
510 
 

 

Available at 
http://pvamu.edu/aam 

Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 6, Issue 2 (December 2011),  pp. 510 – 521  

Applications and Applied 
Mathematics:  

An International Journal 
(AAM) 

 

 
 
 

Stability of Stratified Couple-Stress Dusty Fluid in the Presence of Magnetic 
Field through Porous Medium 

 

Vivek Kumar 
 

Department of Mathematics 
College of Engineering Studies  

University of Petroleum & Energy Studies (UPES) 
P.O. Bidholi 

Dehradun-248007, (Uttarakhand), India 
vivek_shrawat@yahoo.co.in; vivek.shrawat@gmail.com 

 
 

Received: April 06, 2011; Accepted: November 15, 2011  
 

 
Abstract 
 
The combined effect of magnetic field and dust particles on the stability of a stratified couple-
stress fluid through a porous medium is considered. For stable stratification, the system is found 
to be stable for disturbances of all wave numbers. The magnetic field succeeds in stabilizing the 
potentially unstable stratifications for a certain wave-number range which were unstable in the 
absence of the magnetic field. Discussions of oscillatory and non-oscillatory modes are also 
made.  
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1. Introduction 
 
Several authors have studied the instability of a two plane interface separating two Newtonian 
fluids where one is accelerated towards the other or when one is superposed over the other. A 
comprehensive account of the problem of Rayleigh-Taylor instability was studied by 
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Chandrasekhar (1981). Rayleigh (1883) demonstrated that the system is stable or unstable 
according as the density decreases everywhere or increases anywhere. The stability of a 
horizontal layer of an electrically conducting fluid with continuous density and viscosity 
stratification in the presence of a horizontal magnetic field is discussed by Gupta (1963). Kumar 
(2000) have studied the problem of Rayleigh-Taylor instability of Rivlin-Ericksen elastico-
viscous fluid in the presence of suspended particles through porous medium and found that in the 
case of two uniform elastico-viscous fluids separated by a horizontal boundary and exponentially 
varying density, the perturbation decay with time for potentially stable configuration/stable 
stratification and grow with time for potentially unstable configuration/unstable stratification. 
 
With the growing importance of non-Newtonian fluids in modern technology and industries, the 
investigation of such fluids is desirable. Stokes (1966) has formulated the theory of couple-stress 
fluid. The theory of Stokes (1966) allows for polar effects such as the presence of couple-stress 
and body couples and has been applied to the study of some simple lubrication problems. 
According to Stokes, couple-stresses appear in fluids with very large molecules since the long 
chain hyaluronic acid molecules are found as additives in synovial fluids.  In recent years, the 
problems of the fluid flow through a porous medium have grown in importance due to the 
recovery of crude oil from the pores of reservoir rocks. When a fluid layer flows through a 
porous medium, the gross effect is represented by Darcy’s law. As a result, the usual viscous and 
couple-stress viscous terms in equation of motion are replaced by the resistance 

term  2

1

1
' q

k

 
    
 

, where  and ' are the viscosity and couple-stress viscosity 

respectively. Recently, Sunil, Sharma and Chandel (2002) have studied the Rayleigh-Taylor 
instability of two superposed couple-stress fluids of uniform densities in a porous medium in the 
presence of a uniform horizontal magnetic field and found that the magnetic field stabilizes a 
certain wave number range *k k , which is unstable in the absence of the magnetic field. Kumar 
and Abhilasha (2009) have studied the stability of two superposed Rivlin-Ericksen viscoelastic 
dusty fluids in the presence of magnetic field and found that the magnetic field succeeds in 
stabilizing the potentially unstable stratifications for a certain wave number range which were 
unstable in the absence of the magnetic field. Kumar et.al (2009) has studied the problem of 
thermosolutal instability of couple-stress rotating fluid in the presence of magnetic field.  
 
Recent spacecraft observations have confirmed that the dust particles play an important role in 
the dynamics of the atmosphere as well as in the diurnal and surface variations in the temperature 
of the Martin weather. It is, therefore, of interest to study the presence of dust particles in 
astrophysical situations. Sharma and Sharma (2004) have studied the effect of suspended particles 
on couple-stress fluids heated from below in the presence of rotation and magnetic field and found 
that dust particles have a destabilizing effect on the system. The instability of two rotating 
viscoelastic fluids with suspended particles in a porous medium is considered by Kumar and Singh 
(2007). Kumar and Kumar (2010) have studied the problem on a couple-stress fluid heated from 
below in hydromagnetics and found that the magnetic field has a stabilizing effect under a condition 
while dust particles have a destabilizing effect on the system. Kumar and Singh (2010) have studied 
the problem on the stability of two stratified Walters B’ viscoelastic superposed fluids and found that, 
for the stable stratifications, the system is found to be stable or unstable under certain conditions. Singh 
and Dixit (2010) have discussed the stability of stratified Oldroydian fluid in hydromagnetics in the 
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presence of suspended particles in a porous medium and found that the magnetic field succeeds in 
stabilizing wave numbers in the given range. 
 
Keeping in mind the importance of non-Newtonian fluids in geophysical fluid dynamics, chemical 
technology and the petroleum industry, we propose to study the stability of stratified Stokes (1966) 
incompressible couple-stress dusty fluid in the presence of a magnetic field through a porous medium. 
 
 
2. Formulation of the Problem 
 
 
Consider a static state in which an incompressible Stokes couple-stress fluid layer containing 
dust particles of variable density is arranged in horizontal strata and the pressure p , density  , 
viscosity   and viscoelasticity '  are functions of vertical coordinate z  only.  The fluid layer is 
under the action of gravity (0, 0, )gg  and the horizontal magnetic field ( , 0, 0)HH . This fluid 
layer is assumed to be flowing through an isotropic and homogeneous porous medium of 
porosity   and medium permeability 1k .The particles are assumed to be non-conducting. 

 
Let ( , , )u v wq ,   and p  denote respectively the velocity, density and pressure of the 

hydromagnetic fluid. ( , )d x tq and ( , )x tN  denote the velocity and number density of particles, 

respectively. 6K   , where   particle radius, is a constant and ( , , )x x y z . Then the 
equation of motion and continuity for the Stokes (1966) couple-stress fluid are 
 

   2

1

1
( . ) ' ( ) ( )

4
e

d

KN
p

t k

                       
q

q q g q q q H H ,           (1) 

 
. 0 q ,                                              (2) 

 

( . ) 0
t


    


q ,                         (3) 

 

( . ) ( . )
d

dt
    

H
H q q H                     (4) 

 
and  
 

. 0 H ,                                  (5) 
 
where e , the magnetic permeability is assumed to be constant and the fluid is assumed to be 

infinitely conducting. 
 
The presence of particles adds an extra force term, proportional to the velocity difference 
between particles and appears in equations of motion (1). Since the force exerted by the fluid on 
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the particles is equal and opposite to the exerted by the particles on the fluid, there must be an 
extra force term, equal in magnitude but opposite in sign, in the equation of motion for the 
particles. The buoyancy force on the particles is neglected. Interparticle reactions are not 
considered for we assume that the distance between particles is quite large as compared to their 
diameters. The equations of motion and continuity for the particles [Kumar (2000)], under the 
above approximation, are 
 

 

( . ) ( )d
d d dmN KN

t

      

q
q q q q                               (6)  

 
and  
 

.( ) 0d

N
N

t


   


q                            (7) 

 
where mN  is the mass of the particles per unit volume. 
 
 
3. Perturbation Equations and Normal Mode Analysis 
 
 
The time independent solution of (1) to (7) known as the basic state, whose stability we wish to 
examine is that of an incompressible, couple-stress fluid layer of variable density arranged in 
horizontal strata. The basic motionless solution is 
  

(0,0,0)q , (0,0,0)d q , 0N N =Constant. 

 
The character of equilibrium is examined by supposing that the system is slightly disturbed and 
then by following its further evolution. 
 
Let , , ( , , ), ( , , )dp u v w l r s  q q  and ( , , )x y zh h hh  denote respectively the perturbations in the 

hydromagnetic fluid density , pressure p , velocity (0,0,0)q , particles velocity (0,0,0)dq  and 

the magnetic field ( ,0,0).HH  Then the linearized perturbation equations are 
 

 2 0

1

' ( ) [( ) ]
4

e
d

KN
p

t k

  
            
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m
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q q ,                          (11) 

 

. 0d

M

t


  
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q ,                                     (12) 

 

( . )
t


  

h

H q                                       (13) 

 
and 
  

. 0 h ,                                       (14) 
 
where 0/M N N   and 0,N N  respectively stands for the initial uniform number density and the 

perturbation in the number density. 
 
Analyzing the perturbations into normal modes, we seek the solution whose dependence on ,x y  
and t  is given by 
 

exp( )x yik x ik y nt  ,                          (15) 

 

where, xk  and yk  are the horizontal components of the wave number, 2 2
x yk k k   is the 

resultant wave number and n  is the growth rate, which is, in general, a complex constant. 
 
 
With the dependence of physical variables on ,x y  and t  and following the usual procedure, we 
get 
 

   2 2 2 2 2 2
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1
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0 0( ) [ ( ) ] ( ) 0

(1 ) 4
e xH kgk n
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n n n


      

    
,                    (16) 

 
where  
 

/m K   and /D d dz .  
 
 
Case of Exponentially Varying Density, Viscosity, Viscoelasticity, Magnetic Field and 
Particle Number Density 
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Let us assume that 
 

2 2
0 0 1 0 1, , ,z z z ze N N e e H H e            and '

0' ze   ,                                       (17) 

 
where '

0 1 0 1 0, , , ,N H    and   are constants. Substituting the values of 1, , , 'N    and H  in 

equation (16), we obtain 
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We consider the case of two free boundaries. Let us assume that 1  , i.e., the variation of density 
at two neighboring points in the velocity field which is much less than the average density has a 
negligible effect on the inertia of the fluid. The boundary conditions for the case of two free surfaces are 
  

2 0w D w    at  0z   and z d .                        (19) 
 
The proper solution of equation (18) satisfying equation (19) is given by 
 

sin
s z

w A
d


 ,                                      (20) 

 
where A  is a constant and s  is any integer. Using equation (20), equation (18) gives 
 

2
3 2 ' ' 2 21
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4. Results and Discussion 
 

Theorem 1: For stable density stratification ( 0)  , the system is always stable. 
 
Proof:  
 
For stable stratification ( 0),   the roots of the equation (21) are either real or negative or one 
root is real and negative and two roots are complex conjugate with negative real parts. In each 
case, the system is stable for disturbances of all wave numbers. 
 

Theorem 2: For 0  , the system is stable or unstable provided 2 2
x Ak V   or 

2g k

L


 . 

 
Proof:  
 

If 0   and 2 2
x Ak V   

2g k

L


, then equation (21) does not involve any change of sign and so does 

not admit any positive value of real part of n . Therefore, the system is stable for disturbances of 

all wave numbers. On the other hand, if 0  and 2 2
x Ak V   

2g k

L


, then the constant term in 

equation (21) is negative. Therefore, allow at least one change of sign and so has at least one 
positive root. The occurrence of a positive root implies that the system is unstable.  

 

5. Discussion of Oscillatory Modes 

 
Equation (21) can be written as 
 

3 2
1 2 3 4 0A n A n A n A    ,                         (22) 

 
where  
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A v v L k V

k L
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 
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2
2 2

4 x A

g k
A k V

L


  . 

 
After dividing by n , the real and imaginary parts of equation (22) are 
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2 2 4
1 2 3 2
( ) 0

| |
r

r i r

A n
A n n A n A

n
                             (23) 

and  
 

4
1 2 2

2 0
| |i r

A
n A n A

n

 
   

 
.                         (24) 

 
 
Theorem 3: For 0  , the estimate of n  for the growth rate of oscillatory stable modes is given 

by 2 4

2

| |
A

n
A

 . 

 
Proof:  
 
If 0  , then the value of 2A  and 4A  are definite positive. Since modes are oscillatory ( 0)in   

and if rn  is negative (for stable mode), then for the consistency of equation (24), we must 

have 2 4

2

| |
A

n
A

 . Hence, for 0  , the estimate of n  for the growth rate of oscillatory stable 

modes is given by 2 4

2

| |
A

n
A

 . 

 
Theorem 4: For 0  , the estimate of n  for the growth rate of oscillatory unstable modes is 

given by 2 4

2

| |
A

n
A

 . 

 
Proof:  
 
If 0  , then the value of 2A  and 4A  are definite positive. Since the modes are oscillatory 

( 0)in   and if rn  is positive (for unstable mode), then for the consistency of equation (24), we 

must have 2 4

2

| |
A

n
A

 . Hence, for 0  , the estimate of n  for the growth rate of oscillatory 

unstable modes is given by 2 4

2

| |
A

n
A

 . 

 

Theorem 5: For 0   and
2

2 2
x A

g k
k V

L


 , the estimate of n  for the growth rate of oscillatory 

stable or unstable modes are respectively given by 2 4

2

| |
A

n
A

  or 2 4

2

| |
A

n
A
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Proof:  
 

If 0   and 
2

2 2
x A

g k
k V

L


 , the value of 1 2,A A  and 4A  are positive definite. Since modes are 

oscillatory ( 0)in   and stable ( 0)rn  , then equation (24) gives 2 4

2

| |
A

n
A

 .  Also, for oscillatory 

unstable modes ( 0, 0)i rn n  , we must have for the consistency of equation (24) as 2 4

2

| |
A

n
A

  

under the given conditions. 
 

6. Discussion of Non-Oscillatory Modes 

 
For non-oscillatory modes, we must have 0in  , then equation (23) becomes 

 
3 2

1 2 3 4 0r r rA n A n A n A    ,                         (25) 

 
where  
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
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2
' 2 2
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A v v L k V
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  
     

 
  

 
and  
 

2
2 2

4 x A

g k
A k V

L


  . 

 
Theorem 6: For 0  , the non-oscillatory modes are always stable. 
 
Proof:  
 
If 0  , then equation (25) does not involve any change of sign and therefore does not allow any 

positive value of real part .rn  Therefore, the non-oscillatory modes are stable for all wave 

numbers. 
 

Theorem 7: For 0  , the non-oscillatory modes are stable provided
2

2 2
x A

g k
k V

L


 .  
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Proof:  
 

For 0   and
2

2 2
x A

g k
k V

L


 , equation (25) does not involve any change of sign and therefore 

does not allow any positive of real part .rn Therefore, the non-oscillatory modes are stable. 

 

Theorem 8: For 0  , the non-oscillatory modes are unstable provided
2

2 2
x A

g k
k V

L


 . 

 
Proof:  
 

For 0   and
2

2 2
x A

g k
k V

L


 , the value of 4A  is negative. Therefore, equation (25) involves at 

least one change of sign so has at least one positive root. Therefore, the non-oscillatory modes 
are unstable.  
 

Theorem 9: For 0   and
2

2 2
x A

g k
k V

L


 , there are wave propagating for a given wave number. 

 
Proof:  
 
Let the roots of equation (25) are

1 2 3
, ,r r rn n n , then using the theory of equations, we get 

 

1 2 3

4

1

. . 0r r r

A
n n n

A
    

 
and 
  

1 2 3

2

1

0r r r

A
n n n

A
     . 

 

Clearly, when 0   and
2

2 2
x A

g k
k V

L


 , then 4A  is definite negative. Also, 1A  and 2A are 

positive definite. So the product of the roots is positive and the sum of the roots is negative. 
Therefore, the possibility that all the three non-oscillatory modes can be unstable is ruled out. It 
follows that two waves of propagation are damped and one is amplified for a given wave number. 
 
 
7. Conclusion 
 
The stability of superposed fluids under varying assumptions of hydromagnetics has been 
discussed in detail by Chandrasekhar (1981). With the growing importance of non-Newtonian 
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fluids in modern technology and industries, the investigations on couple-stress fluid are desirable. 
In the present paper, the stability of stratified couple-stress dusty fluid in the presence of 
magnetic field through porous medium is considered. For stable stratification, the system is 
found to be stable for disturbances of all wave numbers. The magnetic field succeeds in 
stabilizing the potentially unstable stratifications for a certain wave-number range which were 
unstable in the absence of the magnetic field. It is also found that for 0   the non-oscillatory 
modes are always stable and for 0   the non-oscillatory modes are stable or unstable under 
certain conditions. 
 
 
NOTATIONS 
    Density of fluid, 
    Coefficient of viscosity, 
 '   Coefficient of viscoelasticity, 

 e   Magnetic permeability, 

    Curly operator, 
    Perturbation in respective physical quantity, 

    Del operator, 
    Constant, 
    Kinematic viscosity ( / )  ,  
 '   Kinematic viscoelasticity, ( '/ )   
 p   Fluid pressure, 
 (0,0, )g g  Acceleration due to gravity, 
 ( ,0,0)HH  Magnetic field vector having components ( ,0,0)H , 
    Perturbation in density ( )z , 
 p   Perturbation in pressure ( )p z , 
 ( , , )u v wq  Perturbation in fluid velocity (0, 0, 0)q , 

 ( , , )d l r sq  Perturbations in particle velocity (0, 0, 0)dq  

 ( , , )x y zh h hh  Perturbation in magnetic field ( ,0,0)HH , 

 ,x yk k   Wave numbers in x  and y  directions respectively, 

 2 2
x yk k k   Wave number of the disturbance, 

 n   Growth rate of disturbance, 

 2
AV   Square of the Alfven velocity

2
2

4
e

A

H
V
 

  
, 

 ' '
0 0 0 0 0 0, , , , , N      Constants, 

    Constant value, 

 D   Derivative with respect to
d

z
dz

  
 

. 
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