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Abstract   
 

The thermoelastic interaction for the dual-phase-lag (DP) heat conduction in a thermoelastic half 

space is studied in the light of two-temperature generalized thermoelasticity theory (2TT). The 

medium is assumed to be initially quiescent. Using Laplace transform, the fundamental equations 

are expressed in the form of a vector-matrix differential equation which is then solved by state-

space approach. The obtained general solution is then applied to the mechanical loading and 

various types of thermal loading (the thermal shock and the ramp-type heating). The numerical 

inversion of the Laplace transforms are carried out by the method of Fourier series expansion 

technique. The numerical results are computed for copper like material. Significant 

dissimilarities between two models (the two-temperature Lord-Shulman (2TLS) and the two-

temperature Dual-phase-lag model (2TDP)) are shown graphically. Because of the short duration 

of the second sound effect, the small-time solutions are analyzed and the discontinuities that 

occur at the wave fronts are also discussed. The effects of two-temperature and ramping 

parameters are studied. 
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Nomenclature 
 

,    Lame’s constant, 

   density, 

c   specific heat at constant strain, 

t   time, 

   conductive temperature, 

   thermodynamic temperature, 

t   coefficient of linear thermal expansion, 

   (3 2 )t   , 

ij   components of stress tensor, 

ije   components of strain tensor, 

iu   components of displacement vector, 

k   thermal conductivity, 

q   phase lag of heat flux vector, 

T   phase-lag of temperature gradient, 

0   relaxation time, 

0c   
2 




 ( longitudinal wave speed ), 

   
c

k


 ( thermal viscosity ), 

a   the two temperature parameter, 

   2 2

0ac   ( dimensionless two temperature parameter ), 

   0

2



 
 ( dimensionless mechanical coupling constant ), 

   
kk  ( dilatation ), 

Q   heat source, 

q   heat flux vector, 

E   
(3 2 )  

 




 ( Young’s modulus ), 

   
2( )



 
 (Poisson’s ratio ), 

   
c




 (thermoelastic coupling constant). 

 

 

1. Introduction  
 

The classical theory of thermoelasticity (CTE) involving infinite speed of propagation of thermal 

signals, contradicts physical facts. The theory of heat conduction derived from classical Fourier’s 

law presumes heat to propagate with infinite speed. During the last five decades, non-classical 

theories involving finite speed of heat transportation in elastic solids have been developed to 
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remove this paradox. In contrast with the conventional coupled thermo-elasticity theory, which 

involves a parabolic-type heat transport equation, these generalized theories involving a 

hyperbolic-type heat transport equation are supported by experiments exhibiting the actual 

occurrence of wave-type heat transport in solids, called second sound effect.The first 

generalization of thermal relaxation time (single-phase-lag model) is known as extended 

thermoelasticity (ETE). In order to overcome the paradox of an infinite speed of thermal wave 

inherent in CTE and CCTE (classical coupled theory of thermoelasticity), efforts were made to 

modify coupled thermoelasticity, on different grounds to obtain a wave-type heat conduction 

equation by different researchers. Lord and Shulman (1967) have formulated the generalized 

thermoelasticity theory introducing one relaxation time in Fourier’s law of heat conduction 

equation and thus transforming the heat conduction equation into a hyperbolic type. Uniqueness 

of the solution for this theory has been proved under different conditions by Dhaliwal and 

Sherief (1981) and Sherief (1987). The second generalization of the coupled thermoelasticity 

theory is due to Green and Lindsay (1972), which is known as temperature rate dependent 

thermoelasticity (TRDTE). The problem concerning this theory has been solved recently by 

Ghosh and Kanoria (2009), Kanoria and Ghosh (2010). Experimental study showed that the 

relaxation times can be of relevance in cases involving a rapidly propagating crack tip, a 

localized moving heat source with intensity, shock waves propagation, laser technique etc. 

Because of the experimental evidence in support of finiteness of heat propagation speed, the 

generalized thermoelasticity theories are considered to be more realistic than the conventional 

theories in dealing with practical problems involving large heat fluxes at short intervals like 

those occurring in laser units and energy channels. The third generalization is known as low-

temperature thermoelasticity introduced by Hetnarski and Ignaczak (1993, 1994) called H-I 

theory. Most engineering materials such as metals possess a relatively high rate of thermal 

damping and thus are not suitable for use in experiments concerning second sound propagation. 

The fourth generalization is concerned with the thermoelasticity without energy dissipation 

(TEWED) introduced by Green and Naghdi (1991, 1992, 1993) and provides sufficient basic 

modifications in the constitutive equations that permit treatment of a much wider class of heat 

flow problems, labeled as types I, II, III. The natures of these three types of constitutive 

equations are such that when the respective theories are linearized, type-I is the same as the 

classical heat equation (based on Fourier’s law) whereas the linearized versions of type-II and 

type-III theories permit propagation of thermal waves at finite speed. The entropy flux vector in 

type-II and type-III (i.e., thermoelasticity with energy dissipation (TEWED)) models are 

determined in terms of the potential that also determines stresses. When Fourier conductivity is 

dominant, then the temperature equation reduces to classical Fourier’s law of heat conduction 

and when the effect of conductivity is negligible, then the equation has undamped thermal wave 

solutions without energy dissipation. Applying the above theories of generalized 

thermoelasticity, several problems have been solved by Chandrasekharaiah (1996a, 1996b), 

Bagri and Islami (2004), Roychoudhury and Dutta (2005), Mallik and Kanoria (2007), Kar and 

Kanoria (2009), Mallik and Kanoria (2009), Islam and Kanoria (2011) and Banik et al. (2009). 

 

The fifth generalization of the thermoelasticity theory is known as dual-phase-lag 

thermoelasticity developed by Tzou (1995) and Chandrasekhraiah (1998). Tzou has considered 

microstructural effects into the delayed response in time in the macroscopic formulation by 

taking into account that increase of the lattice temperature is delayed due to phonon-electron 

interactions on the macroscopic level. Tzou introduced two-phase-lags to both the heat flux 
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vector and the temperature gradient. According to this model, classical Fourier’s law =q k T   

has been replaced by ( , ) = ( , )q Tq P t k T P t     , where the temperature gradient T  at a point P  

of the material at time 
Tt   corresponds to the heat flux vector q  at the same point at time 

qt  . 

Here k  is the thermal conductivity of the material. The delay time 
T  is interpreted as that 

caused by the microstructural interactions and is called the phase-lag of the temperature gradient. 

The other delay time 
q  is interpreted as the relaxation time due to the fast transient effects of 

thermal inertia and is called the phase-lag of the heat flux. The case when = = 0q T   , correspond 

to classical Fourier’s law. If =q   and = 0T , Tzou refers to the model as single-phase-lag 

model. Roychoudhury (2007) has studied one dimensional thermo-elastic wave propagation in an 

elastic half-space in the context of dual-phase-lag model. Recently, several researchers have 

attempted to solve their problems on the basis of the theory of Dual-phase-lag (DP) model. 

Quintanilla (2005, 2006, 2009) has solved several problems on the basis of this model. The 

exponential stability and condition of the delay parameters in the dual-phase-lag theory under 

this model have been studied by Quintanilla (2002, 2003). Wang and Mingtian (2002) have 

studied the well-posedness and solution structure of the dual-phase-lag heat conduction equation. 

Kumar, Prasad and Mukhopadhyay (2010) have studied the propagation of finite thermal wave in 

the context of dual-phase-lag model. 

 

Theory of heat conduction in a deformable body, which depends on two different temperatures, 

the conductive temperature   and the thermodynamic temperature  , has been formulated by 

Chen and Gurtin (1968) and Chen et al (1968). The key element that sets the two temperature 

thermoelasticity (2TT) apart from the classical theory of thermoelasticity (CTE) is the material 

parameter ( 0)a  , called the temperature discrepancy (Chen and Gurtin; 1969). Specifically, if 

= 0a , then =   and the field equations of the 2TT reduce to those of one-temperature theory. 

 

The linearized version of two-temperature theory (2TT) has been studied by many authors. 

Warren and Chen (1973) have investigated the wave propagation in the two-temperature theory 

of thermoelasticity. Leasn (1970) has established the uniqueness and also the reciprocity 

theorems for the 2TT. The existence, structural stability and and the spatial behavior of the 

solution in 2TT has been discussed by Quintanilla (2004). Puri and Jordan (2006) have studied 

the propagation of plane harmonic waves under the 2TT.  

 

Youssef (2006) has developed the theory of two-temperature generalized thermoelasticity based 

on the Lord-Shulman (LS) model. Youssef and Al-Harby (2007) have solved a problem of an 

infinite body with a spherical cavity employing the two-temperature LS model by applying a 

state space approach. An half-space problem filled with an elastic material has been solved in the 

context of the two-temperature generalized thermoelasticity theory using the state space 

approach by Youssef and Al-Lehaibi (2007). Mukhopadhyay and Kumar (2009) have studied the 

thermoelastic interaction on two-temperature generalized thermoelasticity in an infinite medium 

with a cylindrical cavity. Variational and reciprocal principles have been studied by Kumar et al. 

(2010) and the effect of the thermal relaxation time on plane wave propagation under the two-

temperature generalized thermoelasticity has been studied by Kumar and Mukhopadhyay (2010). 

Uniqueness and growth of solutions in two-temperature generalized thermoelastic theories have 

been studied by Magane  and Quintanilla (2009). Banik and Kanoria (2011, 2012) have studied 



98                                                                                                                                                 Abhik Sur & M. Kanoria
 

                                                                  

the thermoelastic interactions in an infinite body with spherical cavity under 2TT. Also they have 

studied the effect of three-phase-lag model under this new theory (Banik, 2012). The 

thermoelastic interactions in an infinite body under 2TT in the context of fractional heat equation 

have been studied by Sur and Kanoria (2012, 2014). 

 

A method for solving coupled thermoelastic problems by using the state space approach was 

developed by Bahar and Hetnerski (1978). The state space formulation for problems not 

containing heat sources has been made by Sherief and Anwar (1994). Sherief and Hamza (1994) 

have solved some two-dimensional problems and studied the wave propagation in this theory. El-

Maghraby and Youssef (2004) have used the state space approach to solve a thermomechanical 

shock problem. 

 

In this work we have investigated the thermoelastic stress, strain, displacement, conductive 

temperature and the thermodynamic temperature in an infinite isotropic elastic half space under 

thermal shock using the two-temperature generalized thermoelasticity theory in the context of 

two-temperature Lord-Shulman (2TLS) and two-temperature Dual-phase-lag (2TDP) models. 

The governing equations of two-temperature generalized thermoelasticity theory are transformed 

in the Laplace transform domain which are then solved using the state-space approach. The 

inversion of the transform solution is carried out numerically by applying a method based on a 

Fourier-series expansion technique (Honig and Hirdes; 1984). A complete and comprehensive 

analysis of the results has been presented for 2TLS and 2TDP models. These results have also 

been compared with those of the 2TLS model (Youssef, 2007). The effects of two-temperature 

and the comparisons between different models (Lord-Shulman (LS) model and Dual-Phase-lag 

(DP) model) have been studied.  

 

2. Formulation of the Problem  
 

We consider a homogeneous isotropic elastic half space 0x   with stress free boundary which is 

subjected to a thermal shock. We assume that the body be initially at rest and the undisturbed 

state is maintained at an uniform reference temperature 
0 . We shall consider one dimensional 

disturbance of the medium. Then all the thermophysical quantities can be taken as functions of x  

and t  only. It follows, therefore, that the displacement components take the following form 

 

= ( , ), = = 0.x y zu u x t u u                                                                                                             (1) 

 

The strain component is given by  

 

.xx

u
e e

x


 


                                                                                                                             (2) 

 

Stress-strain-temperature relation in the present problem is  

 
= = ( 2 ) ,xx e                                                                                                                   

(3) 

 

where   and   are Lame’s constants, = (3 2 ) t    ; 
t  being the coefficient of linear thermal 



AAM: Intern. J., Vol. 9, Issue 1 (June 2014)                                                                                                                99                                                                                                              

          

   

expansion. 

 

The equation of motion in absence of the body forces is  

 

= ,u
x







                                                                                                                                 (4) 

 

which can be written as  

 
2

2
= .e

x







                                                                                                                                (5) 

 

The displacement equation of motion in absence of body forces is  

 
2

2
( 2 ) = .

e u

x x t


   

  
 

  
                                                                                                        (6) 

 

The relation between the conductive temperature and the thermodynamic temperature is given by  

 
2= ,a                                                                                                                                (7) 

 

where a  ( > 0 ) is the two-temperature parameter. 

 

In the context of two-temperature generalized thermoelasticity based on the Dual-Phase-Lag 

model, the heat conduction equation is given by (Quintanilla and Jordan, 2009)  

 
2 2

2

02 2

1
1 = 1 ( ),

2
T q qk c e

t tx t



     

     
     

     
                                                                   (8) 

 

where   is the density, k  is the coefficient of thermal conductivity, 
0  is the reference 

thermodynamic temperature, c  is the specific heat at constant strain, 
q  is the phase lag of heat 

flux vector, 
T  is the phase lag of temperature gradient. 

 

Note that for = 0T  and neglecting the term 2 = 0q , we have two-temperature Lord-Shulman 

(2TLS) model. 

 

We use the following non-dimensional variables 

 

   2 2

0 0 0 0 0

0 0

= , = , ', ', ' = , , , = , = , = ,
2

T q T qx c x t c t c
  

           
   

    


 

 

where  

 

2

0

2
= and = .

c
c

k

 




 
 
 
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Hence, we have 

 

 
22 2

2 2
1 = 1 ,

2

q

T q e
t tx t


   

       
     

      

                                                                               (9) 

 

        = ,e                                                                                                                              (10) 

 

        
2

2
= ,e

x




                                                                                                                                (11) 

 

        2= ,                                                                                                                              (12) 

 

where  

 

2 2 0

0= , = , = .
2

ac
c


   

  
 

 

The initial and the regularity conditions are given by  

 
= = = 0 at = 0 for 0,u t x    

 

= = = 0 at = 0,
u

t
t t t

   

  
 

 
2 2 2

2 2 2
= = = 0 at = 0,

u
t

t t t

   

  
 

 
= = = 0 as .u x    

 

The problem is to solve the equations (9)- (12) subject to the following boundary conditions 

 

(i) Thermal boundary condition 

The boundary plane = 0x  is subjected to a thermal loading as follows  

 

(0, ) = ( ).t F t                                                                                                                           (13) 

 

(ii) Mechanical boundary condition 

The boundary plane = 0x  is free of traction, i.e., we have  

 

0(0, ) = = 0.t                                                                                                                         (14) 

 

3. Method of Approach  
 

Applying the Laplace transform defined by the relation  
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0
( ) = ( ) , Re( ) > 0,stf s e f t dt s




                                                                                                  (15) 

 

to equations (9)–(12), we obtain 

 
2

32
= ( ),

d
a e

dx


                                                                                                                      (16) 

 

= ,e                                                                                                                              (17) 

 
2

2

2
= ,

d
s e

dx


                                                                                                                             (18) 

 
2

2
= ,

d

dx


                                                                                                                          (19) 

 

where  

 
2

2

3

1
2

= .
(1 )

q

q

T

s s s

a
s






 
  

 
 


 

 

Eliminating e  and   from (16)-(19), we obtain  

 
2

1 22
= ,

d
L L

dx


                                                                                                                       (20) 

 

and  

 
2

1 22
= ,

d
M M

dx


                                                                                                                    (21) 

 

where 

 

3 3

1 2

3 3 3 3

(1 )
= , = ,

1 1

a a
L L

a a a a

 

   



   
 

 

 
2 2

1 1 2 2= (1 ) and = (1 ).M s L M s L     

 

Equations (20) and (21) can be written in a vector-matrix differential equation as follows  

 
2

2

( , )
= ( ) ( , ),

d V x s
A s V x s

dx
                                                                                                            (22) 
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where  

( , )
( , ) = ,

( , )

x s
V x s

x s





 
 
 

                                                                                                                  (23) 

  

and    

 

1 2

1 2

( ) = .
L L

A s
M M

 
 
 

                                                                                                                   (24) 

 

 

3.1.   State–space approach  
 

As a solution of (22), we may take  

 

( , ) = exp[ ( ) ] (0, ),V x s A s x V s                                                                                                    (25) 

 

where  

 

0

0

(0, )
(0, ) = = .

(0, )

s
V s

s





  
    

   
 

 

The characteristic equation of the matrix ( )A s takes the form (Youssef; 2007) 

 
2

1 2 1 2 2 1( ) ( ) = 0,k k L M L M L M                                                                                              (26) 

 

where, the roots 
1k  and 

2k  satisfy 

  

1 2 1 2= ,k k L M                                                                                                                       (27) 

 

1 2 1 2 2 1= .k k L M L M                                                                                                                  (28) 

 

Now, the spectral decomposition of ( )A s  is  

 

1 1 2 2( ) = ,A s k E k E  

 

where 
1E  and 

2E  are called the projections of ( )A s  and satisfy the following conditions  

 

1 2 = , being the identity matrix,E E I I  

 

1 2 = zero matrix,E E  

 
2 = for =1,2.i iE E i  
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The Taylor series expansion of the matrix exponential in equation (25) is given by 

 

=0

[ ( ) ]
exp[ ( ) ] = .

!

n

n

A s x
A s x

n

 
                                                                                                   (29) 

 

Then, we have  

 

1 1 2 2( ) = ,A s k E k E  

 

where  

 

1 2 2

1

1 2 21 2

1
=

L k L
E

M M kk k

 
 

  
                                                                                                  (30) 

 

and  

 

1 1 2

2

1 1 21 2

1
= .

k L L
E

M k Mk k

  
 
   

                                                                                                 (31) 

 

Therefore, we get  

 

1 1 2 2

1 2 1 2 1 2

1
( ) = ( ) =

L k k L
B s A s

k k M M k k

 
 
   

.                                                                   (32) 

 

Using Cayley-Hamilton theorem, we can express 2B  and higher powers of the matrix B  in terms 

of I  and B , where I  is the identity matrix of order two. 

 

Thus the infinite series in equation (29) can be reduced to the following form  

 

0 1exp[ ( ) ] = ( , ) ( , ) ( ),B s x a x s I a x s B s                                                                                           (33) 

 

where, 
0a  and 

1a  are coefficients depending on x  and s .  

 

To find the matrix exp[ ( ) ]B s x , we now apply Cayley-Hamilton theorem. The characteristic 

equation of the matrix ( )B s  can be written as follows  

 

 2

1 2 1 2 = 0,m m k k k k    

 

where the roots of the equation, taken as 
1m , 

2m , are as follows  

 

1 1 2 2= = .m k and m k  

 

The characteristic roots 
1k  and 

2k  of the matrix ( )A s  must satisfy equation (33). Thus, we have  
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1 0 1 1exp( ) = ,m x a a m                                                                                                                (34) 

 

and  

 

2 0 1 2exp( ) = .m x a a m                                                                                                                 

(35) 

 

On solving these two equations, we obtain  

 
2 1

1 2

0

1 2

= ,

m x m x
m e m e

a
m m

 



                                                                                                             (36) 

 
1 2

1

1 2

= .

m x m x
e e

a
m m

 



                                                                                                                    (37) 

 

Hence, from equation (33) we have 

  

exp[ ( ) ] = ( , ), , =1,2,ijB s x L x s i j                                                                                               (38) 

 

where,  

 
2 22 1
1 1 2 1

11 2 2

1 2

( ) ( )
= ,

m x m x
e m L e m L

L
m m

 
  


                                                                                           (39) 

 
1 2

2

12 2 2

1 2

( )
= ,

m x m x
L e e

L
m m

 



                                                                                                             (40) 

 
1 2

1

21 2 2

1 2

( )
= ,

m x m x
M e e

L
m m

 



                                                                                                            (41) 

 
2 21 2
2 2 1 2

22 2 2

2 1

( ) ( )
= .

m x m x
e m M e m M

L
m m

 
  


                                                                                       (42) 

 

Now, we can write equation (25) as  

 

( , ) = ( , ) (0, ).ijV x s L x s V s                                                                                                             (43) 

 

The solutions   and   can be obtained from equation (43) using boundary conditions (20) and 

(21) as follows  

 
2 22 1
1 1 2 1

2 2

1 2

( ) ( ) ( )
= ,

( )

m x m x
F s m L e m L e

m m


    
 


                                                                                   (44) 
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1 2
1

2 2

1 2

( )
= .

( )

m x m x
F s M e e

m m


  
 


                                                                                                       (45) 

 

By using equations (44) in equation (19) , we get 

 

       2 2 2 22 1
1 1 2 2 1 1

2 2

1 2

( ) 1 1
= ,

( )

m x m x
F s m L m e m L m e

m m

 


      
 


                                                     (46) 

 

and, from equation (17), using (45) and (46) we obtain  

 

   2 2 2 22 1
1 1 2 1 2 1 1 1

2 2

1 2

( ) ( )(1 ) ( )(1 )
= .

( )

m x m x
F s e m L m M e m L m M

e
m m

   
        

 


                                (47) 

 

Further, from equation (18), we obtain the displacement in the following form 

 

2

1
= .u

xs




                                                                                                                             (48) 

 

Substituting from equation (45) into equation (48), we obtain 

  

 1 2
1 1 2

2 2

1 2

( )
= .

( )

m x m x
M F s m e m e

u
m m

 
 


                                                                                               (49) 

 

Equations (44)-(47) and (49) together constitute the complete solution of the problem in the 

Laplace transform domain. 

 

3.2. Thermal shock problem 

  

We consider the thermal loading on the bounding plane = 0x  in the thermal shock form as 

follows:  

 

0 , > 0,
( ) =

0, < 0.

t
F t

t





                                                                                                             (50) 

 

Thus, taking the Laplace transform, we have  

 

0

0 = ( ) = .F s
s


                                                                                                                          

(51) 

 

3.3.  Ramp-Type Heating 

  

We consider the thermal loading of the bounding plane = 0x  in the ramp-type form as follows: 
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0
0

0

0 0

0, 0,

, 0 < ,( ) =

, > ,

t

F
t t tF t

t

F t t














                                                                                                    (52) 

 

where 
0F  is a constant, and 

0t  is the ramp-type parameter. After making dimensionless and using 

the Laplace transform, we have  

 

 0

0

0 2

0

1
= ( ) =

st
F e

F s
t s






.                                                                                                          (53) 

 

 

3.4.   Mechanical Boundary Condition 

  

Since the boundary plane = 0x  is free of traction, we have  

  

(0, ) = 0.s                                                                                                                               (54) 

 

Thus, we get the complete solution to the ramp-type problem in the Laplace transform domain 

using (53)-(54) into (44)-(47) and (49). 

 

 

3.5.   Derivation of Small-Time Solutions  
 

From equations (6)-(8), we have the following equation in Laplace transform domain satisfied by 

e  and   as 

  

 4 2 2 2 2( ) ( ) , = 0,N M M D s N M M s M D s M e                                                      (55) 

 

where  

 

2 21
= 1 , = 1 ,

2
q q TM s s N s  

 
   

 
 

 

where 
1,2m  are the roots with positive real part of the equation  

 

   4 2 2 2 2 = 0.N M M m s N M M s M m s M                                                             (56) 

 

The roots of the biquadratic equation are given by 
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 


2
2 2 2

1,2

1
= ( ) (1 ) ( ) (1 )

2
m s N M M s N M M

N M M
   

  

           
 

                            
1

2 24 ( ) .Ms N M M  


   


                  (57) 

Clearly the roots of the given equation (57) are real if s  is real. Taking positive sign in (57), we 

have for large s ,  

 
2

3 32

1 2

1 1 1 1 1 1

1 1 1 1 1
,

2 2 4

s
m

v v v s

 

  

 
    

 
                                                                                        (58) 

 

Taking the negative sign in (57), we have for large s   

 
2

3 32

2 2

2 1 2 2 1 1

1 1 1 1 1
,

2 2 4

s
m

v v v s

 

  

 
    

 
                                                                                       

(59) 

 

where 

  

2 21

1 2 1 1 2

1 1

2 1 1
= 4 , = 4 , = , = ,

2
q q

q

L
A A F B A F v v

 
    

  

 
      

 

 2 2 21

3 2 1 1 2 2

21 2 2
= 4 4 4 ,

8 2 (1 )

T

q q q

L
C A F L L B A F


 

   

    
         

    

 

 

2 2

1 22 2

2 2 2 8 1 1
= , = , = , = , = (1 ) ,

2 24 4

q

q q q

AB AE AC AE
L L A B C

A F A F


    

 
 

 
 

 

41
= 1 (1 ), = 1 , = ( 1),

4
T q qD E F            

 

2 21

1 2 1

2
= 4 , = 4 ,

2 q

L
A A F B A F  


      

 

 2 2 21

3 2 1 1 2 2

21 2 2
= 4 4 4 .

8 2 (1 )

T

q q q

L
C A F L L B A F


 

   

    
         

    

 

 

Clearly, 
1 , 

1 > 0  since 2> 4A A F  and > 0F . Further 
1 1>   implies 

2 1> .v v  Now, we have to 

prove that, under suitable restrictions on material constants, 
2  and 

2  are positive. 

 

Now,  

 

 2 21

2

2
> 0 4 > 4 ,

2 q

L
if B A F A A F


     
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that is, if  

 

122 2
> 4 1 .

4

q

q q

LA
B A F



 

 
   

 
 

 

Similarly,  

 

12

2

2 2
> 0 > 4 1 .

4

q

q q

LA
if B A F




 

 
   

 
 

 

We impose the restriction on material parameters such that 1
1 > .

4

qL
 This leads to the inequality  

 

2 1
4 > ( ).

2
q qA F A B E    

 

Since 
2  and 

2 > 0 , we have  

 

2 2

1 2

1 1 1 2 1 2

1 1 1 1
and .

2 2

s s
m m

v v v v

 

 
     

 

For the thermal shock problem, we have the solutions of the stress and strain component in 

Laplace transform domain as follows  

 
2 1

1 1

0 2 2 2 2

2 1 2 1

( , ) = ,
( ) ( )

m x m x
e M e M

x s
s m m s m m

 

   
 

   

  (60) 

 

 

   1 2
2 1 1 1 1 1 2 1

0 2 2 2 2

2 1 2 1

( )(1 ) ( )(1 )
( , ) = ,

( ) ( )

m x m x
e m L m M e m L m M

e x s
s m m s m m

   


       
 

   

 (61) 

 

For large s , we obtain the following results after simplification  

 
2

1 1 2 ,M s s    

 

2 01 2 1

2 2 2 2

0 02 1 0

1 1
,

( )

MM

L s Ls m m s L

  
   

  
 

 
2 2

2 1 1 1

2 2 2

1 22 1 0 2

( )(1 )
,

( )

m L m M

v v ss m m L v s

     
 


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2 2

1 1 2 1

2 2 2

1 22 1 0 1

( )(1 )
,

( )

m L m M

v v ss m m L v s

     
 


 

 

where  

 
2 2

2 2 2 2

0 0 02 2 2 2 2 2 2 2

2 1 1 2 1 1 1 2 1 1

1 1 1
= , = , = ,

4
L M N

v v v v v v

   

   

 
   

 
 

 

1 2= , = .
(1 ) (1 )

T

T q T q


 

        
 

 

Finally, we obtain the solutions in Laplace transform domain as follows  

 

2 2

2 22 0 2 02 1 2 12 1 2 1 1 1
0 2 2 2 2

0 0 0 00 0

1 1 1 1
( , ) = ,

s s
x x

v v v vM M
x s e e

L s L L s LL s L s

 

     
 

   
      
   
   

 
                                

 (62) 

 

2 2

2 2
1 1 1 2 1 2

0 2 2

1 2 1 20 2 0 1

( , ) = .

s s
x x

v v v v
e x s e e

v v s v v sL v s L v s

 

    


   
      
   
   

 
          
     

 (63) 

 

Taking inverse Laplace transform, we have the solutions in space-time domain as follows  

 
2 2

2 22 0 2 02 1 2 11 2 1 1
0 2 2

0 0 2 2 0 0 1 10 0

( , ) = .

x x

v vM Mx x x x
x t e t H t e t H t

L L v v L L v vL L

 

     
 

                                        
                  

            

                                                                                                                                         (64) 

 
2 2

2 2
1 1 1 2

0

0 2 1 1 2 1 0 1 2 1 2 2

( , ) = .

x x

v vx x x x
e x t e t H t e t H t

L v v v v v L v v v v v

 

    


                                
               

 (65) 

 

The short-time solutions for stress and strain components reveal the existence of two waves. 

Each of   and e  is composed of two parts and the each part corresponds to a wave propagating 

with a finite speed. In the stress component, the speed of the wave corresponding to the first part 

is 
2v  and that corresponding to the second part is 

1v  whereas in the strain component, the speed 

of the wave corresponding to the first part is 
1v  and that corresponding to the second part is 

2v . 

The faster wave has its speed equal to 
2v  and the slower wave has its speed equal to 

1v . Since 

1 2<v v , the faster wave is the predominantly modified Tzou wave (T-wave) and the slower is a 

predominantly modified elastic wave (E-wave). The first term of the solutions represents the 

contribution of the E-wave near its wave-front 
1=x v t  and the second term represents the 

contribution of the T-wave near its wave front 
2=x v t . We observe also that both the waves 

experience decay exponentially with the distance (attenuation). We further note that   and e  are 

identically zero for 
2>x v t . This implies that at a given instant of time t★ , the points of the solid 
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> 0x  that are beyond the faster wave front 2=x v t★  do not experience any disturbances. This 

observation confirms that like other thermoelasticity theories, the two-temperature dual-phase-

lag theory is also a wave thermoelasticity theory. Moreover, it is interesting to record that at a 

given instant, the region 20 < <x v t★  is the domain of influence of the disturbance, contrary to the 

result that this domain extends and the effects occur instantaneously everywhere in the solid as 

predicted by the classical thermoelasticity theory. 

 

 

3.6.  Numerical Inversion of Laplace Transform  
 

It is difficult to find the analytical inverse Laplace transform of the complicated solutions for the 

displacement, thermodynamic temperature, conductive temperature and stress in Laplace 

transform domain. So we have to resort to numerical computations. We now outline the 

numerical procedure to solve the problem. Let ( , )f x s  be the Laplace transform of a function 

( , )f x t . 

 

Then the inversion formula for Laplace transform can be written as  

 
1

( , ) = ( , ) ,
2

d i
st

d i
f x t e f x s ds

i

 

                                                                                                      (66) 

 

where d  is an arbitrary real number greater than real parts of all the singularities of ( , )f x s . 

Taking =s d iw , the preceding integral takes the form  

 

( , ) = ( , ) .
2

dt
itwe

f x t e f x d iw dw





                                                                                                (67) 

 

Expanding the function ( , ) = ( , )dth x t e f x t  in a Fourier series in the interval [0,2 ],T  we obtain the 

approximate formula (Honig and Hirdes; 1984)  

 

( , ) = ( , ) ,Df x t f x t E                                                                                                                (68) 

 

where  

 

0

=1

1
( , ) = for 0 2

2
k

k

f x t c c t T


                                                                                            (69) 

 

and  

 

= , .
ik tdt

T
k

e ik t
c e f x d

T T

   
  

  
                                                                                                   (70) 

 

The discretization error 
DE  can be made arbitrarily small by choosing d  large enough (Honig 

and Hirdes; 1984). Since the infinite series in equation (69) can be summed upto a finite number 
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N  of terms, the approximate value of ( , )f x t  becomes  

 

0

=1

1
( , ) = , for 0 2 .

2

N

N k

k

f x t c c t T                                                                                         (71) 

 

Using the preceding formula to evaluate ( , )f x t  we introduce a truncation error 
TE  that must be 

added to the discretization error to produce total approximation error. 

 

Two methods are used to reduce the total error. First, the ‘Korrektur’ method is used to reduce 

the discretization error. Next, the  -algorithm is used to accelerate convergence (Honig and 

Hirdes; 1984). 

 

The Korrektur method uses the following formula to evaluate the function ( , )f x t  as follows 

(Honig; 1984)  

 
2 '( , ) = ( , ) ( ,2 ) ,dT

Df x t f x t e f x T t E

                                                                                        (72) 

 

where the discretization error | ' | | |D DE E . Thus, the approximate value of ( , )f x t  becomes  

 
2

'( , ) = ( , ) ( ,2 ),dT

NK N Nf x t f x t e f x T t                                                                                          (73) 

 

where N   is an integer such that <N N . 

 

 

We shall now describe the  -algorithm that is used to accelerate the convergence of the series in 

equation (71). Let = 2 1N q , where q  is a natural number and let 
1

=
m

m k

k

s c


  be the sequence of 

partial sums of series in (71). 

 

 

We define the  -sequence by  

 

0, 1,= 0, =m m ms   

 

and  

 

1, 1, 1

, 1 ,

1
= , = 1,2,3,...p m p m

p m p m

p 
 

  






 

 

It can be shown that the sequence 

 

1,1 3,1 5,1 ,1, , ,..., N     

 

converges to 0( , )
2

D

c
f x t E   faster than the sequence of partial sums , =1,2,3,...ms m  
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The actual procedure used to invert the Laplace transform consists of using equation (73) 

together with the  -algorithm. The values of d  and T  are chosen according to the criterion 

outlined in (Honig and Hirdes; 1984). 

 

4. Numerical Results and Discussion  
 

To get the solution for the conductive temperature, thermodynamic temperature, displacement 

and the thermal stress in the space-time domain, we have to apply numerical inversion of the 

Laplace transform. This has been done using a method based on the Fourier series expansion 

technique as mentioned above. The numerical code has been prepared using Fortran-77 

programming language. For the purpose of illustration, here we have used the copper material. 

The material constants are as follows (Youssef and Lehaibi; 2007) 

 
5 1 2 2

10 2 10 2 3

0 0

= 386N/K s, = 1.78(10) K , = 383.1m /K, = 8886.73m/s ,

= 3.86(10) N/m , = 7.76(10) N/m , = 8954kg/m , = 0.015,

= 0.02, = 293K, = 0.0168, = 0.0104, = 1.

T

T

q

k c

F

 

   

   

 

 

  

The temperature, the stress, the displacement and the strain distributions are represented 

graphically to study the effect of the two-temperature parameter. 

 

The numerical values of the conductive temperature, thermodynamic temperature, stress and 

strain have been calculated for a fixed time = 0.2t  and for x  ranging from = 0.0x  to = 2.2.x  

 

Figures 1-4 are representing the differences between the theory of one-temperature ( = 0.0)  and 

two-temperature ( = 0.1)  using Lord -Shulman (LS) and Dual-phase-lag (DP) models for = 0.2.t  

In these figures, continuous lines represent the variations corresponding to the one-temperature 

theory whereas the dotted line corresponds to the two-temperature theory.  

 

Figure 1 exhibits the variation of conductive temperature ( )  with distance ( )x  for both one-

temperature ( = 0.0)  and two-temperature ( = 0.1)  theories. It is observed that   corresponding 

to both = 0.0  and = 0.1  satisfy our theoretical boundary condition as laid down in equation 

(13). This fact establishes the correctness of the numerical codes prepared.  
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Figure 1. Variation of conductive temperature ( ) vs. x  and 0.2t   for thermal shock problem 

    

Also, it is observed that   decreases with an increase of the distance and finally vanishes for 

both the one-temperature and the two-temperature theory. But, the presence of (= 0.1)  

decelerates   to vanish as compared to when = 0.0.  Also, for the Dual-phase-lag model, the 

decay of   is slower than that of the LS model. 

 

 
Figure 2. Variation of thermodynamic temperature ( ) vs. x  and 0.2t  for thermal shock problem 

 

Figure 2 gives the variation of the thermodynamic temperature ( )  with distance ( )x  for the one-

temperature ( = 0.0)  and the two-temperature ( = 0.1)  theories. As seen from the figure, the 

conductive temperature is maximum in magnitude for one-temperature theory for both the 

models near the bounding plane = 0.x  Here, the rate of decay of   is slower for the two-

temperature theory than for the one-temperature theory. 
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              Figure 3. Variation of thermal stress ( ) vs. x  and 0.2t  for thermal shock problem 

 

Figure 3 depicts the variation of the stress wave ( )  against x  for = 0.2t  and = 0.0,0.1.  In each 

case,   vanishes at = 0x  satisfying the theoretical boundary condition. It is observed from the 

figure, that the presence of the dimensionless two-temperature parameter has a tendency to 

decrease the stress concentration for both the models. It is seen that the stress wave is expansive 

in the range 0 < < 0.12x  for the one-temperature theory for both the models. The steep jump of   

occurs for a particular value of x  and this is also seen analytically from equation (64). Here, for 

both the LS and the DP models, we have fairly close results. 

 

 
Figure 4. Variation of strain ( e ) vs. x  and 0.2t  for thermal shock problem 

 

Figure 4 depicts the variation of the strain ( )e  versus the space variable x  for the two types of 

temperature and for the same parameters as in figure 3. It is observed that the magnitude of e  is 

larger for one-temperature theory when 0 < 0.7x  for both the models. The strain shows its 

compressive nature in the range 0.27 < < 0.6x  for the two-temperature theory and 0.29 < < 0.6x  for 

the one-temperature theory. Also, it is observed that the shift profile of e  is larger for the one-

temperature theory than for the two-temperature theory. 

    

Figures 5-8 are representing the variation of the thermophysical quantities versus x  at = 0.2t  and 
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= 0.1  for the two-temperature Lord-Shulman (2TLS) and the two-temperature Dual-phase-lag 

(2TDP) models for different ramping parameter 
0 (= 0.1,0.2,0.3).t  

 

 
       Figure 5.  Variation of conductive temperature ( ) vs. x for 0.1, 0.2t   for ramp–type problem 

 

 

Figure 5 depicts the variation of the conductive temperature ( )  with distance ( )x  for both the 

models. It is observed that   attains the maximum magnitude near the bounding plane = 0x  and 

finally the magnitude decays gradually as x  increases. In the figure, when 
0 = 0.1t  and 0.2 ,   has 

the value 1  for = 0.0x  and when instead 
0 = 0.3t , it has the value 0.667 , thus satisfying our 

theoretical boundary condition. Also, it is seen that, for both the models, the magnitude of the 

conductive temperature decreases with the increase of the ramping parameter 
0t  and the rate of 

decay is slower in the case of the DP model than for that of the LS model. 

 

 
Figure 6. Variation of thermodynamic temperature ( ) vs. x for 0.1, 0.2t    for ramp–type problem 

 

Figure 6 exhibits the variation of the thermodynamic temperature ( )  against x  for both the 

models and for different ramping parameter 
0 .t  For Dual-phase-lag model, the rate of decay of   

is slower than that of Lord-Shulman model. 
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              Figure 7. Variation of thermal stress ( ) vs. x for 0.1, 0.2t    for ramp–type problem 

    

 

Figure 7 displays the comparison of stress ( )  against x  for different ramping parameter 
0 .t  It is 

observed that each   is compressive at the beginning of the thermal loading to the bounding 

plane and finally reaches zero. It can be concluded that the increase of the ramping parameter 
0t  

will decrease the stress concentration for both the models. It is observed that the curves 

corresponding to 
0 = 0.3t  is smoother than that for 

0 = 0.2t  which in turn, is smoother that for 

0 = 0.1.t  Thus, the presence of 
0t  in these models may have an important role in maintaining the 

continuity of stress distribution in solids. Also, for the 2TDP model, the rate of decay is slower 

than that of 2TLS model. 

 

 
           Figure 8. Variation of strain ( e ) vs. x for 0.1, 0.2t    for ramp–type problem 

 

Figure 8 gives the variation of the strain ( )e  versus the distance ( )x  for the same set of 

parameters as mentioned above. It is seen that the elongation of the solid is maximum in 

magnitude near the bounding plane for both models. Also, the elongation almost disappears for 

0.6 < < 2.2x . For 2TDP model, the decay of e  is slower than that of 2TLS model.  

     

𝜎 

x 

2TLS(t0=0.1

)

2TLS(t0=0.2

)

e 

x 

2TLS(t0=0.1)

2TLS(t0=0.2)



AAM: Intern. J., Vol. 9, Issue 1 (June 2014)                                                                                                                

117                                                                                                              

          

   

 
  Figure 9. Variation of conductive temperature ( ) vs. t  for 0.2,0.3x  , 0.1  and 

0 0.1t   

 

Figures 9 and 10 are representing the variation of the conductive temperate ( )  and the 

thermodynamic temperature ( )  against time ( )t  at = 0.2,0.3x  for the two-temperature Dual-

phase-lag (2TDP) model for ramping parameter 
0 = 0.1.t  From these figures, it is observed that as 

t  increases, the magnitude of   and   will almost attain a steady state which supports the 

physical fact. 

 

 
Figure 10. Variation of thermodynamic temperature ( ) vs. t  for 0.2,0.3x  , 0.1  and 

0 0.1t   

 

5. Conclusions  
 

The problem of investigating the thermoelastic stress, strain, displacement, conductive 

temperature and the thermodynamic temperature in an infinite, homogenous, isotropic elastic 

half space is studied in the light of two-temperature generalized thermoelasticity with dual-

phase-lag effects for different types of thermal loading. The method of Laplace transform is used 

to write the basic equations in the form of vector-matrix differential equation, which is then 

solved by state-space approach. The numerical inversion of the Laplace transform is done by 

using Fourier series expansion technique (Honig and Hirdes; 1984). The analysis of the results 

permit some concluding remarks. 

 

1. Significant differences in the physical quantities are observed between the one-
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temperature dual-phase-lag (DP)model and the two-temperature dual-phase-lag (2TDP) 

model. The two-temperature theory is more realistic than the one-temperature theory in 

the case of generalized thermoelasticity. 

 

 2. As observed from the figures, an increase of the ramping parameter results in a  

decrease of the magnitudes of the thermophysical quantities. 

 

 3. Here all the results for the two temperature Lord-Shulman model in the case of 

thermal shock problem agree with the results of Youssef and Lehaibi (2007). 
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