonlinear local fractional partial differential equations. The
structure of the paper is suggested as follows. In Section 2, we give analysis of the method
used. In Section 3, some examples for systems of local fractional partial differential equations
are given. Finally, the conclusions are considered in Section 4.

2. Local Fractional Laplace Variational Iteration Method.

In order to illustrate this method, we investigate system of local fractional partial differential
equations as follows:

L, u(xy)+RU)+N;U)=0, i=12,...,n, (2.1)
with the initial conditions

ra
TUOY _ gy, r=01,2,...k-1, 22
ax [24

where
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U =[u(x,t),uy(x,1), ... ,u, (x,1)],

ka
L, = 0 .—denotes linear local fractional derivative operator of order ka, R; and N; denotes

OX
linear and nonlinear terms.

According to the rule of local fractional variational iteration method Yang et al. (2013), Su et
al. (2013), Jafari et al. (2015) the correction local fractional functional for (2.1) is constructed
as

|(m+l) (X) u|m (X)+O (a)[r(l [L u|m (7) +RU ( )+ Ni (Gm )]J ' (23)
which leads up to
|(m+1)(X) Uim (X)"'O (a){/ﬁir(()](_—f) [L Uim (T) +R; ( )+ Ni (Jm )]J’ (2-4)

where
lJ—m =['jlm’'T"‘Zm:---vanm]

l(z’)
[1+a)

and is a fractal Lagrange multipliers.

Applying the local fractional Laplace transform on both sides of Equation (2.4), we get

ta{ui<m+1><x>}=ta{uim<x>}+t{ I‘“’(M[L Ui (2) + R (0 )+Ni(6m)]}, (25)

ra+
or

i 00 = g i 00} + ta{r*gl‘f:)}ta (Lt 00+ R (U J+ i (0, ). (26)

Taking the local fractional variation of Equation (2.6) gives us

5“(1:(1 {ui(m+1) (X)})=5“(l:a {uim (00} + 50{1:&{ I }‘:a {Lauim (X)+R, (ljm)+ Ni(ljm)}} (2.7)

I'l+ea)

By using computation of Equation (2.7), we get:

T R S I L e e 28)

Hence, from Equation (2.8) we get:
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1+EQ{M}5"“ =0, (2.9)
I'l+a)

where

5% (Lo (00) =57 (8", i ()} — s 0,1, (0) -+ —ulk D) )

=55 (&, {uim (0)}) - (2.10)
Therefore, we get
Ax* -1

Hence, we have the following iteration algorithm:

ta{ui(m+1)(x’ Y))}Z g Ui (%, y)}_skiata LU (6 Y) + RiU )+ N; (U, )} - (2.12)
Therefore, the local fractional series solution of Equation (2.1) is

Ui (x,y)= n!i_r)nwtgl(i:a Uim (%, Y)}) (2.13)

3. Some lllustrative Examples

In this section, we give some illustrative examples for solving system of local fractional
partial differential equations to demonstrate the efficiency of local fractional Laplace
variational iteration method.

Example 1.

Let us consider the system of local fractional coupled partial differential equations with local
fractional derivative Yang et al. (2014):

o%eu(x, y) s o%v(x, y)

—u(x,y) =0,
ijza Zaayza (31)

0 v(2x, y) N 0 u(zx, y) V(X y) =0,

ax o 8y (04
subject to the initial conditions
0%u(0, .
u(O,y)=0, #:Ea(y )1

X (3.2)

vo,)=0, ZYON _ g (4.
OX
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In view Equation (2.12) and Equation (3.1) the local fractional iteration algorithm can be
written as follows:

20 2a
o U (%0 )= £ U (% y)}—%ta{a axz(ax 9,0 fMﬁf’y)—um(x,y)}.

1 aZa ( ) 6205 ( ) (33)
m X m X
ta{vm+1(xy y)} { (X y)}_S a{ axza ! ayza Y m(Xl y)}:
which leads to
2a
belima )= S0 0+ U 095 {a;ym—z(f’y)—um(x, y)},
1 20 (3.4)
bullna 0 = @)+ v 00— a{%—w, y)},
where the initial value reads:
_ x“ E (y )
Ea{UO(X’y)}_ta{r(l_l_ ) (y )} S
(3.5)

_ x“ (y“)
’ca{vo(x,y)}—t{ ) E,(y” )} a

Making use of Equation (3.4) and Equation (3.5), we get the first approximation, namely:

2a
E, u(x y)}=iuo(o y)+—ué“’(o y)—— a{é(;/yo—z(ax'”_%(x’ y>}

. 20 (3.6)
E )} = 0 )+ U009 - {% Vol y)}
Hence, we have
CE,(y") 1 S u
Oy} ==5— - ta{ e eV )}
_ B () 1 2x“ p
Ea{Vl(X, Y)}— Sza sza t“{l“(lJra) Ea(y )}
_E.(y") | 2E,(¥%)
SZa S4a !
3.7
CE (") 2B, (¥ ) G0
- SZa SZa

From Equation (3.4) and Equation (3.7), we arrive the second approximation:
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2c
£, {up (x, y)}=—u1<o N+ ~ (o, y)—i a{agyl—z(f,’y)—ul(x, y>}

20 (3.8)
£, Vo (x, y)}:—vl(o y)+—v£“)(o y)- a{%—w(x, y)}
Therefore, we get
B 1, ] 2 P "
ta{UZ(Xi y)}_ SZ“ Sza {:a{ F(1+a) Ea(y ) F(1+30£) Ea(y )}
_ B,y 1 2x* a4 «
Ea{VZ(Xa y)}_ Sza sza {:a{r(1+a) Ea(y )+1_,(1+3a) Ea(y )}
_E,(y") | 2B, (y) | 4E,(¥%)
2a da 6a !
S S S (3.9)
_ B (%) 2B, (v%) 4E, (YY)
SZa S4a SGa !
m 2kE o
bl }= X G,
B (3.10)
m 2XE, (y*

E im0 W)= =X =g
k=0 S

Consequently, the local fractional series solution is:

=i ) 5] S S 0D |

) = Tim 2, b)) - tal(— rey ) ZEy) )

6
x* 2x3* e B u sinha! ZX“P
_Ea(y ) '
:_Ea(y

% )( V2
Fa I'l+a) F(1+3a) F(1+50:) J2
(3.12)
o Sinh J2x

)“\/5

N 2X3a 4X5a
E, (%) +
I'l+a) F(1+3a) F(1+5a)
Example 2.
Consider the system of local fractional coupled Burger's equations with local fractional
derivative Yang et al. (2014):
a“;iz D) FU0GY) () 07U Y) Sl YV
oy** oy° oy (3.12)

OV Y) | OVOGY) 0y OVOGY) | O U VO]
x“ oy oy* oy”
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subject to the initial conditions

u(0,y) =cos, (y), (3.13)
v(0,y) =cos, (y*).

From Equation (2.12) and Equation (3.12), we obtain

a 2a a a
{:a{um+1(x’ y)} {m(x y)}_sia {5 Um +% 2u 0 Um +5 [umvm]}’

x oy Tyt e (3.14)
a 2a a o :
b (6 W)} = by v (%, )} sia ,Ea{aax\;m . 6ay oy, aay\;m L0 g;n;vm]},
which leads to
1, 0*up, Uy 0% UpVin]
{ m+1(X Y)} m(o Y) W—Zum 6ya + ay“
(3.15)
1 1 o%%y o%v.,  0%u.v
Ey Vi (%, y)}——v o~ “{ay—?;_zvm ay“m . ([3;; m]}
where the initial value are:
EH{UO(Xv Y)}=|:a {Cosa(ya)}:Miy),
° (3.16)

E, o (x y)} = &, fos, (v*)] %‘”

Applying Equation (3.15) and Equation (3.16), we get the first approximation, namely:

£, {ug (x, y)}——uO(O y) - £ {azauo _ 2, 9“ug N Ga[roo]},

2a a a
r e
1 0%y, 0% 0%[unv
{Vl(x y)}z_Vo(O y) {ayZ(lO _2\/0 ayao + ayg 0 }
Hence, we have

g fun (% Y)}=M§y)—%l:a{—cosa(y“)}=Cosaiy )+005a2€1y ),
S a S > (3.18)

i (x, y)F%—S%ta{—cosa(y“)}:Cosso({y ), COSSZEZY ).

In view of Equation (3.15) and Equation (3.18), we arrive the second approximation:
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aZaul

E, {up(x, Y)}=—U1(0 Y)——l: { —2u

) 0“Uy " 0% [upw]
ayZa aya 8ya

E, Vo (x, y)}=—v1(o V)=t

Therefore, we have

o {uo (%, y)f= wsz—g(,y)—siata{— cos, (y) - F(1X+ ) COSa(ya)}
£ o (x y)f= %ﬁy)—%ata{— cos, (Y*) - r(1x+ ) COSa(y“)}

_ Cos, (¥7) | cos, (y*) , cos, (y)

s% S2a SBa !
_ €08, (y%) | cos,(y*) , cos,(y7)
- s% sZa S3a !

b im0} = 3,220,

cos,, (y*

ty Vi (%, )} = Zw-

Consequently, the local fractional series solution is:

1, Jo*v oy OV 07 v, |
2a V1 a + a
oy oy oy

|
|

) 1 e ) - ] 2D ) 90
)= Jim e s ) ] LD ) 80

N X2a X3a

- con o e
I'l+a) T(@Q+2a) T(1+3a)

N X2a X3a

=cosa(y“)[1+ + +
I'l+a) T'l+2a) T(1+3a)

=E, (x%)cos, (y%),
= E, (x%)c0s, (y%).

Example 3.

+J
+J

]
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(3.19)

(3.20)

(3.21)

(3.22)

Let us consider the system of coupled partial differential equations involving local fractional

operator:
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aa;(z’ Y, a“v(z, Y) —u(x,y)-v(x,y)=0,
X
(3.23)
OV0Y) | OGN iy, y)-u(x,y) =0
ox” « ' o

with initial conditions

U(O, y) ZSmha(y )! (324)
v(0,y) =cosh, (y%).
In view Equation (2.12) and Equation (3.23) we have
1 0% 0%
b fum o (% )= b U ()} - by o Sy oy
S OX oy (3.25)
1 o%v, 0% '
L , ——t, m m _ 1
a{vm+1(x y)} { (X y)} @ {axa + 8ya Vi Um}
which leads to
1 o”
{ Up1 (X, y)} m(o y) - {ay—\gn_um _Vm},
(3.26)
1 1 0%
{ Vi1 (X, y)}——vm(O y)- { ayuam ~Vm _um}’
where the initial value reads:
: ax)_sinh, (y*
£, g (% )} = &, finh,, (v }= S (Y).
S (3.27)

cosh (y )

£, Mo(x y)} =&, fosh, (y*)]

Making use of Equation (3.26) and Equation (3.27), we get the first approximation, namely

E, {u(x, y)}——uo(O Y)— {8; —Up— Vo}a
(3.28)

aa
{ ayuo —V, - uo}

E, v (x, y)}:_Vo(o y) -

Hence, we have
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b iy = 3MaO0) Ly - ogn, (y)) = SN (Y7), 0SNG (V)

s s S (3.29)
b y)}:%_%& { sinh. (44 )} coshs (Y ), Slnhsziy )

In view of Equation (3.26) and Equation (3.29), we arrive the second approximation reads:

E, {uy(x, y)}z—ul(O y)— {Zyvl —ul—vl},
(3.30)

E, {va (%, Y)}_—V1(0 Y)— Ly {aaylio —V1—U1}-

Therefore, we have

t{uz(x,y)}zsmh“a(ya) cosh, (y*) smha(y“)

2a 3a !

S S

cosh_(y%*) sinh cosh , (y*
E{VZ(X, y)}: Saa(y ) Szo(ty ) Sosgcfy ),

(3.31)

I sinh, (y*) & cosh,(y*)
o fun ()} = 2 P2

s(k+Da s(k+a
=0 } (3.32)
I cosh, (y*)  &sinh,(y%)
Ey V(X Y)f= Z (2k+1)a + D o
=0 k=0 S
Consequently, the local fractional series solution is:

u(x,y) = lim £ (k, fun (%, y})
v(x,y) = lim £k, v (6 )))

) a a X3a
=sinhg (y* ){1+r(1+2 y ] cosh (" )(F(1+a) T(l+3a) ]

a X3a
= Cosh (v ){l+r(1+2 ) }Smh v )(1"(1+a) r(1+3a)+"']

=sinh, (x* + y%),

(3.33)
=cosh,, (x* +y%).

4. Conclusions

In this work we considered the coupling method of the local fractional variational iteration
method and Laplace transform to solve the system of linear and nonlinear local fractional
partial differential equations and their nondifferentiable solutions were obtained. The local
fractional Laplace variational iteration method is proved to be an effective approach for
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solving system of partial differential equations with local fractional derivative operators due
to the excellent agreement between the obtained numerical solution and the exact solution. A
comparison is made to show that the method has small size of computation in comparison
with the computational size required in other numerical methods and its rapid convergence
shows that the method is reliable and introduces a significant improvement in solving linear
and nonlinear partial differential equations with local fractional derivative operators.
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