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Abstract 

Infeasible linear  inequalities appear in many disciplines. In this paper we investigate the 𝑙1 

and 𝑙∞ solutions of such systems in the presence of uncertainties in the problem data. We 

give equivalent linear programming formulations for the robust problems. Finally, several 

illustrative  numerical examples using the cvx software package are solved showing the 

importance of the robust model in the presence of uncertainties in the problem data. 
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1.    Introduction 

Robust optimization is an effective approach to many real world optimization problems (Ben-

Tal, 2001 and Soyster, 1973). In this paper we consider the following form of linear 

inequalities: 

𝐴𝑥 ≥ 𝑏,           (1) 

where 𝐴 ∈ 𝑅𝑚×𝑛
  and  𝑏 ∈ 𝑅𝑚 . The solution of such linear inequalities is a fundamental 

problem that arises in several applications. Some important applications arise in medical 
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image reconstruction from projections, and in inverse problems in radiation therapy (Censor, 

1988, 1982, 1997, 2008 and Herman, 1975, 1978). 

 

In practice, it often happens that the feasible region of (1) is empty due to measurements 

errors in the data vector 𝑏. In such a case it is desired to find the smallest correction of 𝑏 that 

recovers feasibility (Dax, 2006, Ketabchi, 2009 and Salahi, 2010). More precisely, the 

following two problems should be solved in 𝑙1 and 𝑙∞  norms: 

 

𝑚𝑖𝑛𝑥 ||(𝑏 − 𝐴𝑥)+||1           (2) 

  

 

𝑚𝑖𝑛𝑥 ||(𝑏 − 𝐴𝑥)+||∞            (3) 

 

where (𝑏𝑖 − 𝑎𝑖
𝑇𝑥)+ = 𝑚𝑎𝑥 𝑏𝑖 − 𝑎𝑖

𝑇𝑥, 0 . 

  

Obviously both (2) and (3) are equivalent to LPs that can be efficiently solved using simplex 

or interior point methods (Grant, 2010, 2008). Our goal in this paper is to consider (2) and (3) 

when there are  uncertainties in both 𝐴 and 𝑏. In such a case,  we can not get the solution by 

solving problems in (2) and (3). We give new LP formulations of  both problems in (2) and 

(3) in the presence of uncertainties. Finally several randomly generated test problems are 

presented showing the importance of the robust approach using cvx software package (Grant, 

2010, 2008). 

 

 

2.    The 𝒍𝟏 Case 
 
In this section we consider the robust solution of linear inequalities in the 𝑙1   norm sense i.e., 

 

𝑚𝑖𝑛𝑥,   ||[∆𝐴,   ∆𝑏]||1≤𝜌 ||((𝑏 + ∆𝑏) − (𝐴 + ∆𝐴)𝑥)+||1            (4) 

 

where  ∆𝐴 and   ∆𝑏 are uncertainties in the matrix 𝐴 and vector 𝑏, respectively and  𝜌 is a 

given positive parameter. We may write (4) as follows 

 

𝑚𝑖𝑛𝑥 𝑚𝑎𝑥  ||[∆𝐴,   ∆𝑏]||1≤𝜌 ||(𝑏 − 𝐴𝑥 + ∆𝑏 − ∆𝐴𝑥)+||1      (5) 

 

which  minimizes the residual in the worst case. 

 

Now for a given 𝑥 ∈ 𝑅𝑛 , let us consider the inner problem in (5), then we have 

 

||(𝑏 − 𝐴𝑥 + [∆𝐴  ∆𝑏][−𝑥𝑇  1]𝑇)+||1 ≤ ||(𝑏 − 𝐴𝑥)+||1 + ρ||[−𝑥𝑇  1]𝑇||1     (6) 
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In the sequel we show that for a specific choice of ∆𝐴 and ∆𝑏 we have inequality as equality 

in (6). Let us consider 

 

 [∆𝐴  ∆𝑏] = 𝜌
(𝑏−𝐴𝑥)+

||(𝑏−𝐴𝑥)+||1
(𝑠𝑔𝑛([−𝑥𝑇  1]𝑇))𝑇            (7) 

 

where      

 

𝑠𝑔𝑛(𝑎) =  
1, 𝑖𝑓 𝑎 > 0,

−1, 𝑖𝑓 𝑎 ≤ 0.
  

 

Obviously |  ∆𝐴  ∆𝑏  |1 = 𝜌   and 

 

 

(𝑏 − 𝐴𝑥 + [∆𝐴  ∆𝑏][−𝑥𝑇  1]𝑇)+  

= (𝑏 − 𝐴𝑥 + 𝜌
(𝑏 − 𝐴𝑥)+

||(𝑏 − 𝐴𝑥)+||1
(𝑠𝑔𝑛([−𝑥𝑇  1]𝑇))𝑇[−𝑥𝑇  1]𝑇)+ 

                        =(𝑏 − 𝐴𝑥 + 𝜌
(𝑏−𝐴𝑥)+

||(𝑏−𝐴𝑥)+||1
||[−𝑥𝑇  1]𝑇||1)+ 

                        =(𝑏 − 𝐴𝑥)++ 𝜌
(𝑏−𝐴𝑥)+

||(𝑏−𝐴𝑥)+||1
||[−𝑥𝑇  1]𝑇||1. 

 

This implies the equality in (6). Therefore, (5) is equivalent to the following problem: 

 

𝑚𝑖𝑛𝑥 ||(𝑏 + ∆𝑏)+||1  +  𝜌||[−𝑥𝑇  1]𝑇||1       (8) 

 

Obviously, this is equivalent to an LP as follows: 

 

𝑚𝑖𝑛 𝑒𝑇𝑧 + 𝜌𝑒𝑇𝑠 + 𝜌 

𝐴𝑥 + 𝑧 ≥ 𝑏 

𝑥 ≤ 𝑠          (9) 

𝑥 ≥ −𝑠 

𝑠, 𝑧 ≥ 0 

 
where two vectors  𝑒 are all one vector of appropriate dimensions.  

 
 
3.     The 𝒍∞ Case 

 

In this section we consider the robust solution of linear inequalities in the 𝑙∞  norm sense i.e., 

 

𝑚𝑖𝑛𝑥,   ||[∆𝐴,   ∆𝑏]||∞ ≤𝜌 ||((𝑏 + ∆𝑏) − (𝐴 + ∆𝐴)𝑥)+||∞      (10) 
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where ∆𝐴 and ∆𝑏 are uncertainties in the matrix 𝐴 and vector 𝑏, respectively and 𝜌  is a given 

positive parameter. We may write (10) as follows 

 

𝑚𝑖𝑛𝑥 𝑚𝑎𝑥  ||[∆𝐴,   ∆𝑏]||∞ ≤𝜌 ||(𝑏 − 𝐴𝑥 + ∆𝑏 − ∆𝐴𝑥)+||∞ .     (11) 

 

Now for a given 𝑥 ∈ 𝑅𝑛 ,  let us consider the inner problem in (11), then we have 

 

||(𝑏 − 𝐴𝑥 + [∆𝐴  ∆𝑏][−𝑥𝑇  1]𝑇)+||∞ ≤ ||(𝑏 − 𝐴𝑥)+||∞ + ρ||[−𝑥𝑇  1]𝑇||∞  .  (12) 

 

Let   𝑥 = [𝑥𝑇   1]𝑇   and  𝑟 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑖=1,…,𝑛+1|𝑥 𝑖|.  Now we show that for the following 

specific  choice of ∆𝐴 and   ∆𝑏 we have the inequality (12) as equality. Let 

 

[∆𝐴  ∆𝑏] = 𝜌 𝑠𝑔𝑛(𝑥 𝑟)
(𝑏−𝐴𝑥)+

||(𝑏−𝐴𝑥)+||∞
𝑒𝑟

𝑇         (13) 

 

where 𝑒𝑟   is the rth column of the identity matrix  and   

 

𝑠𝑔𝑛(𝑎) =  
1, 𝑖𝑓 𝑎 > 0,
0, 𝑖𝑓 𝑎 ≤ 0.

  

 

Obviously |  𝐴  𝑏  |∞ = 𝜌 and 

 

(𝑏 − 𝐴𝑥 + [∆𝐴  ∆𝑏][−𝑥𝑇  1]𝑇)+  = (𝑏 − 𝐴𝑥 + 𝜌 𝑠𝑔𝑛(𝑥 𝑟)
(𝑏 − 𝐴𝑥)+

||(𝑏 − 𝐴𝑥)+||∞
𝑒𝑟

𝑇𝑥 )+ 

                        =(𝑏 − 𝐴𝑥 + 𝜌 𝑠𝑔𝑛(𝑥 𝑟)
(𝑏−𝐴𝑥)+

||(𝑏−𝐴𝑥)+||∞
𝑥 )+ 

                        =(𝑏 − 𝐴𝑥)++ 𝜌
(𝑏−𝐴𝑥)+

||(𝑏−𝐴𝑥)+||∞
||𝑥 ||∞ . 

 

This implies the equality in (12). Therefore, (10) is equivalent to the following problem: 

 

𝑚𝑖𝑛𝑥 ||(𝑏 + ∆𝑏)+||∞  +  𝜌||[𝑥𝑇  1]𝑇||∞         (14) 

 

 

This itself is equivalent to the following LP:  

 

𝑚𝑖𝑛 𝑧 + 𝜌𝑡 

𝑏 − 𝐴𝑥 ≤ 𝑦 

          𝑦𝑖 ≤ 𝑧,        ∀𝑖 = 1, … , 𝑚       (15) 

−𝑡 ≤ 𝑥𝑖 ≤ 𝑡,     ∀𝑖 = 1, … , 𝑛 

𝑡 ≥ 1, 𝑦 ≥ 0. 
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4.   Numerical Results 
 

In this section we present numerical results for some randomly generated test problems with 

different dimensions. In both tables, the first three test problems are generated using the 

following simple MATLAB code: 

 

clear all 

clc 

seed=0; 

randn(’state’,seed); 

m=enter(’number of rwos’); 

n=enter(’number of columns’); 

A=randn(m,n); 

b=randn(m,1); 

 

For problems generated by this code, matrix A is not necessarily  ill-condition, so we use 

MATLAB's hilb() command to generate  the well-know ill-condition Hilbert matrix of the 

given dimension and make the system  infeasible. The last two test problems in both tables 

are generated by the following code: 

 

A=hilb(m); 

b=randn(m,1); 

A=[A;-A(m,:)]; 

b=[b;b(m)+1]; 

 

We solve LPs using cvx (Grant, 2010, 2008) software package. Results for 𝑙1 and 𝑙∞  norms 

are summarized in Tables 1 and 2, respectively. We have used three different values for 

uncertainty parameter,  namely 0.1, 1, 5 and numbers in the parenthesis of  both tables are 

also for these three values, respectively. 

 

As our results show, the robust solution is different than the original problem although their 

objective values might be closer.  Moreover,  when the coefficient matrix is ill-condition, 

even a small uncertainty  might significantly change the solution, see the last two rows of 

both tables. Therefore, in the presence of uncertainties, it is better  to use the robust model  

rather than the original one. 
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Table 1: Comparison of Problem (2) and its Robust version (9) 

 

𝑚, 𝑛 Method ||(𝑏 − 𝐴𝑥∗)+||1 ||𝑥∗||1 

 

50,10 

Problem (2) 12.0456 3.9991 

Problem (9) (12.0456,12.415,16.796) (3.97,3.28,0.4620) 

 

500,100 

Problem (2) 143.24 7.398 

Problem (9) (143.24,143.62,151.007) (7.398,6.735,3.75) 

 

700,300 

Problem (2) 152.9 15.52 

Problem (9) (152.9,153.85,171.25) (14.97,13.25,7.18) 

 

100,30 

Problem (2) 0.469 3.4252e4 

Problem (9) (3.41,25.44,38.13) (62.27,8.71,8.7e-9) 

 

500,300 

Problem (2) 0.871 3.6729e5 

Problem (9) (20.28,126.36,174.22) (377.78,30.56,4.3e-8) 

 

 

 

Table 2: Comparison of Problem (3) and its Robust version (15) 

 

𝑚, 𝑛 Method ||(𝑏 − 𝐴𝑥∗)+||∞  ||𝑥∗||∞  

 

50,10 

Problem (3) 1.0893 0.5045 

Problem (15) (1.0893,1.0893,1.0893) (0.5045, 0.5045, 0.5045) 

 

500,100 

Problem (3) 1.243 0.222 

Problem (15) (1.243,1.243,1.243) (0.222,0.222,0.222) 

 

700,300 

Problem (3) 0.937 0.3340 

Problem (15) (0.937,0.937,0.937) (0.3340,0.3340.0.3340) 

 

100,30 

Problem (3) 0.234 3.407e4 

Problem (15) (1.091,1.091,1.091) (1,1,1) 

 

500,300 

Problem (3) 0.436 2.1894e9 

Problem (15) (1.5851,1.5851,1.5851) (1,1,1) 

 

 

5. Conclusions 

In this paper, we have studied the robust  𝑙1 and 𝑙∞  solutions of linear inequalities in the presence 

of uncertainties in both 𝐴 and  𝑏.  Equivalent LP formulations of both robust problems are given. 

Finally, several numerical results are presented showing the importance of the robust framework. 
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