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Abstract

This paper is concerned with the analysis of mixed data with ordinal and continuous outcomes
with the possibility of non-ignorable missing outcomes. A copula-based regression model is
proposed that accounts for associations between ordinal and continuous outcomes. Our approach
entails specifying underlying latent variables for the mixed outcomes to indicate the latent
mechanisms which generate the ordinal and continuous variables. Maximum likelihood
estimation of our model parameters is implemented using standard software such as function
niminb in R. Results of simulations concern the relative biases of parameter estimates of joint
and marginal models using data with non-ignorable outcomes. The proposed methodology is
illustrated using a medical data obtained from an observational study on women with three
correlated responses, an ordinal response of osteoporosis of the spine and two continuous
responses of body mass index and waistline. The effect of the amount of total body calcium
(Ca), job status (Job), type of dwelling (Ta) and age on all responses are investigated
simultaneously.
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1. Introduction

Many statistical applications involve joint analysis of multivariate data including mixed ordinal

and continuous outcomes with non-ignorable missing values. For example, in health studies
pertaining to the maternal smoking effect on respiratory illness in children, we have a continuous
measure of the pulmonary function and an ordinal measure of chronic symptoms in children. In
medical data set of osteoporosis of the spine, correlated outcomes are the ordinal outcome of
osteoporosis of the spine and continuous outcomes of body mass index and waistline and
covariates that might be due to this type of job and dwelling.

For the first example, separate analysis cannot assess the effect of maternal smoking on both
outcomes. Also, separate analysis give biased estimates for the parameters and we need to
consider a method in which these variables can be modelled jointly. So, we need to model
responses simultaneously. In the second example the simultaneous effect of the type of job and
accommodation on body mass index, waistline and osteoporosis of the spine should be modelled
jointly considering missing mechanisms for each outcomes. Multivariate joint modelling of such
missing data often leads to complications in computation due to a relative lack of standard
models.

A number of joint modelling strategies for mixed outcomes have been studied in the
literature. The first formulation that has received much attention in mixed data literature was
introduced by Olkin and Tate's (1961) which is called general location model. This model
assumes multivariate normal distribution for continuous outcomes given values of discrete
outcomes. The second formulation includes the Cox and Wermuth (1992) approach who suggest
a logistic or probit conditional distribution for the binary variable given continuous
outcomes. The third formulation was presented by Heckman (1978) in which a general model for
simultaneously analysing two mixed correlated responses is introduced and Catalano and Ryan
(1997) extended and used the model for a cluster of discrete and continuous outcomes (vide
also, Fitzmaurice and Laird, (1995) and Fitzmaurice and Laird, (1997)). All the above references
consider correlated nominal and continuous responses. Poon and Lee (1987) and Moustaki and
Knott (2000) used a model for ordinal and continuous responses without considering any
covariate effect. De Leon an Carriere (2007) extended an approach similar to that of Heckman
(1978) and Sammel et al. (1997) for jointly modelling of a nominal and a continuous variable to
joint modelling of bivariate ordinal and continuous outcomes. All the above references discuss
identifiability with imposing some restrictions on the correlation structure. Pinto and Normand
(2009) proposed a new parametric constrained latent variable model to have identifiability
without restrictions on the correlation structure.

In such medical studies, often some of the subjects do not respond in some occasions which
cause for missing outcomes. Much has been written about statistical methods for handling
incomplete data. Rubin (1976) and Little and Rubin (2002) define the missing mechanism as: (1)
Missing Completely At Random (MCAR): if missingness is dependent neither on the observed
responses nor on the missing responses, (2) Missing At Random (MAR): if it is not dependent
on the missing responses (given the observed responses), (3) Not Missing At Random (NMAR):
if it depends on the unobserved responses. MCAR and MAR are ignorable but NMAR is non-
ignorable.
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A number of joint modelling strategies for mixed outcomes with possibility of missing values
have been studied in the literature. Little and Schluchter (1987) proposed the general location
model with the assumption of ignoring the missing data mechanism. Ganjali (2003), used A
model for mixed continuous and discrete binary responses with possibility of missing
responses. Bahrami Samani et al. (2008, 2010) extended the model of Ganjali. Also, Bahrami
Samani et al. (2011) proposed a multivariate latent random effect model for mixed continuous
and ordinal longitudinal responses with missing responses. Yang et al. (2007) investigate an
inferential method for mixed Poisson and continuous longitudinal data with non-ignorable
missing values. The challenge is that models for joint distributions of mixed outcomes with non-
ignorable missing values are uncommon.

A recent alternative strategy involves the use of copulas, as discussed in Sklar (1959), Song et
al. (2000), Niewiadomska-Bugaj and Kowalczyk (2005), Zimmer and Trivedi (2006), Kolev et
al. (2006) and Song et al. (2009). A number of transition regression models for non-Gaussian
responses have been proposed in literature, vide Benjamin et al. (2003) for a review. Several
authors have recently adopted copulas to indirectly construct mixed-outcome joint
models. Copulas have been proved to be useful in practice when the joint distribution of interest
is either not available or difficult to specify but marginal distributions can be specified with
confidence like in mixed-outcome settings. Song et al. (2000) investigate some copula-based
regression models for bivariate continuous outcomes, Zimmer and Trivedi (2006) proposed
trivariate copulas to model sample selection and treatment effects. De Leon and Wu (2011)
proposed copula-based regression models for bivariate mixed discrete and continuous outcomes.

Our paper is concerned with joint regression models for correlated mixed ordinal and continuous
outcomes with possibility of non- ignorable missing outcomes constructed by using copulas. We
will also extend De Leon and Wu' (2011)'s approach and consider missing data of the
outcomes, so our models are copula-based joint modelling of mixed data for bivariate and
multivariate mixed ordinal and continuous outcomes with non-ignorable missing outcomes.

This paper is organized as follows. We introduce a class of copula-based regression models and
the full likelihood of the model for bivariate mixed outcomes with non-ignorable outcomes in
Section 2. Simulation results on the sample properties of estimates are reported in Section
3. Section 4 illustrates the application of the model to the medical data. Finally, the paper
concludes in Section 5.

2. Model and Likelihood
2.1. Bivariate Outcomes with non-ignorable missing values

Let X, be an ordinal outcome with D level and Y; be a continuous outcome. These outcomes
are recorded for N individuals, correlated and modeled simultaneously. Some outcome values
may be missing due to some reasons. Let X, R;i and RY denote the underlying latent variables

for ordinal outcome X,, the non-response mechanism for the ordinal variable and non-response
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mechanism for the continuous variable, respectively. The ordinal variable of the i" individual
with D levels is defined as

L, if X, €(6,,6),

X, =11, if X e[6,.0,..),

l,, if X, €[b,.,,6,),

where 4 <---<6,, are the cut-point parameters with §,=—0 and 6, =o . Also, for the
response variables for responding to X and Y are defined, respectively, as

1, Ry >0,
Ry = '
10, ow,
and
1, R >0,
R, = '
"0, o.w,

R;i and R;I may be interpreted as propensity of individual i as a latent variable to respond to
X, and Y;, respectively.

The joint model is assumed to take the form:

Xi = (25,0) + &,
Y = 1 (25, B) + &5,
R;i = 13 (Zy,7) + &5 1)
R;i = i (Z24,1) + &4,

where E(g;)=0. for k=1,234, and the covariance matrix of the vector of errors

!

(gli’82i’83i’g4i) is

1 op, Ps Pu
op, ©° Py Opy
Pa OPn 1 opy|
Pia  OPyy OPgy 1

L =
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where «, 3,7 and 1 are vectors of regression coefficients, also g includes an intercept
parameter but « does not include any intercept. Also z,,z,,2, and z, are outcome specific

covariate vectors, and s, 14, 14; and u,; are link functions specifying how the covariates are
incorporated in the marginal means. For example, in the linear models

.
My = Z;a, Mo =1, py = Z;:iy and My = ZZW-

Also the correlation parameters o for j<j', j=1,2,3 and j'=2,3,4 should be estimated.

If one of the correlation parameters p; for j<j', j=12, and j'=3,4 is found to be

significant, then we have a NMAR mechanism and missing mechanism cannot be ignored. On
the other hand, if p; for j<j', j=12, and j'=3,4 are found to be Os, the missing data is

MCAR and can be ignored. In this model any multivariate distribution can be assumed for the
errors in the model. Here, a multivariate Gaussian copula is assumed. We have to restrict at least
one parameter to obtain an identifiable model. For identifiability reasons, we assume that

Var(X;)=Var(R; ) =Var(R,) =1.

To obtain the likelihood function, we used the multivariate Gaussian copula. we can specify the
joint CDF of

F. F. ... F. . F...and F .. .
XPY T UXYLRER, T XYR, T X Ry Ry Yi RY Ry,

as

Frey 060 %) = @, (@7F,- )} R, ()} ),

Py, 00 Y 1 1) = 4 (@R OO} @R (v)} @ 4R (n)} @ %R (1)}HZ10w),
Py (0 Y1) = 05 (O7HF, 0O} O HF, (10 {F, (1)}E.0),

Fer sy = Pa(@7F: OO @R, (0} 7R, ()}HZ1.),

Form, = Pa(@ R (V)1 @R, ()1 @ R, (6)}HZ5w),

where ®@(-) is the standard normal distribution function, ®,(-,-,--) is the cumulative standard
multivariate normal distribution with covariance matrix

1 op, P 1 ps pPu o’ Opy, Py
Ss=|0pp 00 0P| Ta= s 1 pu| Za=|ops 1 P |
P Opy 1 Pu Py 1 0P Pa 1



86 N. Jafari et al.

and ®@,(----) is the cumulative standard multivariate normal distribution with matrix
covariance

1 0Py Pi3 Pla

2
s 0P, O 0Py OpPy
1234 = '

Ps OPys 1 op,
Py OPy opy 1

where the marginal distributions F,.,F., F

- and F_. are absolutely continuous distributions.
Xi Vi

To obtain joint the distribution of X, and Y, and missing mechanism, we consider the following
four cases:

Case 1

For the ith individual with both X; and Y; observed the joint distribution of X,,Y;, and missing
mechanisms is

P(Xi =Xi’Yi < yi’RYi :]-’in :1)1
so, we have

|:in*in (91’ y') B FXi*,Yi,R\:I RY; (91’ yi’oio)j|1 X, = Il’

Py G =Fyoy o (641,00

_[Fx,*,v, (ek’ yi) o Fx,*,\(i,Ry*i,R;i (ek’ yi,0,0)] X = |k+1’

.[Fyxyi)—FYi,R;i,R;i 4,0.0|

_|:in*in (QD’ yi)_ FXi*,Yi,R;i,R;i (eD’ yi’070):|1 Xi = ID1

where
Feey (B ¥) = @, (07 F,- (80} ©7{F, (%)} ),
Py G ¥ 0) = @o(@{F - (G} ©F, ()} @ {F,, (0)}[Zz)
Fr v s, (000 ¥1:0,0) = 05 (@HF, . (0} @ {F, (%)} @ {F, (0).F; (O)}Zyz00):
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Case 2
For the i" individual neither whose X; nor Y, is observed the joint distribution of R, and R, is
P(R, =0,R,, =0)=P(R, <0,R; <0)=F_ .. (0,0).

In other words, the joint distribution of R, and R, with possibility of missing for both outcomes
is specified using bivariate Gaussian copula, as follow:

P(RYi =0,R, = 0)= CI>2(<I>’1{FR; (0)}, CI)’l{FR;| O} | Paa)-
Case 3

For the i"" individual whose X is only observed the joint distribution of X, Ry and R, is

P(X; =x,R, =0,R =1).
So, we have:
in*’R;i (91’0) B FX:,R\Z,R;i (01’0’0)’ X = Il’ X = |1,
|: x R (9k+1’0) FX R;I (Hk,O):|
_[ X Ry R (l9k+1,0 0)- I:x RY R (Hk,0,0)] Xi :Ik+11
[FR% ©)-F (GD,O)}
_[ o 00 -F (QD,O,O)}, x =1,
where
Fe g (6,0) = @, (@74, (6)}, ©{F. (0)} |924),
and
Fre s ;. (610,00 =D (07HF,. ()}, @ {F,. (O} O {F (O}Zs.):
Case 4

For the i" individual whose Y, is observed the joint distribution of Ry and R, is
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P(Y, <y,,R, =L R, =0)=P(Y, <y, R} <0O,R; >0),
=P(Y, <y,,R, <0)-P(Y, <y, R} <0,R, <0),
= FYI’R;(i (yIIO)_ FYi ’R;i’R;i (yi,0,0),

in other words, the joint distribution of Y, and missing mechanisms is specified using Gaussian
copula, as follow

P(Y, <y, RYi =1 in =0)=92, ((D_l{FYi (v} CI)_l{FR;i (0)}|,023),
~®,(@{F, (v)} @ {F, (O qfl{FR;i (0)}Z05).

Also, we have:
0
in,Yi (%, ¥;) :5 P(X, =x,Y. <Vy,).

Likelihood function is the product of the joint distribution of X, and Y, and missing

mechanism, for four cases and shows the simplification obtained by using the assumption of
multivariate Gaussian copula for errors in the model.

2.2. Multivariate Outcomes with non-ignorable missing values
Suppose the vector of response for the i individual is

W, :(xil"“’ xip7Yi(p+l)""1Yiq)”

where X, for s=1,.,p, are ordinal responses each with D, levels and Y, for

s=p+1,...,q, are continuous responses. All responses are correlated.

Let X, for s=1,..., p, denote the underlying random variable of the ordinal response for the i
individual and s —th outcomes with D, levels. Define

Ils’ 905 < X; < 915’
Xis =111, 0, <Xy <60, j=1..D -2,

6.

s(Ds-1) < Xis < HSDS’

where @, =—co, O, =» and 6, =(6,,...0,5 ;)" is the vector of cut-points parameters for
s=1,..., p. Typically, when missing data occur in an outcome, we assume R, =(Ry ..., inp)' as

the indicator vector of responding to X; and ins. It is defined as



AAM: Intern. J., Vol. 10, Issue 1 (June 2015)

89

R 1 R;is >0,
* o, otherwise,
and R, :(RYM""’ RYiq)’ the indicator vector for responding to Y; and R, is defined as
1, R, >0,
Ry_ — Yis
© 0, otherwise,

where R;is and R:IS denote the underlying latent variables of the non-response

mechanism, respectively, for the ordinal and continuous variables.

The joint model takes the form:
XiZ:lLlli(Zilias)+gi(sl)l S=1,..., P,
Yis :ﬂZi(Ziz’ﬂs)+gi(52)’ S= p+1!"'!ql

R:(is :lu3i(zi3’7/s)+gi(53)a 521,..., p,

Ry =ty (24m) + . s=p+1..,0,

where
, , , , iid
g=(",e? .89 YY) ~MVN(O,Z¢),
8i(U) :(gi(:LU)""’gi(pU))’a for u ~13,
&Y = () &), fOr u=2,4,
and
I I, I X
N D A 5
S DD YA VAR Vil |
S D A 4
where

2 =Var("), for u=1,2,3,4, 2, =Cov(g",&"), u<v, u,v=1,2,3,4, and 2,

Because of identifiability problem we have to assume
Var(Y;) =Var(R, ) =Var(R, )=1,

S0
X =], for j=1,34.

)

_Zvu-
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Note if one of the matrices X3, Z;;, 255,25, is NOt zero, then the missing mechanism of response
is not at random. The vector B, for s=p+1,...,q, includes an intercept parameter but o, and

7., for s=1,...,p and n,, for s=p+1,...,q, due to having cut-point parameters are assumed not
to include any intercept.

Let
‘J (Joxbs"]obs) ‘]Mis obs’ obs _{S X IS Observed} ‘]Mls _(‘]o);s)c’
and J,' ={s:Y, isobserved}, J). =(J2.)°.
Also, let
Yi,obs :{Yis’vs € ‘](\)(bs}
and

={X,,Vse Jobs}

| obs

denote the set of continuous and ordinal variables observed.

Further, let X, denote the set of underlying random variable of the ordinal response of the it
individual defined as:

X:obs ={0 1 <X;<0, ,Vse i}

Also, the set of non-response mechanism for the continuous and ordinal random variables which
is defined, respectively, as:

={R, =1¥se I }=R\, ={R, >0,vsel,},

|bs

={R, =1Vse Ja}= R;im :{R;i,- >0,vseJr}.

| ,0bs

To obtain the likelihood function, we used the multivariate Gaussian copula. The likelihood of
the model (2) is

L= H f(xlobs’ |obs’R Xi obs ! R,Obsl i1 |4)

{iedons}
H P(Xlobs’ Xiobs ’ :H,bs’Yl ObS’CI Mis |Z|l’ " |4)
{iedons}
- H (FT _F:(i _F;i +F:<iYi)'
{iedons}

where

Ci i ={Ry_=0;Vse I, RYij =0;VseJ\. }
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and

*

i,0bs?

FT = P(X C:/Iis’Yi,obs | Zigyeens Zi4)
=D (OF,. (G j11s)i VS € o 1 O R, (¥i0): Vs € Jp
O{F. (0);VseJy @ {F. (0);VseJy})

j+1)s

-, (qu{FX; (0,);Vs € I h ©7HF, (vi): Vs e d},
CD’l{FR;_ (0);Vs e Jéis},cb’l{FR; (0); ¥s € Iy},

*

1“*xi =P (X, s+ Cric: Ry o Yions | Zinseers Zig)
= O (O {F,. (G1.1)s); VS € I @ LR, (¥,) Vs € I},
<D’1{FR;iS (0);3se€ 3.}, @’l{FR;iS (0);Vse Jp d)’l{FR;is (0); Vs e J )
— D (O7{F,. (6;); Vs € g 1 O 7R, (¥io): Vs € Iy}

OHF, (OFse 1O MR, OVse b ONF, O)Vse D,

*

I, =P(X

* *

CMis’ RX,‘MisYi,obs | Zil’ T Zi4)

=@ (P4, (B111): Vs € I 1 O R, ()i Vs € 3},

fobs
a1)s
mfl{FRqs (0);3se J,. }. cp*l{FR;ls (0);vsedy} CD’l{FR;iS (0);Vse J\. D)

~ @y (O7{F,. (0;); Vs € I 1 @7{F, (¥:); Vs € Jg.},
CD‘l{FR;iS (0);3seJ).}, CD_l{FR;iS (0);Vse Jp.} CD_l{FR;iS (0); Vs e ).},

and

I, =P(X

* * * *

mis R ) R\(i‘Mis 'Yi,obs | Ziy, -, Z44)

i,obs ! C Xi mis
);Vse g @R, (V)i Vse Jyt

-1
= ch (q) {Fx; (0(j+l)s
CD_l{FR;iS (0);3s € Iyt CD_l{FR;iS (0);3s e Iy,
O {F.. (0);VseJy} @ {F,. (0);Vse D)
-, ((I)‘l{FX:j (0,);Vs € 1 7R, (V)i Vsedp},
O{F.. (0);3se Iy} {F.. (0);3s ey},

d)’l{FR;is (0);Vse Jy} d)’l{FR;iS (0);¥s e J). D).

2.3. Multivariate Outcomes with ignorable missing values

We consider model (2) for finding the condition for MAR. Let
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W:(XvY):(\Nobs' m|s) W (X Y) M W ) and R*:(R;’R;):

where
X = (xlf“" xp), ! Y = (Yp+1""'Yq)! ’ X* :(Xl*"“’ X;;), ’

W, is the vector of latent variables related to the observed part of W =(X,Y), and W___ is the
vector of latent variables related to the missing part of W =(X,Y). According to our joint

model, the vector of responses along with the missing indicators W™,R") =W, W ,R") has a
multivariate normal distribution with the following covariance structure,

0,0 o,m o,R*
L= m,o m,m mR !
R",0 2R*,m ZR R

where
Zo,o = COV(VVobs’ obs)
Zm,m = COV(Wmis ’Wmis)’
Zom = COV(Wope, Wiis),
D cov(W,,.,R),
T =COV(R',R).

The joint density function of w* and R” can also be partitioned as
f (\N*’ R*) = f (\Nr:is' R* ’\No;s) f (\Nobs*)’

where (W

m

distribution. According to the missing mechanism definitions, to have a MAR mechanism the
covariance matrix of the above mentioned conditional normal distribution,

,S,R*’WO’;S) and f(W,,) have, respectively, a conditional and a marginal normal

Z o = cov(W, ..",R” ’Wozs)
z“m,m 2m y g
T e
m,0="0,07m,0 m,0”=0,0 R

. —Z. 2 > 2“—2’ 2‘12

R ,m 0,07 m,0 R,R R",070,07R" 0

(z -y sty IS Y0 0

should satisfy the following constraint,
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DRSS VS Mb i) (3)

m,070,0R" o

So, for obtaining the likelihood function, we used the multivariate Gaussian copula with
constraint (3).

2.4. Estimation

2.4.1. Joint Estimation

Putting 1(&) as the log-likelihood function, then let S(&) =al(6) /6 be the score function and
h(0)=01(0)/0006" the Hessian matrix, for obtaining the maximum likelihood estimate (MLE)
§, we must solve the S(g) =0, (joint estimation). We know that the Fisher information matrix is

1(6) = E{-h(0)}=E{ S(0)S" (9)}. It can be shown that @ is consistent and it has asymptotically
multivariate normal distribution with mean ¢ and covariance matrix given by the inverse of the

1(6) . So the standard errors (SE) for § are calculated from diagonals of E{sv(é)SVT(é)}fl. We used

the function pnorm for likelihood evaluation and the function nlminb, which do not require the
score function for optimization in R. One may choose different starting values over multiple runs
of the iteration procedure and then examine the results to see whether the same solution is
obtained repeatedly. When that happens, one can conclude with some confidence that a global
maximum has been found. For good initial values for our application we suggest the use of the
results of separately analyzing continuous and ordinal variables.

2.4.2.  Marginal estimation

Often the maximization of 1(6) computationally is not easy in practice, so we use the method of
inference functions for margins (IFM). This method first estimates marginal parameters via
margins, then only uses the copula as a basis for estimating the association parameters. In other
words the in IFM method the marginal models and the dependence between outcomes are

specified separately, (Marginal estimation). The IFM estimate, 6 , has asymptotically
multivariate normal distribution with mean # and covariance matrix C =J"BJ " where J is a
block- diagonal matrix with symmetric diagonal blocks and B is a symmetric block matrix.
Standard errors (SE) of 6 are obtained from the diagonals of C =J*BJ ™, where J and B are

the respective estimates of J and B obtained from & [via Joe and Xu (1996) and Harry and
James (1998)].

3. Simulation Study

In this section, the first considers a joint model for mixed ordinal and continuous outcomes under
the five scenarios, assembled from a marginal normal specification for a marginal normal
specification for a marginal normal distribution for the latent variable underlying the ordinal
outcome and the continuous outcome, the second a marginal model is based under NMAR and
MAR mechanisms for the five scenarios. In both cases, we adopt the Gaussian copula to
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construct the joint model. The results indicate that the joint estimation should be preferred to the
marginal approach under NMAR and MAR mechanisms, however, the two methods perform
generally similarly for mixed ordinal and continuous responses with non-ignorable missing
values. The relative biases of the joint and marginal estimates are obtained for the five scenarios
with and without non-ignorable outcomes.The formula for the relative bias of & is as follows:

Relative bias= 7 4 x100%.

3.1. Ordinal-Normal Model with non-ignorable missing values

Let X; be an ordinal outcome and Y; be a continuous outcome. These are obtained for each of
N subjects. Some of these values may be missed. Continuous variables, Xi* and
R:i , respectively, represent latent variables for ordinal outcome and latent variable related to

missing mechanism of Y; . We define ordinal variable X, for the i" subject as follows:

l, =1, if X' <@,
X, =11, =2, if <X <6,
,=3,  if X' >0,

The variables X/, Y, and R;i are generated by a multivariate normal distribution with zero mean
and covariance matrix

1 py P
S=|op, o' Opy|.

Pz P 1

We define R;i as

1, R:i >0,
0. 0.W.

We assume the percentage of missing values of Y; to be 30%. A total of M=1000 repeated
samples (X:,Yi,R;i) of sizes N=100 and N=200 were generated under five scenarios, where
a=1, p=1, B=1, 6=-1, 6,=1, y,=1 and o=1, with (A) p,=01p,=01 p,=01 (B)
P =025 p3=025p;; =025 (C) p,=05p3=05p,=05 (D) p,=075p;=075 py =075 (E)
=09, p,=09 p,,=09.

We analyze the following simple model
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E(X{) =5+ 5,2,
E(Y,) =z, (4)
E(R:i) =i

where the distributions of X/ , Y, and R:i are, respectively, N(B+5z.) , N(eyz,,0°) and

N(y,z,,1) . We generate data by the same process as above and in estimating the parameters we
assume MAR and NMAR mechanisms.

3.2. Ordinal -Normal Model with ignorable missing values

For our simulation, we have missing values only for our continuous variable and we may have
W =X"and W, =Y . For the missing mechanism we only need to define R" =R, , as we do not

have any missing value for our ordinal response and we consider model (4), for finding the
condition for MAR, let

z :1’Zm,R* ZPZS’ER*,R* :1’20,0 :Gz’zm,o :GpIZ’ZR*,o =0P3-

m,m

So, the constraint (3) will be reduced to
Zm,R* _Zlmyozg,lozpe*,o = Py~ PP, =0.

3.3. Results

Table 1 presents results on the relative biases of joint and marginal estimates obtained under
MAR and NMAR mechanisms for the five scenarios. The relative biases for joint and marginal

estimates of o, a,, B, B,, 6., 6,, 71, P, Pz ad o under MAR mechanism are generally

larger than those for joint and marginal estimates under NMAR mechanism i.e., if data are not
missing at random such an assumption on estimating parameters leads to have biased estimates
of parameters. So, if the missing mechanism is NMAR, use of model (2) which is assumed to be
MAR may lead to biased estimates. A comparision of the relative biases of joint and marginal
estimates, relative bias of joint estimates suggest that the were generally smaller than those for
marginal estimates.

Figures (1)-(3) show relative Biases of joint and marginal estimates of
o, B, B, 1, o, 6, and 6, under NMAR mechanism versus the values of p, , p, and

p,;- Solid and dashed plots correspond to relative biases of joint estimates for N =100 and

N =200, respectively. Dotted and dashed-dotted plots correspond to those of marginal estimates
for N =100 and N =200, respectively. The parameter-specific biases clearly indicates that both
full and marginal likelihood approaches yield reasonably unbiased estimates with NMAR
mechanism. Comparing parameter-specific estimates show that, relative biases for marginal
estimates were generally larger than those for joint estimates. So, according to Figures (1)-(3)
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relative biases for marginal estimates of o, B, f5,, 1, 6, 6, and o versus the values of
Py Py and p, are generally larger than those for joint estimates.

4. Application
4.1. Osteoporosis of the Spine Data

The osteoporosis of the spine data set is obtained from an observational study on women in the
Taleghani hospital of Tehran, Iran. These data record status of osteoporosis of the spine as an
ordinal outcome with three levels for 5281 patients.

Albrand et al., (2003) show some epidemiological studies have identified clinical factors that
predict the risk of hip fractures in elderly women independently of the level of bone mineral
density (BMD), such as low body weight, history of fractures, and clinical risk factors for
falls. Also, abdominal obesity needs to be included as a risk factor for osteoporosis and bone
loss. Their results showed that having a lot of belly fat is more detrimental to bone health than
having more superficial fat or fat around the hips. Excess fat around the belly may increase the
risk of women developing the brittle bone disease osteoporosis. So, a bulging waistline puts
women at risk of osteoporosis.

We shall also try to find answers for some questions, including: (1) How does the type of
dwelling affect the level of osteoporosis, waistline and BMI of the patient? (2) How does the job
status effect the level of osteoporosis, waistline and BMI of the patient? (3) How do the amount
of total body calcium and age affect the level of osteoporosis, waistline and BMI of the patient?

Also we consider the body mass index (BMI) and waistline as continuous outcomes. Covariates

which may affect the osteoporosis of the spine and waistline are amount of total body calcium
(Ca), job status (Job), type of the dwelling (Ta) and age.

Table 2: The variable of interest and descriptive statistics for them

Discreet Variables Type Levels Confidence interval
Osteoporosis of the spine Ordinal
None (26.2,28.2)%
Mild (28.1,31.3)%
Severe (30.8,35.3)%
Missing (7.3,10.11)%
Job status Binary
employee (39.2,43.4)%
housekeeper (56.5,60.9)%
Type of the dwelling Binary
house (29.11,35.5)%
apartment (64.2,68.8)%
Continuous Variables
Age Continuous (45.23,48.34) year
Amount of total body calcium  Continuous (980.45, 1001.71) mlgr
waistline  Continuous (76.54 , 83.65) cm

BMI  Continuous (28.53 , 28.93) kgr/cm?




AAM: Intern. J., Vol. 10, Issue 1 (June 2015) 97

Table 2 shows the list, type and descriptive statistics of variables under study. This Table shows
that the percentage of severe and mild osteoporosis are more than that of none level. Also
67.4% of women live in apartment and 58.7% of women are housekeeper. A frequency table
for the osteoporosis of the spine shows that 39% of values are missing.

The Pearson correlation between osteoporosis of the spine and BMI responses, osteoporosis of
the spine and waistline responses and BMI and waistline are r =0.245, Toggy = 0.208 and

OS,Waistline
f

awaisiine = 0-323. Based on the results our simulation study, we can expect to find a higher value of

correlation by our model. These three variables, osteoporosis of the spine, BMI and waistline are
endogenous correlated variables, and they have to be modeled simultaneously. Taking into
account the correlation, leads us to obtain a more precise estimation of standard errors of
estimates and so a better inference.

These three outcomes, osteoporosis of the spine, waistline and the indicator variable for missing
mechanism of Osteoporosis of the spine are endogenous correlated variables, and they have to be
modeled simultaneously. The joint model for these data is

OS; = a,age, + a,Ca, +a,Ta, +a,Job +¢&,,

Waist, = 3, + f,age, + 5,Ca, + B,Ta, + S,Job. + &,
Rgsi = y,age, +y,Ca +y.Ta +y,Job, + &,

BMI, =&, +&age, +&,Ca, +&,Ta, + £,Job, +¢,;.

()

The covariance matrix of the vector of errors (&;,&,,&5,€,) for model (3) is

1 0,01 Pi3 0,014
2
0101 0y 010y  0,0,0y
Pi3 0,93 1 03P

2
0,01y 010,05 00 0,

Y=

Here,

(@0 @) By By (e 7)s (G0 &)
0_121 022, 91! 921 Pr2r Pizr Prar P2z Pog and Paa

are parameters that should be estimated. A joint model to use the marginal and joint estimation
for model (3) is specified by a multivariate Gaussian copula.

For our application, we have missing values only for our ordinal variable and we may have
W’ =0S" and W, = (BMI,Waist)' . For missing mechanism we only need to define R =R, as

mis

we do not have any missing value for our continuous responses, and

*
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2
Emm =1’2m,R* = pl?ﬂzR*,R* =1 20,0 :[ i 0102;)24],
010,04 o,

Lo = (0'1,012’0_2,014)'72,?*10 = (01023, 02034)"s

so that the needed constraint will be reduced to

. + + _
Zm,R* _y yly P - P23L12 T P23Pos P12 T P23PosPr2 — PaaPro _0.

m,0=0,09R* o ~ 1_p224
4.2. Results for Data

Results of analysis the marginal and joint estimation for model (5) with missing mechanism are
given in Table 3. For comparative purposes, four models are considered. The first model (model
I) and the second model (model II) consider the joint estimation with NMAR and MAR
mechanism for model (5) . Also, The third model (model 111) and fourth model (model 1V) uses
the marginal estimation with NMAR and MAR mechanism for model (5).

Model (1) shows a significant effect of Ca, Ta and age on the value of osteoporosis of the spine
and significant effect of Ta on waistline and shows a weak significant effect of age on
BMI. From these effects we can infer that the older the patient the lower the value of
osteoporosis of the spine; people who live in apartment have higher low value of osteoporosis of
the spine than that of people who live in a house and the more the amount of calcium of the
body of the patient the higher is the low value of osteoporosis of the spine. None of the
explanatory variables has any effect on the missing indicator for osteoporosis of the spine.

For model (1) correlation parameters p,,, p;, P, @nd p,, are strongly significant. They show a
positive correlation between waistline and osteoporosis of the spine ( p,, ) and it shows a positive
correlation between waistline and BMI ( p,,) and a positive correlation between osteoporosis and
the missing indicator for the spine ( p,,). This leads to have a NMAR mechanism.

Model (1), model (111) and model (IV) give the same results as model (I). To compare model (1)
and model (I1) we have deviance =126.011, (p-value < 0.001). So one may prefer model (I). For
model (I1), the estimated variance of waist and BMI (& and &) obtained by model (1) are less
than those of model (11).

To compare model (I) and model (I11) we have deviance =101.08 (P-value < 0.001). Also, for
model (1) and model (1) we have deviance =165.04 (p-value < 0.001). So one may prefer model
(). Also comparing parameter-specific estimates for model (1), model (I11), model (I11) and model
(IV) show that, —loglikelihoods for marginal modelling are generally larger than those of joint

modelling.
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5. Conclusion

We have extended copula-based regression models for mixed outcomes with non-ignorable
missing values. For obtaining joint distribution of discrete and continuous outcomes with
possibility of missing values, we consider four cases then using bivariate and multivariate
Gaussian copulas we mixed-outcome marginal regression models. Two likelihood estimation
strategies are proposed, one method uses full likelihood function to estimate parameters
simultaneously, the other applies the IFM method to estimate parameters marginally and shared
parameters jointly. A generalization of our model for longitudinal studies is still an ongoing
research on our part.
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Table 1: Relative bias of joint (J) and marginal (M) estimates of parameters with NMAR and
MAR mechanisms under five different scenarios

Parameter
Scenario
J N
O a1 f1 A o pi2 P23 P13 Y1 01 02
A 100 0.06 0.11 -0.13 -1.42 -0.56 0.38 1.73 0.21 -0.02 0.13
NMAR
200 0:01 0:04 -0.01 -0.19 -0.043 0.16 0.09 0.14 0.21 0.02
100 0.21 0.15 0.31 -0.92 —-0.66 - 1.83 0.18 0.31 0.34
MAR
200 0.23 0.09 0.02 -0.04 -0.071 - 0.12 0.23 0.02 0.29
B 100 0.12 -0.15 0.23 -1.12 0.23 -0.41 0.12 -0.11 -0.12 0.28
NMAR
200  -0.21 0.12 0.34 -0.82 0.04 0.07 0.27 0.25 0.19 -0.01
100 0.18 0.20 0.22 -1.01 0.31 - -0.52  -0.04 0.11 -0.02
MAR
200 031 0.14 0.41 -0.71 -0.01 - 0.31 0.24 —-0.02 0.1
C 100 0.04 0.17 -0.08 -1.51 -0.15 0.33 0.21 0.03 0.13 0.21
NMAR
200 -0.01 -0.03 0.06 -0.08 0.22 -0.15 0.33 -0.01 0.04 0.33
100 0.14 0.14 0.13 —-0.05 0.02 - 0.25 0.12 0.39 0.41
MAR
200 0.22 0.02 0.08 -0.09 0.12 - -0.09 0.05 -0.01 0.45
D 100 0.1 0.02 0.23 —-0.98 0.44 —-0.08 0.42 0.14 -0.2 0.08
NMAR
200 0.24 0.13 0.17 -1.45 0.56 0.52 0.11 0.28 —0.13 0.05
100 0.08 -0.01 0.32 -0.72 0.71 - 0.51 0.39 0.01 0.12
MAR
200 0.27 0.25 0.15 -1.13 0.62 - 0.01 0.22 0.51 0.21
E 100 0.11 0.17 0.12 -1.09 -0.01 0.42 -0.23 0.12 0.32 0.02
NMAR
200 0.35 0.08 -0.02 -0.81 0.10 0.12 —-0.11 —-0.01 0.43 -0.03
100 0.47 0.26 0.28 —-0.52 0.02 - -0.05 0.25 0.58 0.22
MAR
200 0.28 0.14 0.09 —-0.96 -0.13 - 0.12 0.05 0.42 -0.02
Parameter
Scenario
(M) N

a1 B B2 o P12 P23 P13 y1 01 02
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Table 1 (Continues)

A 100 0.12 0.41 —-0.04 —-1.05 0.06 0.49 0.11 0.44 -0.28 0.25
NMAR
200 0.11 0.08 0.02 —-0.89 —-0.11 0.23 0.09 031 —0.03 0.12
100 0.31 0.18 0.29 —0.81 0.11 - 0.13 0.59 0.48 0.41
MAR
200 0.28 0.30 062 —0.01 0.42 - 0.44 0.48 0.29 0.39
B 100 0.14 0.19 0.81 —-1.01 0.44 0.52 —-0.02 0.19 0.14 0.52
NMAR
200 0.12 —0.01 0.25 —0.68 0.14 0.47 0.56 —0.18 0.54 0.11
100 0.32 0.64 0.83 —0.82 0.58 - 0.23 0.39 0.19 —-0.01
MAR
200 0.43 0.29 0.44 —-0.51 0.22 - 0.59 0.81 0.65 —-0.12
C 100 0.14 0.31 0.11 —-1.00 0.16 0.31 0.28 0.05 0.24 0.45
NMAR
200 0.13 0.89 0.15 —-0.29 0.33 0.52 0.45 0.22 0.02 0.59
100 0.32 0.65 091 —-0.93 —-0.11 - 0.23 0.26 —-0.20 0.52
MAR
200 0.43 0.85 0.42 —0.09 0.58 - 0.02 0.43 0.38 0.63
D 100  -0.12 0.03 0.21 —0.62 0.51 0.18 0.39 —0.08 0.14 0.11
NMAR
200 0.48 0.64 0.48 -1.22 0.61 —0.03 0.13 —0.11 0.25 0.24
100 0.29 —-0.02 0.84 —0.41 0.59 - 0.48 0.18 019 0.17
MAR
200 051 0.86 0.66 -0.91 0.85 - 0.56 0.69 0.36 0.32
E 100 031 028  —0.04 —0.86 0.02 0.52 —-0.12 031 0.61 0.12
NMAR
200 0.42 0.17 —-0.05 —0.42 —-0.05 0.37 —-0.10 0.48 0.52 0.16
100 0.64 0.39 0.34 -1.03 0.12 - 0.15 0.28 0.79 0.33
MAR
200 0.71 0.42 0.19 —0.54 0.48 - 0.53 0.52 0.49 0.01

Table 3: The marginal and joint estimation for model (3) with NMAR and MAR mechanisms.

Parameter
*
os Age(a,) Ca(oz) Ta(as) Job(as) Cutpoint (01) Cut point(62)
Joint Es.t. 0.09** 0.11** 0.07** -0.53 0.18 0.47
S. E. 0.02 0.03 0.01 0.41 0.13 0.17
Es.t. 0.11** 0.17** 0.13** -0.03 0.22 0.28
S. E. 0.05 0.06 0.04 0.65 0.14 0.18
Marginal Es.t. 0.010** 0.14** 0.05**  -0.43 0.24 0.41
S. E. 0.03 0.08 0.02 0.48 0.17 0.19
Es.t. 0.13** 0.21** 0.15** -0.05 0.19 0.22
S. E. 0.06 0.07 0.05 0.12 0.22 0.25
Waist.
Constant(50) Age(f1) Ca(B2) Ta(Ba) Job(2) o)’
Joint Es.t. 35.12** 0.08 0.15 0.33%" -0.14 21.9%%
S. E. 6.15 0.09 0.08 0.12 0.11 0.25
Es.t. 35.76** 0.12 0.20 0.28%* -0.08 22.01%%

S. E. 7.01 0.08 0.14 0.13 0.10 0.26
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Marginal Es.t. 36.33% 0.09 0.13 0.34%" —-0.12 2467
S. E. 6.55 0.08 0.07 0.14 0.13 0.23
Es.t. 36.65%% 0.11 0.23 0.24%*% -0.06 23.41%%
S. E. 7.44 0.05 0.16 0.12 0.11 0.23
BMI 2
Constant(80) Age(h1) Ca(B2) Ta(B3) Job(Ba) o,
Joint Es.t. 33.11%% -1.06** 0.11 0.65 0.45 27.3%*
S. E. 5.05 0.41 0.03 0.12 0.67 0.53
Es.t. 35.32%% -1.02** 0.12 0.42 0.28 28.01%%
S. E. 5.65 0.58 0.13 0.16 0.29 0.67
Marginal Es.t. 32.08** -1.09** 0.15 0.47 0.34 29.87*%
S. E. 6.05 0.09 0.16 0.30 0.23 0.65
Es.t. 34.11*% -1.11**  0.20 0.41 0.36 29.41%%
S. E. 6.42 0.03 0.21 0.13 0.14 0.63
Rios ™ Aage(y) Ca(2) Ta(ya)  Job(ya)
Joint Es.t. 0.23 0.37 0.12 0.25
NMAR
S.E. 0.19 0.21 0.13 0.23
MAR Es.t. 0.16 0.22 0.20 0.19
S.E. 0.21 0.23 0.19 0.16
Marginal NMAR Es.t. 0.31 0.11 0.16 0.23
S.E. 0.12 0.15 0.10 0.07
MAR Es.t. 0.10 0.25 0.21 0.19
S. E. 0.13 0.34 0.44 0.15
Correlation p12 p23 P4 p23 P24 P34
Joint Es.t. 0.49%* 0.20%* 0.34** 0.16 0.45** 0.10
NMAR
S. E. 0.05 0.01 0.09 0.10 0.09 0.11
MAR Es.t. 0.47** - 0.32%% 0.15 0.46%* 0.12
S.E. 0.08 - 0.11 0.16 0.11 0.11
Marginal Es. t 0.48** 0.19** 0.33*%* 0.14 052** 0.12
NMAR
S. E. 0.07 0.03 0.08 0.13 0.21  0.15
Es.t. 0.46** - 0.38 0.15 0.43** 0.16
S. E. 0.09 - 0.22 0.14 010 0.14
Models -log-likelihood
Model | Joint 1302.44
NMAR
Model 11 Marginal 1365.45
Model 111 Joint 1352.98
MAR
Model IV Marginal 1384.96
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Figure 1: Relative Biases of joint and marginal estimates of o, , B,, B,, 7., o, 6, and 6, versus
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