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Abstract 
 
In this paper, we construct the traveling wave solutions involving parameters of the combined 
Kdv-MKdv equation, the Shorma-Tasso-Olver equation and (2+1)-dimensional 
Konopelchenko-Dubrovsky equation, by using a new approach method. When the parameters 
are taken special values, the solitary waves are derived from the traveling waves. The 
travelling wave solutions are expressed by the hyperbolic functions, the trigonometric 
functions and the rational functions. 
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1. Introduction 
 
The investigation of the exact solutions for nonlinear evolution equations plays an important 
role in the study of soliton theory. In recent years, searching for explicit solutions of 



AAM: Intern. J., Vol. 4, Issue 2 (December 2009) [Previously, Vol. 4, No. 2]  291 

nonlinear evolution equations by using various methods has become the main goal for many 
authors, and many powerful methods to construct exact solutions of nonlinear evolution 
equations have been established and developed such as the tanh-function expansion and its 
various extension [Parkes and Duffy (1996), Fan (2000)], the Jacobi elliptic function 
expansion [Liu et al. (2001), Fu et al. (2001)]. Very recently, Wang et al. (2008) introduced a 
new method called the -expansion method to look for travelling wave solutions of 
nonlinear evolution equations [Whitham (1973), Wang et al. (1996)]. The -expansion 
method is based on the assumptions that the travelling wave solutions can be expressed by a 
polynomial in , and that ( )G G   satisfies a second order linear ordinary differential 

equation (ODE). Recently modified -expansion method is presented to derive 
traveling wave solutions for a class of nonlinear partial differential equations called 
Whitham–Broer–Kaup-Like equations. The paper is arranged as follows. In Section 2, we 
describe briefly the -expansion method. In Sections 3−4, we apply the method to the 
combined Kdv-MKdv equation the Shorma-Tasso-Olver equation, respectively. In Section 5 
we apply the method for the (2+1)-dimensional Konopelchenko-Dubrovsky equation. In 
section 6, some conclusions are given. 
 
 
2. Description of the -expansion Method 
 
Considering the nonlinear partial differential equation in the form 
 

( , , , , , ,....) 0,x t tt xt xxP u u u u u u          (1) 
 
where     ( ,  ) u u x t  is an unknown function, P is a polynomial in   ( ,  )u u x t and its 
various partial derivatives, in which the highest order derivatives and nonlinear terms are 
involved. In the following we give the main steps of the -expansion method. 
 
Step1: Combining the independent variables x and t into one variable x vt   , we suppose 

that 
 

( , ) ( ), .u x t u x vt              (2)                         
 

The travelling wave variable (2) permits us to reduce Equation (1) to an ODE for 
( )G G  , namely, 

 
2( , , , , , ,....) 0.P u vu u v u vu u             (3) 

 
Step2. Suppose that the solution of ODE (3) can be expressed by a polynomial in  as 

follows 
 

( ) ( '/ ) ....,mu G G                    (4) 

 
where ( )G G  satisfies the second order LODE in the form 

 
0,G G G              (5) 
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,...,m  and  are  constants to be determined later, 0m  , the unwritten part in (4) 

is also a polynomial in , but the degree of which is generally equal to or less 
than 1m , the positive integer m  can be determined by considering the 
homogeneous balance between the highest order derivatives and nonlinear terms 
appearing in ODE (3). 

 
Step3. By substituting (4) into Eq. (3) and using the second order linear ODE (5), collecting 

all terms with the same order  together, the left-hand side of Equation (3) is 
converted into another polynomial in . Equating each coefficient of this 
polynomial to zero yields a set of algebraic equations for ,...,m  and . 

 
Step4. Assuming that the constants ,...,m   and  μ can be obtained by  solving the  algebraic 

equations in Step 3, since the general solutions of the second order LODE (5) have 
been well known for us, then substituting ,...,m v  and the general solutions of  

Equation (5) into (4) we have more travelling wave solutions of the nonlinear 
evolution Equation (1). 

 
 
3. Combined Kdv-MKdv Equation 
 
In order we consider the combined Kdv-MKdv equation in the form 
 

2 0.t x xx xxxu puu qu u u             (6) 
 
The travelling wave variable below 
 

( , ) ( ), .u x t u x vt             (7) 
 
Permits us converting Equation (7) into an ODE for  
 

( )G G  2 31 1
( ) ( ) 0.

2 3
vu p u q u u         

 
Integrating it with respect to  once yields 
 

2 31 1
( ) ( ) 0 (8)

2 3
c vu p u q u u      

 
where c is an integration constant that is to be determined later. Suppose that the solution of 
ODE (8) can be expressed by a polynomial in  as follows: 
 

( ) ( ) ...., (9)mu G G   
  

where ( )G G   satisfies the second order LODE in the form of 
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0, (10)G G G      

 

1 0, ,v   and   are to be determined later. 

 
By using (9) and (10) and considering the homogeneous balance between u and 3u  in 
Equation (8) we required that 3 2m m   then 1m  .So we can write (9)  as 
 

1 0( ) ( ) . (11)u G G   
  

Therefore, 
 

3 3 3 2 2 2 3
1 1 0 1 0 0( ) 3 ( ) 3 ( ) (12)u G G G G G G          

  
and 
 

2 2 2
1 1 0 0( ) 2 ( ) . (13)u G G G G      

  
By using (11) and (10) it is derived that 
 

3 2 2
1 1 1 1 12 ( ) 3 ( ) ( 2 )( ) . (14)u G G G G G G               

  
By substituting (11) − (14) into Equation (8) and collecting all terms with the same power of 
( )G G together, the left-hand side of Equation (8) is converted into another polynomial 

in ( )G G . Equating each coefficient of this polynomial to zero, yields a set of simultaneous 

algebraic equations for 1 0, , , ,v     and c  as follows: 

 

2 3
0 0 0 1

2 2
1 1 0 1 0 1 1

2 2
1 1 0 1

3
1 1

1 1
0

2 3

2 0
(15)1

3 0
2
1

2 0.
3

c v p q

v p q

p q

q

    

        

    

 

     

     


  

  

 

 
 
Solving the algebraic equations (15) yields 
 

1 0

6
6

6
, (16)

6
2

p i
q

i
q

q i
q


 

 
  

 

 



294                              Taghizade and Neirameh 

 
   

2 2

3 2 3 3

2

2 (17)
4 2

6 6 6 6
.

24 4 1 1 1 1
4 4

p
v

q

p p p i i
c

q q q
q i q i q i q
q q q q

 

     


  

      
 

 
By using (16), expression (11) can be written as 
 

6
6

6
( ) ( ) (18)

6
2

p i
qG

u i
q G

q i
q




 


  

 
 

and 
2 2

( 2 )
4 2

p
x t

q

 
    . Equation (18) is the formula of a solution of Equation (8), 

provided that the integration constant c in Equation (8) is taken as that in (17). Substituting 
the general solutions of Equation (10) into (18) we have three types of travelling wave 
solutions of the Kdv-MKdv equation (6) as follows:

 

 
When 2 4 0,    
 

2 2
2 1 2

2 2
1 2

61 1 6sinh 4 cosh 46( 4 ) 2 2( ) ( ) ,
1 1 26cosh 4 sinh 4 22 2

iC C q
u i

q C C q i
q

     
   

   
   

  
 

 

where  
2 2

( 2 )
4 2

p
x t

q

 
    . 1C and 2C are arbitrary constants. 

 
When 2 4 0,  

2 2
2 1 2

2 2
1 2

61 1 6sin 4 cos 46(4 ) 2 2( ) ( ) .
1 1 26cos 4 sin 4 22 2

p iC C q
u i

q C C q i
q

       
     

    
   

  
 

 
When 2 4 0,    
 

2

1 2

6

( ) ,

iC
q

u
C C
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where 1C  and 2C  are arbitrary constants. 

 
 
4. Shorma-Tasso-Olver Equation 
 
 
Now we consider the Shorma-Tasso-Olver Equation in the form 
 

3 23
( ) ( ) 0 (19)

2t x xx xxxu u u u     
 

 
and look for the travelling wave solution of Equation (19) in the form 
 

( , ) ( ), . (20)u x t u x vt   
 

where the speed v of the travelling waves is to be determined later . 
 
By using the travelling wave variable (20), Equation (19) is converted into an ODE for 

( )u u   
 

3 23
( ) ( ) 0. (21)

2
vu u u u         

 
 
Integrating it with respect to   once yields 
 

3 23
( ) ( ) 0, (22)

2
c vu u u u       

 
 
where c is an integration constant that is to be determined later. Considering the 
homogeneous balance between u  and 3u  in Equation (22) 3 2 1m m m     we can 
suppose that the solution of Equation (22) is of the form 
 

1 0( ) ( ) , (23)u G G   
  

where ( )G G   satisfies the second order LODE in the form 
 

0, (24)G G G      
 

1 0, ,   and  are to be determined later. 

  
Therefore, 
 

3 3 3 2 2 2 3
1 1 0 1 0 0( ) 3 ( ) 3 ( ) . (25)u G G G G G G            

 
By using (23) and (24) it is derived that 
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3 2 2
1 1 1 1 12 ( ) 3 ( ) ( 2 )( ) (26)u G G G G G G                 

2 3 2 2
1 1 1 0

2
1 1 0 1 0

( ) 2 ( ) ( 2 2 )( )

( 2 2 )( ) 2 . (27)

u G G G G

G G

    

       

      

     
 
Substituting the expressions (23) and (25)-(27) into Equation (22) and collecting all terms 
with the same power of ( )G G

 
together, the left hand sides of Equation (22) are converted 

into the polynomials in ( )G G . Equating the coefficients of the polynomials to zero yields a 

set of simultaneous algebraic equations for 1 0, , , ,v     and  c   as follows: 

 
3

0 0 0 1 1

2 2 2
1 0 1 1 0 1 1 1

2 2
0 1 1 0 1 1

3 2
1 1 1

3 0

3 3 3 2 0

3 3 3 3 0

3 2 0.

c v

v

      

           

       

  

     

      


   
   

 

 
Solving the algebraic equations above yields 
 

1 0

3
2,1, (28)

2
   

 

2

2 3

(29 8 9 )
2

(192 27 48 18 16 ), (29)
8

v

c

   

     

  

    
 

 
, and ,  are arbitrary constants. 

 
By using (28), expression (23) can be written as: 
 

3
( ) 2 ( ) .

2
u G G    

 
Substituting the general solutions of the second order LODE (24) into formulae (23), we have 
three types of travelling wave solutions of the Shorma-Tasso–Olver equation (19) as follows: 
 
When 2 4 0,    
 

2 2
1 2

2

2 2
1 2

1 1
sinh 4 cosh 4

2 2( ) 2 4 ( ) ,
1 1 2cosh 4 sinh 4
2 2

C C
u

C C

      
   

  
  

  
 

 

where 
2 2

( 2 )
4 2

p
x t

q

 
    . C1 and C2 are arbitrary constants. 
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In particular, if 1 20, 0, 0, 0C C     , u becomes 

 
1

( ) 2 ,
2 2

u tgh
     

 
which is the solitary wave solution of the  Shorma-Tasso-Olver Equation. 
 
When 2 4 0,    

2 2
1 2

2

2 2
1 2

1 1
sin 4 cos 4

2 2( ) 2 4 .
1 1 2cos 4 sin 4
2 2

C C
u

C C

        
     

     
   

   
 

 

 
When 2 4 0,    
 

22

1 2

2
( ) , (29 8 9 ) ,

2

C
u x t

C C

    


    


 

 
where C1 and C2  are arbitrary constants. 
 
 
 
5.  (2+1)-dimensional Konopelchenko-Dubrovsky Equation 
 
 
In this section we consider the (2 + 1)-dimensional Konopelchenko-Dubrovsky equation in 
the form 
 

2
23

6 3 3 0, . (30)
2t xxx x x y x y x

a
u u buu u u v avu u v      

 
 
Using the wave solutions 
 

( , ) ( ), (31)u x t u kx ly vt      
 
and after integration with respect to , we obtain the second order differential equation 

 
2 2

3 2 33 3
( ) ( 3 ) 0, (32)

2 2

l al a
c v u k u bk u ku

k
      

 
 
where c is an integration constant that is to be determined later. Considering the 
homogeneous balance between u  and 3u  in Equation (32) 3 2 1m m m    , we can 
suppose that the solution of Equation (32) is of the form 
 

1 0( ) ( ) , (33)u G G   
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where ( )G G   satisfies the second order LODE in the form 
 

0, (34)G G G      
 

1 0, ,   and  are to be determined later. On substituting (33) into (32), collecting all terms 

with the same powers of ( )G G and setting each coefficient to zero, we obtain the following 
system of algebraic equations: 
 

2 32
2 2 1

0 1 0

2 02
3 2 1 0

1 1 1 0 1

2 2
3 2 1 0

1 1

2 3
3 1

1

3 3
( ) ( 3 ) 0

2 2

33 3
( ) ( 2 ) 2( 3 ) 0

2 2 (35)
33

3 ( 3 ) 0
2 2

2 0.
2

kal al
c v k bk

k

kal al
v k bk

k

kaal
k bk

ka
k

  

       

   




      




      

    

  


 

 
 
On solving the above algebraic by using the Maple, we get 
 

1 0 2

2 1 2
, (36)
k b

a a ka a

      

 
 

and for 1 0 2

2 1 2
,
k b

a a ka a

      we obtain 

 
2 2 2

2 2 2
2 2

9 1 2 12 12 18 3
2 3 3 . (37)

2

l b k b bl kb k
v k k al l

k a ka a a a a

                
   

 
Substituting Equations (36) and (37) into the Equation (35), we obtain the integration 
constant c. Substituting (36) into (33) yields: 
 

2

2 1 2
( ) ( ) .

k b
u G G

a a ka a

       

 
On substituting the general solutions of the second order LODE (34) into formulae, we 
deduce the following traveling wave solutions 
 
Case 1. If 2 4 0   , then we have 
 

2 2
1 2

2
2

2 2
1 2

1 1
sinh 4 cosh 42 1 22 2( ) 4 .

1 1 2cosh 4 sinh 4
2 2

C Ck b
u

a a ka aC C
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Case 2. If 2 4 0   , then we have 
 

2 2
1 2

2
2

2 2
1 2

1 1
sin 4 cos 42 1 22 2( ) 4 .

1 1 2cos 4 sin 4
2 2

C Ck b
u

a a ka aC C

         
     

     
       

   
 

 

 
Case  3. When  2 4 0, then    

 

2

1 2

2 2 2
2 2 2

2 2

2

( ) ,

9 1 2 12 12 18 3
2 3 3 ,

2

k
C

au
C C

l b k b bl kb k
x k k al l t

k a ka a a a a




     






                 

 

 
where 1C  and 2C  are  arbitrary constants. 

 
 
6. Conclusions 
 
The ( )G G -expansion method has its own advantages: direct, concise, elementary that the 
general solutions of the second order LODE have been well known for many researchers and 
effective that it can be used for many other nonlinear evolution equations. For instance, the 
Burgers equation [Whitham (1973)], the Kdv equation [Ablowitz and Clarkson (1991)], the 
MKdv equation [Ablowitz and Clarkson (1991)], the Boussinesq equation [Ablowitz and 
Clarkson (1991)], the Kdv-Burgers equation [Wang (1996)], the Gardner equation [Fu, et al. 
(2004)] and various variant Boussinesq equations [Wang (1995), Wang, et al. (1996)] and so 
on. The researching results of these equations mentioned will be appeared elsewhere. We 
have noted that the ( )G G -expansion method changes the given difficult problems into 
simple problems which can be solved easily. 
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