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Abstract

A new family of multidimensional dimensional (MD) perfect reconstruction (PR) two channel

filter banks with finite impulse response (FIR) filters induced from systems of biorthogonal MD

scaling functions and wavelets are introduced. One of the advantages of this construction is that

the biorthogonal scaling functions and wavelets are easy to establish due to the interpolatory

property of the scaling functions to start with. The other advantage is that all filters can be

centrosymmetric or bi-linear phase. Examples of two dimensional (2D) bi-linear phase PR two-

channel FIR filter banks will be demonstrated.
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1. Introduction

I
T is interesting to observe the overlap nowadays between the study of the multidimensional

(MD) perfect reconstruction (PR) quadrature mirror filter (QMF) filter banks and the study

of multivariate scaling functions and wavelets. Tensor products of the classical one dimensional

Daubechies orthonormal (o.n.) scaling functions and wavelets in Daubechies [5] have numerous

successfully applications, with those applications in signal and image processing in particular.

This natural extension from 1D to MD, plus its easy implementation and the cost-effectiveness,

makes the tensor product wavelets the benchmark for signal and image processing. However, on

one hand, filter banks induced from nonseparable scaling functions and wavelets are expected
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in order to better handle other issues such as the directional texture of an image. On the other

hand, to construct a 2D filter bank corresponding to a nonseparable orthonormal multivariate

scaling function and wavelet is not an easy job. Biorthogonality becomes de facto the standards

for JPEG2000 (http://www.jpeg.org/jpeg2000/).

For a given scaling function with a sampling matrix A, the number of mother wavelets is

determined by the value of | detA|−1. Henceforward, to reduce the number of wavelet generators,

it is natural to consider sampling matrices with small determinants in modulus such as two or

three. Though there are small variations for quincunx sampling matrix, we are, in this paper,

particularly interested in the 2D interpolatory biorthogonal scaling functions and wavelets with

the following symmetric quincunx sampling matrix

A =

[
1 1

1 −1

]
, (1)

which satisfies both | det(A)| = 2 and A2 = 2I2, with I2 the identity matrix of order 2. Hence,

there will be only one 2D mother wavelet corresponding to such a 2D scaling function (or father

wavelet).

There were some studies in the literature for the sampling matrix 2I2, particularly with box spline

prewavelets, for instance, Belogay & Wang [1], Chui, et al. [3], Riemenschneider & Shen [14]

& [15]. For some studies on quincunx sampling, see Cohen & Daubechies [4], Han & Jia [6],

He & Lai [7], Lian [10], [11], & [12], Vetterli & Kovačević [16], and the references therein.

Here is the organization of this paper. Some necessary but lengthy notations and definitions will

be given in Section 2. Our main results will be presented in Section 3. Three examples of the

family of FIR bi-linear PR QMF filter banks will be constructed in Section 4 while Section 5

contains the conclusion.

2. Notations

For simplicity and unless otherwise indicated, we will, in the sequel, fix A as the quincunx

sampling matrix in (1), although all material we present here applies to any sampling matrix

A that has integer entries, satisfies | det(A)| = 2, and all its eigenvalues are greater than 1 in

modulus. The procedure can also be extended to s-D.

Let φ be a 2D scaling function with the quincunx sampling matrix A, and ψ a 2D wavelet

corresponding to φ. Let φ̃ be a 2D scaling function, again, with quincunx sampling matrix A,

and is biorthogonal to φ. Let ψ̃ be a 2D wavelet orthogonal to φ̃ (and biorthogonal to ψ). With

the inner product of two functions f, g ∈ L2(Rs) and the Fourier transform f̂ of f defined by

〈f, g〉 =
∫

R
s

f(x) g(x) dx, (2)

and

f̂(ω) =
∫

R
s

f(x)e−jω·x dx, (3)
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respectively, the quadruplet, or the perfect reconstruction system with respect to {φ, ψ, φ̃, ψ̃},

satisfies

M(z) M̃(z)? = I2, |z1| = |z2| = 1, (4)

with

M(z) =

[
P (z) P (−z)

Q(z) Q(−z)

]
,

M̃(z) =

[
P̃ (z) P̃ (−z)

Q̃(z) Q̃(−z)

]
,

where ? denotes the complex conjugation, and P,Q, P̃ , and Q̃ are the two-scale symbols of

φ, ψ, φ̃, and ψ̃, respectively, namely,

φ̂(ω) = P (e−jA−>ω) φ̂(A−>ω),

ψ̂(ω) = Q(e−jA−>ω) φ̂(A−>ω),
̂̃
φ(ω) = P̃ (e−jA−>ω)

̂̃
φ(A−>ω),

̂̃
ψ(ω) = Q̃(e−jA−>ω)

̂̃
φ(A−>ω),

with

P (z) =
1

2

∑

k∈Z
2

p[k]zk, Q(z) =
1

2

∑

k∈Z
2

q[k]zk,

P̃ (z) =
1

2

∑

k∈Z
2

p̃[k]zk, Q̃(z) =
1

2

∑

k∈Z
2

q̃[k]zk.

Here, for k = [k1, k2]
> ∈ Z

2 and z = [z1, z2]
>, zk is defined by zk := zk1

1 z
k2

2 . Moreover, as

soon as P and P̃ are determined, Q and Q̃ can be easily obtained from

Q(z) = z1P̃ (−z)?, Q̃(z) = z1P (−z)?. (5)

The QMF property of {p[k]} and {p̃[k]} are reflected in one of the identities in (4), namely,

P (z)P̃ (z)? + P (−z)P̃ (−z)? = 1, |z1| = |z2| = 1, (6)

while, from (5), the FIR PR property follows due to the fact that detM(z) = −z1.

In summary, a PR two channel biorthogonal filter bank with quincunx sampling matrix is

illustrated in Fig. 1, where

y0[k] = (x ∗ p↓A)[k] =
∑

i∈Z
2

x[i] p[Ak− i],

y1[k] = (x ∗ q↓A)[k] =
∑

i∈Z
2

x[i] q[Ak− i],

x̂[k] =
∑

i∈Z
2

y0[i] p̃[Ai− k] +
∑

i∈Z
2

y1[i] q̃[Ai− k],

p↓A denotes downsampling of p by A, meaning p↓A[k] = p[Ak], and, as usual, ∗ stands for

convolution.
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Fig. 1. An illustration for a PR QMF induced from a system of 2D quincunx scaling function φ and wavelet ψ and their

biorthogonal scaling function φ̃ and wavelet ψ̃.

The vanishing moments of a wavelet ψ are determined by the polynomial preservation order of

its corresponding scaling function φ. For FIR filters, the latter is equivalent to the sum rule order

m of φ’s two-scale symbol P (z), denoted by P ∈ SRm. More precisely, P ∈ SRm is equivalent

to either {p[k]}k∈Z
2 satisfies

∑

k∈Z
2

p[Ak] =
∑

k∈Z
2

p

[
Ak +

[
1

0

]]
= 1,

∑

k∈Z
2

(Ak)αp[Ak] =
∑

k∈Z
2

(
Ak +

[
1

0

])α

p

[
Ak +

[
1

0

]]
,

for 1 ≤ |α| ≤ m− 1, α ∈ Z
2
+, or P having the form

P (1) = 1, P (z) = zβ
∑

α∈Z+,|α|≥m

sα

(
1 + z

2

)α

, (7)

for some β ∈ Z
2, where 1 = [1 1]> and |α| = α1 + α2 for α = [α1 α2]

>. For more equivalent

conditions on SRm, refer, e.g., Chui & Jiang [2], Jiang [8], Lian [11] & [12].

We end this section by pointing out that we will use the Sobolev exponent with respect to φ,

denoted by ν(φ), to describe the smoothness of a scaling function φ, namely,

ν(φ) = sup
{
ν : φ` ∈ W

ν(R2), ` = 1, · · · , s
}
,

W
ν(R2) =

{
f :

∫

R
2

(1 + |ω|2)ν |f̂(ω)|2dω <∞
}
.

3. Main Results

A 2D scaling function φ is interpolatory if it satisfies

φ(k) = δk,0, k ∈ Z
2. (8)
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Similar to the 1D setting, (8) leads to

P (z) + P (−z) = 1, |z1| = |z2| = 1. (9)

By the polyphase expression of P , namely,

P (z) =
1

2

∑

k∈Z
2

p[Ak]zAk +
1

2
z1

∑

k∈Z
2

p[Ak + [1 0]>]zAk,

the identity (9) is equivalent to

P (z) =
1

2


1 +

∑

k∈Z
2,|k|=odd

p[k]zk


 . (10)

A Laurent polynomial is said to be odd if it consists of terms with odd degrees only. We have

the following.

Theorem 1. Let P be a (Laurent) polynomial satisfying (9). Then a (Laurent) polynomial P̃

satisfying (6) is explicitly given by

P̃ (z) = 1 + S(z)P (−z)?, (11)

where S is an odd (Laurent) polynomial. In particular, P̃ that provides exactly the same sum

rule order as that of P is explicitly given by

P̃ (z) = (2P (−z) + 1)P (z). (12)

Proof. It is straightforward from (11) that

P (z)P̃ (z)? + P (−z)P̃ (−z)?

= P (z) + P (−z) + P (z)P (−z)(S(z)? + S(−z)?).

Then (6) follows from both (9) and the oddness of S. Similarly, when P̃ is given by (12), we

have

P (z)P̃ (z)? = (P (z))2(2P (−z) + 1)

= 2(P (z))2P (−z) + (P (z))2.

Hence,
P (z)P̃ (z)? + P (−z)P̃ (−z)?

= 2P (z)P (−z)(P (z) + P (−z)) + (P (z))2 + (P (−z))2

= (P (z) + P (−z))2 = 1.

That P̃ has the same sum rule order as that of P follows immediately by rewriting P̃ into

P̃ (z) = (3 − 2P (z))P (z) = 3P (z) − 2(P (z))2.

It is worthwhile to point out that, first, this explicit formulation of P̃ by (11) dramatically

simplifies the construction of a PR QMF filter bank. Certainly, for a given P , the family of

P̃ can be determined from (11) by requiring various values m of SRm. Secondly, the Sobolev

exponent of the scaling function φ̃ determined from two-scale symbol P̃ in (12) is usually small.
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So, instead of using (12), we always go a little deeper by using (11) to get a P̃ that has sum

rule order higher than that of P itself.

4. FIR Bi-Linear Phase PR QMF Filter Banks

It is easy to check that P (z) = 1/2 + (z1 + z2)/4 ∈ SR1, one of the simplest two-scale symbols

of a quincunx interpolatory scaling function. By applying the Matlab routines in Jiang [9], the

scaling function φ ∈ W
0.7356. However, the lowpass filter

[
1/2 0

1 1/2

]
is not linear.

A 2D filter H(ω1, ω2) is said to be bi-linear phase (cf., e.g., Lian [11]) if both H(ω1, ω2) and

H(ω2, ω1) have linear phase. To construct 2D FIR bi-linear phase PR QMF filter banks, we start

off with the construction of 2D quincunx interpolatory scaling functions that are symmetric about

the origin. To this end, the “center” of the FIR lowpass filter {p[k]} will be fixed at the origin.

If we view (p[k]) as a 2D square matrix, it has odd order and is centrosymmetric (cf., e.g., Muir

[13]), meaning that it is symmetric with respect to the central entry of the matrix.

Example 1. If S consists of terms with degree 1 in absolute value, it follows from (10) and is

also easy to verify by using (7) that

(p[k]) =
1

4




0 1 0

1 4 1

0 1 0


 ,

with P ∈ SR2. Direct construction from (11) and requiring P̃ to have SR4 lead to the following

bi-linear phase lowpass filter

(p̃[k]) =
1

256




0 0 3 0 3 0 0

0 6 −12 −16 −12 6 0

3 −12 −38 88 −38 −12 3

0 −16 88 424 88 −16 0

3 −12 −38 88 −38 −12 3

0 6 −12 −16 −12 6 0

0 0 3 0 3 0 0




.

We also mention here that this bi-linear filter was also established in our earlier work in Lian

[11].

Example 2. To get higher sum rule order for P , we include S in (10) with terms of degrees as

1 and 3 in absolute value so that P ∈ SR4. This yields

(p[k]) =
1

32




0 −1 0 −1 0

−1 0 10 0 −1

0 10 32 10 0

−1 0 10 0 −1

0 −1 0 −1 0



.
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Consequently, it follows from (10) and requiring P̃ to have SR6 that the “first quadrant” of

32768 (p̃[k]), which is in R
11×11, is given by




0 15 0 9 0 0

−172 0 −140 0 18 0

192 741 288 −310 0 9

−1768 −2080 1856 288 −140 0

11584 −5316 −2080 741 0 15

50536 11584 −1768 192 −172 0




.

Example 3. Analogous to Example 2, if we allow S to have terms of degrees up to 5 in absolute

value and require P ∈ SR6, then (p[k]) is given explicitly by

(p[k]) =
1

512




0 3 0 2 0 3 0

3 0 −27 0 −27 0 3

0 −27 0 174 0 −27 0

2 0 174 512 174 0 2

0 −27 0 174 0 −27 0

3 0 −27 0 −27 0 3

0 3 0 2 0 3 0




.

Moreover, (p̃[k]) ∈ R
15×15, with P̃ ∈ SR8, can also be established. Due to the limitation of space

here, we omit (p̃[k]) in this paper.

The Sobolev exponents of all three pairs of φ and φ̃ are included in the following Table 1.

Table 1. Sobolev Exponents of the Three Pairs of φ and φ̃ in Examples 1, 2 and 3

SRm of φ ν(φ) ν(φ̃) SRm of φ̃

m = 2 1.5776 0.3141 m = 4

m = 4 2.4479 0.9332 m = 6

m = 6 3.1543 1.4838 m = 8

5. Conclusion

A new family of 2D FIR bi-linear phase PR QMF filter banks induced from systems of biorthogo-

nal 2D quincunx interpolatory and symmetric scaling functions and wavelets was introduced. Not

only was the procedure both simple and straightforward but also the corresponding biorthogonal

quincunx scaling functions are easy to construct. Some of our future work in this direction will

be: (1) construction of framelets for this family of scaling functions; (2) consideration of other

sampling matrices; (3) study for similar problems in 3D setting; (4) application of these results

to, e.g., signal and image processing and data fitting; and (5) connection to subdivision schemes

for rendering and/or surface design.
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