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Abstract

The objective of this study was to get some sufficient conditions which guarantee the asymptotic
stability and uniform boundedness of the null solution of some differential equations of third order
with the variable delay. The most efficient tool for the study of the stability and boundedness of
solutions of a given nonlinear differential equation is provided by Lyapunov theory. However the
construction of such functions which are positive definite with corresponding negative definite
derivatives is in general a difficult task, especially for higher-order differential equations with
delay. Such functions and their time derivatives along the system under consideration must satisfy
some fundamental inequalities. Here the Lyapunov second method or direct method is used as a
basic tool. By defining an appropriate Lyapunov functional, we prove two new theorems on the
asymptotic stability and uniform boundedness of the null solution of the considered equation.
Our results obtained in this work improve and extend some existing well-known related results
in the relevant literature which were obtained for nonlinear differential equations of third order
with a constant delay. We also give an example to illustrate the importance of the theoretical
analysis in this work and to test the effectiveness of the method employed.
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1. Introduction

The qualitative behavior of solutions of various differential equations of third order with and
without delay have been extensively studied. In the relevant literature, a good deal of work has
been done and many interesting results have been obtained. We refer readers to the papers of Hara
(1971), Zhu (1992), Omeike (2009) and Tunç (2009), to mention a few as well as the references
cited therein for some works on the subject, where the Lyapunov function or functional approach
have been the most effective method to determine the stability and boundedness of solutions.

Omeike (2009) considered the following nonlinear differential equation of third order, with a
constant deviating argument r,

x′′′(t) + a(t)x′′(t) + b(t)f(x′(t)) + c(t)h(x(t− r)) = e(t).

He studied the stability and boundedness of solutions of this equation when e(t) = 0 and e(t) 6= 0.
In Tunç (2009), the author discussed sufficient conditions which ensure the boundedness of the
delay differential equation of the form

x′′′(t) + a(t)ψ(x′(t))x′′(t) + b(t)f(x′(t)) + c(t)h(x(t− r))
= e(t, x(t), x(t− r), x′(t), x′(t− r), x′′(t)).

Our objective in this paper is to extend the results verified by Tunç (2009) to obtain sufficient
conditions for the stability and boundedness of solutions of the following delay differential
equation:

[φ(x(t))x′(t)]
′′

+ a(t)ψ(x′(t))x′′(t) + b(t)f(x′(t)) + c(t)h(x(t− r(t)))
= e(t, x(t), x(t− r(t)), x′(t), x′(t− r(t)), x′′(t)), (1)

where φ is a twice differentiable function and ρ is a positive constant with 0 ≤ r(t) ≤ ρ, which
will be determined later. The functions a(t), b(t), c(t), f(x′), h(x), ψ(x′), and
e(t, x(t), x(t − r(t)), x′(t), x′(t − r(t)), x′′(t)) are continuous in their respective arguments; the
derivatives a′(t), b′(t), c′(t), h′(x), f ′(x′) are continuous for all x, y with h(0) = f(0) = 0. In
addition, it is also assumed that the functions e(t, x, x′, x(t− r(t)), x′(t− r(t)), x′′), f(x′(t)) and
h(x(t− r(t))) satisfy a Lipschitz condition in x, x′, x′′, x(t− r(t)), and x′(t− r(t)).

Remark 1.1.

Clearly the equation discussed in Tunç (2009) is a special case of equation (1) when φ(x) = 1

and r(t) = r. Moreover, if ψ(x′) = 1 and f(x′) = x′, then (1) reduces to the case studied by
Remili and Oudjedi (2014).

2. Preliminaries

First we will give some basic definitions and important stability criteria for the general non-
autonomous delay differential system. We consider
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x′ = f(t, xt), xt(θ) = x(t+ θ) , −r ≤ θ ≤ 0, t ≥ 0, (2)

where f : I × CH → Rn is a continuous mapping,

f(t, 0) = 0, CH := {φ ∈ (C[−r, 0], Rn) : ‖φ‖ ≤ H},

and for H1 < H , there exist L(H1) > 0, with |f(t, φ)| < L(H1) when ‖φ‖ < H1.

Definition 2.1. Burton (2005)

An element ψ ∈ C is in the ω − limit set of φ, say Ω(φ), if x(t, 0, φ) is defined on [0,+∞)

and there is a sequence {tn}, tn → ∞, as n → ∞, with ‖xtn(φ) − ψ‖ → 0 as n → ∞ where
xtn(φ) = x(tn + θ, 0, φ) for −r ≤ θ ≤ 0.

Definition 2.2 Burton (2005)

A set Q ⊂ CH is an invariant set if for any φ ∈ Q, the solution of (2.1), x(t, 0, φ), is defined on
[0,∞) and xt(φ) ∈ Q for t ∈ [0,∞).

Lemma 2.3. Burton (1985)

If φ ∈ CH is such that the solution xt(φ) of (2.1) with x0(φ) = φ is defined on [0,∞) and
‖xt(φ)‖ ≤ H1 < H for t ∈ [0,∞), then Ω(φ) is a non-empty, compact, invariant set and

dist(xt(φ),Ω(φ))→ 0 as t→∞.

Lemma 2.4. Krasovskii (1963)

If there is a continuous functional V (t, φ) : [0,+∞]×CH → [0,+∞] locally Lipschitz in φ and
wedges Wi such that:

(i) If W1(‖φ‖) ≤ V (t, φ), V (t, 0) = 0 and V ′(2,1)(t, φ) ≤ 0

then the zero solution of (2.1) is stable. If in addition V (t, φ) ≤ W2(‖φ‖) then the zero solution
of (2.1) is uniformly stable.

(ii) If W1(‖φ‖) ≤ V (t, φ) ≤ W2(‖φ‖) and V ′(2,1)(t, φ) ≤ −W3(‖φ‖),

then the zero solution of (2.1) is uniformly asymptotically stable.

3. Assumptions and main results

We assume that there are positive constants a, b, c, δ, δ0, δ1, δ2, ψ1, φ0, φ1, ρ, and σ, such
that the following conditions hold

i) 0 < a ≤ a(t) ≤ A, 0 < b ≤ b(t) ≤ B, 0 < c ≤ c(t) ≤ C,

ii) 1 ≤ ψ(y) ≤ ψ1, 0 < φ0 ≤ φ(x) ≤ φ1,
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iii)
h(x)

x
≥ δ > 0 (x 6= 0), and |h′(x)| ≤ δ1 for all x,

iv) δ2 ≥
f(y)

y
≥ δ0 > 0 (y 6= 0),

v)
∫ +∞

−∞
|φ′(u)| du <∞,

vi)
∫ ∞
0

|c′(s)| ds ≤ N1 <∞ and c′(t)→ 0 as t→∞,

vii) for some ρ ≥ 0 and 0 < σ < 1, 0 ≤ r(t) ≤ ρ, r′(t) ≤ σ.

Before stating theorems, we introduce the following notation ∆ = µbδ0 − Cδ1φ1.

For the case e ≡ 0, the following result is introduced.

Theorem 3.1.

In addition to the assumptions (i)-(vii), assume that the following conditions are satisfied

H1)
φ1δ1C

bδ0
< µ < a,

H2)
µψ1

φ2
0

|a′(t)|+ δ2
φ0

|b′(t)| − δ1
µ
c′(t) <

∆

φ2
1

.

Then the zero solution of (1) is uniformly asymptotically stable, provided that

ρ < min

{
2(a− µ)

φ1Cδ1
,

φ3
0∆(1− σ)

Cδ1φ2
1(µ+ φ0 + µφ2

0(1− σ))

}
.

Proof:

Equation (1) can be expressed as the following system

x′ =
1

φ(x)
y

y′ = z (3)

z′ = − a(t)

φ(x)
ψ(

y

φ(x)
)z +

a(t)φ′(x)

φ3(x)
ψ(

y

φ(x)
)y2 − b(t)f

(
y

φ(x)

)
−c(t)h(x) + c(t)

∫ t

t−r(t)

y(s)

φ(x(s))
h′(x(s))ds.

We define the following Lyapunov functional W = W (t, xt, yt, zt):

W (t, xt, yt, zt) = e−β(t)V (t, xt, yt, zt) = e−β(t)V, (4)
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where

V = µc(t)H(x) + c(t)h(x)y + b(t)φ(x)F (
y

φ(x)
) +

1

2
z2 +

µ

φ(x)
yz

+µa(t)

∫ y
φ(x)

0

ψ(u)udu+ λ

∫ 0

−r(t)

∫ t

t+s

y2(ξ)dξds, (5)

and

β(t) =

∫ t

0

[
|α(s)|
ω

+
|c′(s)|
c

]ds,

such that

H(x) =

∫ x

0

h(u)du, F (y) =

∫ y

0

f(u)du, and α(t) =
φ′(x(t))

φ2(x(t))
x′(t).

ω and λ are positive constants which will be specified later in the proof. The above Lyapounov
functional V can be rewritten as the following

V = µc(t)

[
H(x) +

1

µ
h(x)y +

δ1
2µ2

y2
]

+ µa(t)

∫ y
φ(x)

0

[ψ(u)− µ

a(t)
]udu

+
1

2
(z +

µ

φ(x)
y)2 + b(t)φ(x)F (

y

φ(x)
)− δ1c(t)

2µ
y2

+λ

∫ 0

−r(t)

∫ t

t+s

y2(ξ)dξds.

Letting

G(x, y) = H(x) +
1

µ
yh(x) +

δ1
2µ2

y2,

assumption (iii) implies that

G(x, y) = H(x) +
δ1

2µ2
(y +

µ

δ1
h(x))2 − 1

2δ1
h2(x)

≥
∫ x

0

(
1− h′(u)

δ1

)
h(u)du ≥ 0. (6)

It is clear from (iv) that

F

(
y

φ(x)

)
=

∫ y
φ(x)

0

f(u)du ≥ δ0
2

y2

φ2(x)
.

Hence, using the above estimate, the assumption (ii), (3.4), and the fact that the integral∫ 0

−r(t)

∫ t
t+s

y2(ξ)dξds is positive, we deduce that

V ≥ µc(t)G(x, y) +
1

2
(z +

µ

φ(x)
y)2

+
1

2

[
µa

φ2(x)

(
1− µ

a

)
+

(
δ0b

φ1

− Cδ1
µ

)]
y2.
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Condition (H1) implies that 1− µ
a
> 0 and

δ0b

φ1

− Cδ1
µ

> 0. Thus there exist a positive constant

k small enough such that
V ≥ µcG(x, y) + k(y2 + z2). (7)

From (ii), (v), and (vi), we get

β(t) =

∫ t

0

[
|α(s)|
ω

+
|c′(s)|
c

]
ds,

≤ 1

ω

∫ θ2(t)

θ1(t)

|φ′(u)|
φ2(u)

du+
N1

c

≤ 1

ωφ2
0

∫ +∞

−∞
|φ′(u)| du+

N1

c
≤ N2

ωφ2
0

+
N1

c
= N <∞,

where θ1(t) = min{x(0), x(t)} and θ2(t) = max{x(0), x(t)}. Therefore we can find a continuous
function W1(‖X‖), where X = (x, y, z), such that

W1(‖X‖) ≥ 0 and W1(‖X‖) ≤ W.

The existence of a continuous function W2(‖X‖) which satisfies the inequality W ≤ W2(‖X‖)
is easily verified.

Let V ′(3)(t, xt, yt, zt) = V ′(3) denote the time derivative of the Lyapunov functional V (t, xt, yt, zt)

along the trajectories of the system (3). An easy computation shows that

V ′(3) = µc′(t)H(x) + c′(t)yh(x) + b′(t)φ(x)F (
y

φ(x)
)

+
µ

φ(x)
z2 − a(t)

φ(x)
Ψ(

y

φ(x)
)z2 − µb(t) y

φ(x)
f(

y

φ(x)
)

+µa′(t)

∫ y
φ(x)

0

Ψ(u)udu+
c(t)h′(x)

φ(x)
y2 + λr(t)y2

+α(t)

[
b(t)φ2(x)F (

y

φ(x)
)− b(t)yφ(x)f(

y

φ(x)
) + (a(t)Ψ(

y

φ(x)
)− µ)zy

]
+c(t)(

µ

φ(x)
y + z)

∫ t

t−r(t)
y(s)

h′(x(s))

φ(x(s))
ds− λ(1− r′(t))

∫ t

t−r(t)
y2(ξ)dξ.

When we apply the hypotheses of the theorem we obtain

V ′(3.1) ≤ µc′(t)G(x, y) +

[
c(t)h′(x)

φ(x)
y2 − µb(t) y

φ(x)
f(

y

φ(x)
) + λρy2

]
+

[
µa′(t)

∫ y
φ(x)

0

Ψ(u)udu+ b′(t)φ(x)F (
y

φ(x)
)− δ1

2µ
c′(t)y2

]

+

[
µ− a(t)

φ(x)

]
z2 + |α(t)|

[
3

2
δ2By

2 + (Aψ1 − µ)|zy|
]

+c(t)(
µ

φ(x)
y + z)

∫ t

t−r(t)
y(s)

h′(x(s))

φ(x(s))
ds− λ(1− σ)

∫ t

t−r(t)
y2(ξ)dξ.
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Using the Schwartz inequality |uv| ≤ 1
2
(u2 + v2), we have

|α(t)|
[

3δ2
2
By2 + (Aψ1 − µ)|zy|

]
≤ 1

2
|α(t)|

[
3δ2By

2 + (Aψ1 − µ)(y2 + z2)
]

≤ k1 |α(t)| (y2 + z2),

where k1 =
1

2
(Aψ1 − µ+ 3δ2B). Since |h′(x)| ≤ δ1, we get the following inequalities

µc(t)

φ(x)
y

∫ t

t−r(t)

y(s)

φ(x)
h′(x(s))ds ≤ Cδ1µρ

2φ0

y2 +
Cµδ1
2φ3

0

∫ t

t−r(t)
y2(ξ)dξ,

and

c(t)z

∫ t

t−r(t)

y(s)

φ(x)
h′(x(s))ds ≤ Cδ1ρ

2
z2 +

Cδ1
2φ2

0

∫ t

t−r(t)
y2(ξ)dξ.

It can be easily deduced from the above estimates that

V ′(3) ≤ µc′(t)G(x, y) +
1

2

[
µψ1

φ2
0

|a′(t)|+ δ2
φ0

|b′(t)| − δ1
µ
c′(t)

]
y2

−
[

∆

φ2
1

− (λ+
µCδ1
2φ0

)ρ

]
y2 −

[
a− µ
φ1

− Cδ1ρ

2

]
z2

+

[
Cδ1
2φ2

0

(1 +
µ

φ0

)− λ(1− σ)

] ∫ t

t−r(t)
y2(ξ)dξ + k1 |α(t)| (y2 + z2).

If we take
Cδ1(φ0 + µ)

2φ3
0(1− σ)

= λ, by using (H2) the last inequality becomes

V ′(3) ≤ µc′(t)G(x, y)−
[
µbδ0 − Cδ1φ1

2φ2
1

− Cδ1
2φ0

(
φ0 + µ

φ2
0(1− σ)

+ µ)ρ

]
y2

−
[
a− µ
φ1

− Cδ1ρ

2

]
z2 + k1 |α(t)| (y2 + z2). (8)

Taking ω =
k

k1
and using the inequalities (3.6), (3.5), and (3.2) we obtain

W ′
(3) = e−β(t)

[
V ′(3) − (

k1|α(t)|
k

+
|c′(t)|
c0

)V

]
≤ e−β(t)

[
µc′(t)G(x, y)−

(
a− µ
φ1

− Cδ1ρ

2

)
z2

−
(

∆

2φ2
1

− Cδ1
2φ0

(
φ0 + µ

φ2
0(1− σ)

+ µ

)
ρ

)
y2 + k1 |α(t)| (y2 + z2)

−
(
k1|α(t)|

k
+
|c′(t)|
c

)(
µcG(x, y) + k(y2 + z2)

) ]
.
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Since c′(t)− |c′(t)| ≤ 0 we have

W ′
(3) ≤ e−β(t)

[
−
(
a− µ
φ1

− Cδ1ρ

2

)
z2

−
(

∆

2φ2
1

− Cδ1
2φ0

(
φ0 + µ

φ2
0(1− σ)

+ µ

)
ρ

)
y2
]
.

Therefore if we choose

ρ < min

{
2(a− µ)

φ1Cδ1
,

φ3
0∆(1− σ)

Cδ1φ2
1(µ+ φ0 + µφ2

0(1− σ))

}
,

then
W ′

(3)(t, xt, yt, zt) ≤ −γ(y2 + z2), for some γ > 0,

From (3), W3(‖X‖) = γ(y2+z2) is positive definite function. Hence, Lemma 2.4 guarantees that
the trivial solution of Equation (1) is uniformly asymptotically stable and completes the proof of
the theorem. �

We will now state our main results for the case e 6= 0.

Theorem 3.2.

If all the assumptions of Theorem 3.1 are satisfied then all solutions of equation (1) are bounded
provided

|e(t, x, x(t− r(t)), y, y(t− r(t)), z)| ≤ |q(t)|, and∫ t

0

|q(s)|ds <∞, for all t ≥ 0.

Proof:

The proof of this theorem is similar to that of the proof of the theorem in Tunç (2009) and hence
it is omitted. �

4. Example

We consider the following fourth order non-autonomous differential equation((
sin2(x)

1 + x2
+ 3

)
x′
)′′

+

(
1

4
e−t + 3

)(
cos2(y)

1 + y2
+ 8

)
x′′

+

(
1

3
cos t+

193

3

)(
x′ +

2x′

(1 + x′2)

)
+

(
1

4
sin t+

15

4

)(
x(t− r(t)) +

x(t− r(t))
1 + x2(t− r(t))

)
=

1

1 + t2 + x2 + x2(t− r(t)) + y2 + y2(t− r(t)) + z2
. (9)
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Take

φ(x) =
sin2(x)

1 + x2
+ 3 , f(y) = y +

2y

(1 + y2)
, ψ(y) =

cos2(y)

1 + y2
+ 8 , h(x) =

x

x2 + 1
+ x ,

a(t) =
1

4
e−t + 3 , b(t) =

1

3
cos t+

193

3
, c(t) =

1

4
sin t+

15

4

and

e(t, x, x(t− r(t)), y, y(t− r(t)), z) =
1

1 + t2 + x2 + x2(t− r(t)) + y2 + y2(t− r(t)) + z2
.

It can be seen that

3 = a ≤ a(t) =
1

4
e−t + 3 ≤ 13

4
, |a′(t)| = | − 1

4
e−t| ≤ 1

4
, t ≥ 0,

64 = b ≤ b(t) =
1

3
cos t+

193

3
≤ 194

3
, 0 ≤ |b′(t| = |1

3
sin t| ≤ 1

3
, t ≥ 0,

7

2
= c ≤ c(t) =

1

4
sin t+

15

4
≤ 4 = C, −1

4
≤ c′(t) =

1

4
cos t ≤ 1

4
, t ≥ 0,

1 = δ ≤ h(x)

x
= 1 +

1

1 + x2
with x 6= 0, |h′(x)| ≤ δ1 = 2 and µ = 1,

1 = δ0 ≤
f(y)

y
= 1 +

2

(1 + y2)
≤ δ2 = 3

1 < 8 = ψ0 ≤ ψ(y) =
cos2(y)

1 + y2
+ 8 ≤ ψ1 = 9,

3 = φ0 ≤ φ(x) =
sin2(x)

1 + x2
+ 3 ≤ φ1 = 4.

Easy computations show that conditions (H1) and (H2) are satisfied.

Indeed,
φ1δ1C

bδ0
=

1

2
< µ < a = 3. We have also

µψ1

φ2
0

|a′(t)|+ δ2
φ0

|b′(t)| − δ1
µ
c′(t) ≤ µ

4
+

1

3
+

1

2µ
=

13

12
<
µbδ0 − φ1Cδ1

φ2
1

= 2.

It is straightforward to verify that

∫ +∞

−∞
|φ′(u)| du ≤

∫ +∞

−∞

[∣∣∣∣2 cosu sinu

1 + u2

∣∣∣∣+

∣∣∣∣ 2u sin2 u

(1 + u2)2

∣∣∣∣] du
≤ 2π + 2.
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We have

e(t, x, x(t− r(t)), y, y(t− r(t)), z) =
1

1 + t2 + x2 + x2(t− r(t)) + y2 + y2(t− r(t)) + z2

≤ 1

1 + t2
,

and ∫ +∞

0

1

1 + t2
dt <∞.

All assumptions of Theorems 3.1 and 3.2 hold true, thus their conclusions also follow.

5. Conclusion

The problem of the stability and boundedness of solutions of differential equations is very
important in the theory and applications of differential equations. In the present work, conditions
were obtained for the stability and boundedness for certain third order non-linear non-autonomous
differential equations with the variable delay. Using Lyapunov second or direct method, a Lya-
punov functional was defined and used to obtain our results.
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Tunç, C.(2007). Stability and boundedness of solutions of nonlinear differential equations of
third order with delay, Journal Differential Equations and Control Processes, No. 3, pp. 1-13.
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