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Abstract

The numerical solution of a mixed linear integro delay differential-difference equation with
piecewise interval is presented using the Chebyshev collocation method. The aim of this article
is to present an efficient numerical procedure for solving a mixed linear integro delay differential
difference equations. Our method depends mainly on a Chebyshev expansion approach. This
method transforms a mixed linear integro delay differential-difference equations and the given
conditions into a matrix equation which corresponds to a system of linear algebraic equation.
The reliability and efficiency of the proposed scheme are demonstrated by some numerical
experiments and performed on the computer algebraic system Maple 10.
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1. Introduction

In recent years, the studies of mixed integro delay differential-difference equations have
developed very rapidly. These equations may be classified into two types; the Fredholm integro-
differential-difference equations and Volterra integro-differential-difference equations. The
upper bound of the integral part of Volterra type is variable, while it is a fixed number for that of
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Fredholm type. In this paper we focus on Fredholm Volterra integro differential difference
equations with piecewise intervals. Integro-differential-difference equations are important, but
are often harder to solve, even numerically, and progress on how to solve them has been slow.
Problems involving these equations arise frequently in many applied areas including engineering,
mechanics, physics, chemistry, astronomy, biology, economics, potential theory, electrostatics,
etc. [Emler (2001,2002), Ren (1999), Rashed (2004), Kadalbajoo (2002,2004), Bainov (2000),
Cao (2004),]: The study of integro differential difference equations has great interest in
contemporary research work. Several numerical methods, such as the successive approximations,
Adomian decomposition, Chebyshev and Taylor collocation, Haar Wavelet, Tau and Walsh
series methods, etc. [Ortiz (1998), Hosseini (2003), Zhao (2006), Maleknejad (2006), Sezer
(2005a, 2005b), Synder (1966), Giilsu (2010)] are used for their solution. Mainly we deal with
the following integro delay differential-difference equation with piecewise intervals

> P+ X H (" (- 7) =g

“ b . x (1)
A FGyod+ 3 p, [ K (x0)y(0)di
i=0 a; Jj=0 a;
xe[-7,0], —=1<a,;,b;,c; <—1 under the mixed conditions
m—1 r
ZCkg,y(k)(cij)z/I[,—rﬁc!/ <0,i=0,1,..m-1, (2)

=~
Il

0 /=0

where y(x) is an unknown function, the known P, (x), H (x), F;(x,1),K (x,t) and g(x) are

defined on an interval and also c¢*

7

¢;» 4, and p  are appropriate constant. Our aim is to find an

approximate solution expressed in the form

y(x):ia,Tr(x),OSiSN, 3)

r=0

where a,,r =0,1,2,..., N, are unknown coefficients and N is any chosen positive integer such

that N <m . To obtained a solution in the form(3) of the problem (1) and (2), we may use the
collocation points defined by

T

in
X, = 1+cos(—) ,i=0,1,2,...,N. 4
2 frvensi®) ’

The remainder of the paper is organized as follows: Higher-order linear mixed integro-delay-
differential-difference equation with variable coefficients with piecewise intervals and
fundamental relations are presented in Section 2. The method of finding approximate solution is
described in Section 3. To support our findings, we present numerical results of some
experiments using Maplel0 in Section 4. Section 5 concludes this article with a brief summary.
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2. Fundamental Matrix Relations

Let us write Eq.(1) in the form

D(x)+ H(x) = g0+ Y AL () + Y 1,7, ()

i=0

where the differential part
D(x)= P (x)y" (x)
k=0
and the difference part
H(x)=) H (x)y"(x~7)
s=0
the Fredholm integral part
b;
1,(x) = [ F,(x,0)p(t)dt
and Volterra integral part

J;(x)= jin (x,t)y(2)dt .

J

We convert these equations and the mixed conditions in to the matrix form. Let us consider the
Eq. (1) and find the matrix forms of each term of the equation. We first consider the solution

y(x)and its derivative y“’(x) defined by a truncated Chebyshev series. Then we can put series
in the matrix form

yx)=TWA, y*x)=T"xA, (5)
where
T(x) =[T,(x) T,(x) ... T,(x)], T @) =[T"(x) T ®) .. T\" ()], A=[a, a, ...ay]".

On the other hand, it is well known that [Synder (1966)] the relation between the powers x” and
the Chebyshev polynomials 7, (x) is
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n( 2n
x2" = 2‘2"“2( _]sz(x), -1<x<1, (6)
=0\t =]
and
" (2n+1
X2 :22"2[ " _)Tzﬂl(x),—lﬁxﬁl. (7)
j=0\ 11—

Using the expression (6) and (7) and taking n =0,1,..., N, we obtain the corresponding matrix
relation as follows:

X" (x)=DT" (x) and X(x)=T(x)(D")", (8)
where
X=[1x"...x"].

for odd N,

0 N 2N 0 N 2N
i (N-1)/2 0 |
and for even N,
_ 0 -
1 2! 0 0 0
210
1 0
0 2 0 0
0
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Then, by (8), we obtain

T(x) = X(x)(D")™" 9)
and

T?(x)=X?(x)(D") ", k=01,2,.... (10)

Moreover it is clearly seen that the relation between the matrix X(x) and its derivative X (x) is

X% (x) = X(x)B*, (11)
where
(0 1.0 -« 0]
002 - 0
B=|0 0 - 0.
: . N
100 0 - 0]

2.1. Matrix Representation for Differential and Difference Parts

Let us assume that the function y(x) and its derivatives have truncated the Chebyshev expansion

of the form

N
yP @) =>1a,T(x), k=012,.,m. (12)

=0
The derivative of the matrix T(x) defined in (10), and the relations (11), give

T (x) = X(x)B* (D). (13)
Substituting (13) into (5) we obtain

yPx)=T" (A =X(x)B"(D")"'A, (14)

where y”(x) = y(x), T (x) = T(x), T, (x), T, (x),..., T (x) are first-kind Chebyshev polynomial,
a,,a,,...,a, are coefficients to be determined in (3). Now, the matrix representation of the

differential part is given by
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D(x) = ﬁpk (X)X(x)B* M)A . (15)

k=0

To obtined the matrix form of the difference part

H@x) =Y H ()5 (x—1). (16)
We know that;
X(x—7)=X(x)B_,, (17)
where
I 0 0 1 1 2 2 N N |
Gl (e (Jer = (3)e
1 o 2 . N-1 Nl
0 [J(—r) = ( e
B = 2 o N-2 N
0 o [ - [ ) J_(_r)
. N . )
_ 0 0 0 (N](—T) _

Using relation (11), we can write

X% (x-7)=X(x)B‘B._.. (18)
In a similarly way as (14), we obtain

YO x-1)=T*® (x-7)A =X(x)B'B_(D")"A. (19)

So that, the matrix representation of the difference part become
H(x)=) H (x)X(x)B'B_(D")"A. (20)
k=0

2.2. Matrix Representation for Fredholm Integral Part

Let assume that F;(x,#) can be expanded to univariate Chebyshev series with respect to ¢ as
follows:
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Fix0) =2 1, (T,0).

Then the matrix representations of the kernel function F,(x,¢) is given by
F,(x,)) =F,()T" (1),

where
F() =01 fu(x) fo(x) - fiy()].

Substituting the relations (14) and (22) in the Fredholm part, we obtained
b, b, b,
I,(x) = [F,(x,t)y()dt = [ F,(x)T(O)T())Adt = [F,(x)D"'X" (1)X())(D") ™ Ad

=F, (x)D_l( j X’ (t)X(t)dtJ(DT)‘lA =F,(x)D"'M,(D")"'A

We say

M, = 'fXT(t)X(t)dt ,

and
p+q+l prq+l
_b — Y%

M[ :[mpq]—b_'_—q-;l, p,q:O,l,...,N.

Hence, the matrix representation of the Fredholm integral part is given by

1.(x)= ZF (x)D'M,(D")"'A.

i=0

2.3. Matrix Representation for Volterra Integral Part

21)

(22)

(23)

Similar to the previous section, suppose that the kernel functions K, (x,7) can be expanded to

the univariate Chebyshev series with respect to ¢ as follows:
N
K, (x,0) =Yk, (0)T.(t).
r=0

Then the matrix representations of the kernel function K, (x,#) become

(24)
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K, (x0) =K, ()T (), (25)
where

K, (0 =lky () k(@) ku() - k(]
Using (14) and (25), we obtain

J,(x)= IK/ ()T (OT@)Adt = IK/ XD X" (HX() (D" Adt

J

=K, (x)DIU X! (t)X(zWJ(DTV A=K;(x)D"L;(x)(D")"A,

J

where

L, (x)= TXT ()X (r)dt

and
xp+q+l —c. ptgtl
L =[l ]=——,—, pg=0l..N.
' [pq] g+l p.q N
So that,
J;(x)= Z(;K ;(0OD'L (x)(D") AL (26)

2.4. Matrix Representation of the Conditions

Using the relation (14), the matrix form of the conditions defined by (2) can be written as

m=1 _r
c*iX(c,B*M")'A=[1,] -r<¢, <0, (27)
0

k=0 j=
where

0 1 2 N
X(c;)=[c; ¢; ¢ - ¢l



564 M. Giilsu and Y. Oztiirk

3. Method of Solution

We are now ready to construct the fundamental matrix equation corresponding to equation (1).
For this purpose, substituting the matrix relations (15), (20), (23) and (26) into equation (1) we
obtain

(i P, (1)X(x)B*(D")" + 3 H, (x)X(x)B'B_, (D)

(28)

Jj=0

- Y AR@D M, @) =Y 4K, (DL, (D" ]A =g(v)

For computing the Chebyshev coefficient matrix A numerically, Chebyshev collocation points
defined by

X, =L (1+cos(-2), r=0.12,..N
2 N
are put in the above relation (28). We obtained

(i P, (x,)X(x,)B* (D) + 3" H,(x,)X(x,)B'B_,(D")"

k=0 s=0

. (29)
-2 AF,(x,)D"M, (x,)(D")" = > 1K (x, )DL, (x,)(D")" JA =g(x,)
i=0 j=0
s0, the fundamental matrix equation is obtained
{z P.XB*(D")"+> H XB'B_ (D")"
k=0 s=0 , (30)
-> AED'M,(D")" - 4 K, D"'L, (D) jA =G
i=0 j=0
where
[P, (x,) O 0 0 | H,(x,) 0 0 0 |
0 P(x) O 0 0 H,(x) 0 0
P.=| 0 0 P.(x,) 0 [|'H,=| 0 0  H,/(x,) 0
0 0 0 P (x,)] 0 0 0 H,(x,)]
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'K (x,) 0 0 0 D' 0 0 0
0 K;(x) 0 0 B 0 D' 0 0
K,=| 0 0 K,(x) - 0 [|:D'= 0 D' 0
| 0 0 0 K, (xy)] |0 0 0 D" |
_ _ B 2 N — -
L;(xy) 0 0 0 1 x X Xo g(x,)
: 2
0 L (x) 0 0 I x x xlN g(x)
Lj = 0 0 Lj(xz) 0 s X= 1 X, x22 sz 5G = g(x2)
L O 0 O LA/ (xN )_ xN xNz XNN _g(xN )_
(%) | (D)
F,(x,) (D)
F, =|F.(x,) (DT)_I = (DTY1
Fi(xy) ] _(DT)_I_

The fundamental matrix equation (30) for equation (1) corresponds to a system for the (N +1)
unknown coefficients a,, a,,...,a, . Briefly we can write equation (30) as

WA=Gor [W;G], (31)
so that
W=[w,]1=> PXB*(D")"+> HXBB_ (D)
) 0 V = 2,g=0]..N. (32)
-> AFED'™™M, (D) -> 4 K, DL, (D")"
i=0 j=0
The matrix form for conditions (2) are then
CA=[ 4] or [C;;4,] i=0,1,...,m-1, (33)

where

m—1
C = zckin(CU- )B*(D")" = [td,00 ;1203 ]

k=0
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To obtain the solution of equation (1) under the conditions (2), we replace the row matrices (33)
by the last m rows of the matrix (31) to get the required augmented matrix

Woo Woi - Won ;o g(x) ]
Wi Wi - Wiy ;o g(x)
5
[W*;G*]Z Wyimo Wyomi -+« Wyiun g(xy_,)
Uy Upy - Uy 5 A
Uy Uy - Uy 5 A4
5
| Yo Upn - - - Upan At |

or the corresponding matrix equation

WA=G". (34)
If rank (W") = rank [W ;G ]=N +1, then we can write

A=(W)'G".

Thus, the coefficients a,,n =0,1,...,N , are uniquely determined by equation (34). Also we can
easily check the accuracy of the obtained solutions as follows:

Since the obtained first-kind Chebyshev polynomial expansion is an approximate solution of
equation (1), when the function y(x) and its derivatives are substituted in equation (1), the

resulting equation must be satisfied approximately; that is, for x = x, €[-1,1],1=0,1,2,...,

E(x) =| D)+ Hx) = Y A0, 00) = 3,7 () - £(x,)| 20

i=0

4. Illustrative Examples

In this section, several numerical examples are given to illustrate the accuracy and effectiveness
properties of the method and all of them were performed on the computer using a program

written in Maple 9. The absolute errors in Tables are the values of | y(X)=yy (x)| at selected

points.
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Example4.1.

Let us first consider the second order linear Fredholm-Volterra integro-delay-differential-
difference equation with piecewise interval,

Y'(x)=xp'(x)+ y(x) -y (x =1+ y(x —1) = (x + I)sin(x) — 2(x + 1) sin(1) + xsin(x — 1)

+ Jo.y(t )dt + j.xy(f))dt + j y(t))dt — 2I y(1))dt

with mixed conditions y(0)=1,»'(0) =0 and seek the solution y(x) as a truncated first-kind
Chebyshev series

y(x):ia,Tr(x), -1<x<0,

so that
P(x) =1 B(x)=-x, P(x)=1, H,(x)=1,H,(x) = —x,F(x,0) =1, F,(x,0) = x,
K,(x,t)=1K,(x,t) =1, g(x) = (x+1)sin(x) —2(x +1)sin(l) + xsin(x —1).

Then, for N =5, the collocation points are

and the fundamental matrix equation of the problem is
w=PXMD")"'+PXBMD")"' +P,XB*(D")"' +H,XB,(D")" + H,XBB (D")"'
. - (35)
~2,F,D"M,(D")" -~ 2FD"'M,(D")" - 4, K, D" L,(D")"~ 1K, D" L, (D)
With the following matrices for conditions
XO)DH' =1 0 -1 0 1 0Ja=[1],
XO0)BMDH' =0 1 0 -3 0 5]a=]0],

where
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If these matrices are substituted in (34), we obtain the linear algebraic system and the
=5 as

approximate solution of the problem for N

y(x) =1.000000+0.503090x°+0.004434x°+0.04550 1x*+0.005079x" .
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The exact solution of this problem is y(x) = cos(x). Figure 1 shows the comparison between the

exact solution and the approximate different for various N Chebshev collocation method
solution of the system. In Table 1, we show that when N is increasing, N, is decreasing.

Table 1: Numerical solution of Example 4.1 for different N .

Present Method

x Exact Solution N=5 Ne =5 N=T7 Ne =17 N=9 Ne =9
0.0 1.000000 1.000000  0.000000 1.000000  0.00000  1.000000  0.00000
-0.1 0.995004 0.994977  0.262E-4  0.995007 0.339E-5 0.995003 0.376E-5
-0.2 0.980066 0.979982 0.838E-4 0.980054 0.116E-4 0.980065 0.133E-5
-0.3 0.955336 0.955197  0.139E-3  0.955314 0.216E-4  0.955333  0.260E-5
-0.4 0.921060 0.920900 0.160E-3  0.921030 0.302E-4  0.921057 0.387E-5
-0.5 0.877582 0.877464 0.117E-3  0.877548 0.342E-4  0.877577  0.484E-5
-0.6 0.825582 0.825344 0.875E-5 0.825304 0.311E-4 0.825330 0.524E-5
-0.7 0.764842 0.765073  0.231E-3  0.764822 0.192E-4 0.764837  0.487E-5
-0.8 0.696706 0.697260 0.553E-3  0.696709 0.235E-5 0.696703  0.359E-5
-0.9 0.621609 0.622576  0.966E-3  0.621643 0.336E-4 0.621608 0.137E-5
-1.0 0.540602 0.541757  0.142E-2  0.540375 0.734E-4 0.540304 0.172E-5

s

esiiso s et I N TG

%

u®n
&4 4

i

¥ -0.9

Example 4.2.

-0.8 -07 -0.6 -05

%
-0.4 -0.3

-0.1

Figure 1. Error function of Example 4.1 for various N

Let us consider the second order linear Fredholm-Volterra integro delay differential-difference
equation with piecewise intervals,

X2y (x) = xy'(x) + (x =D y(x) + y(x = 0.5) = xy'(x = 0.5) = —%x“ +6x° —17x° +7x+

+ J.(x +)y(t)dt + j (x —)(t)dt + ]C.xy(t)dt

23

13

3
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with conditions y(0) =5, y'(0) = —4 and its exact solution is y(x) = 2x* —4x+5. We obtained
the approximate solution of the problem for N =5 which are the same with the exact solution.
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Example 4.3.

Consider the second order linear Fredholm-Volterra integro delay differential-difference
equation with piecewise intervals,

Y'Y +(1+e ) Y-y +y(x-D=(x-Dy(x-1)=B=x)e"" +e +e " +e" +(0.5-x)e"’
os 1 1 . 1 . X X X
+(1.5-x)e + =+ [e"y()dt + [ y(O)dt + [ (x =)@yt = [(x =)yt + [ (x+ 1) y(0)dt
€ -1 0 -1 0.5 0.5
with mixed conditions y(0) =1, y'(0)=1, »'"(0) =1 and its exact solution is y(x)=¢e". We
obtain the approximate solution of the problem for N =4, N =5, N =6 which are tabulated

and graphed in Table 2 and Figure 2 respectively.

Table 2: Numerical solution of Example 4.3 for different NV

Present Method

X Exact Solution N=4 Ne =4 N=5 Ne =5 N=6 Ne =6
0.0 1.000000 1.000000  0.000000 0.999999 0.400E-9  1.000000  0.000000
-0.1 0.904837 0.904836  0.106E-5 0.904837 0.806E-7  0.904837  0.557E-7
-0.2 0.818730 0.818719 0.112E-4 0.818731 0.847E-6  0.818731  0.453E-6
-0.3 0.740818 0.740775  0.430E-4 0.740822 0.400E-5 0.740819  0.153E-5
-0.4 0.670320 0.670215  0.104E-3 0.670332 0.128E-4  0.670323  0.354E-5
-0.5 0.606530 0.606336  0.193E-3 0.606562 0.321E-4  0.606537  0.643E-5
-0.6 0.548811 0.548524  0.287E-3 0.548878 0.671E-4  0.548821 0.971E-5
-0.7 0.496585 0.496247  0.337E-3 0.496707 0.121E-3  0.496597 0.123E-4
-0.8 0.449328 0.449061  0.357E-3 0.449525 0.196E-3  0.449341 0.128E-4
-0.9 0.406569 0.406609  0.450E-3 0.406856 0.287E-3  0.406579  0.937E-5
-1.0 0.367879 0.368617  0.638E-3 0.368256 0.377E-3  0.367880  0.565E-6

1 g
; N
ool * .
o o

0.8

0.7+

0.6

0.5+

04+ A

0.3

- N=5
* - N=6

[+ Exact solution |
N=4

—em e

-0.9 -0.8

-0.7 -06

-04  -03

Figure 2. Error function of Example 4.3 for various N

-0.2 -0.1
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Consider the linear third order Fredholm-Volterra integro delay differential-difference equation,

(x=Dy" () +12y' () + (x =Dy(x) = y" (x =D+ y'(x = 1) =

+ j y(t)dt + j(x —t)y(t)dt + Ty(t)dt + jxy(f)df

293 206 157 5 1
- -—x

20

X
15

3

—=X

3

+—x"+—x
5

5

with conditions »(0)=0, 3'(0)=0, »"(0)=2 and its exact solution is y(x)=x"—x*. We

obtained the approximate solution of the problem for N = 5 which are the same with the exact

solution.

Example 4.5.

Consider the first order linear Fredholm-Volterra integro-differential equation,

1 X
y-y=e —e+ Iy(t)dt + J.y(t)dt
0 0

with nonlocal boundary condition

Y(0)+ [ y(o)dt = e

and its exact solution is y(x) =e*. We obtain the approximate solution of the problem for

N =4, N=5, N =06 which are tabulated and graphed in Table 3 and Figure 3 respectively.

Table 3: Numerical solution of Example 4.5 for different N

Present Method

X Exact Solution N =4 Ne =4 N=5 Ne =5 N=6 Ne =6
0.0 1.000000 1.001618 0.161E-2 1.000329 0.329E-3  1.000059  0.593E-4
-0.1 0.904837 0.904837  0.131E-2 0.905105 0.268E-3  0.904885  0.483E-4
-0.2 0.818730 0.818730 0.105E-2 0.818946 0.215E-3  0.818769  0.388E-4
-0.3 0.740818 0.740818  0.841E-3 0.740988 0.170E-3  0.740848 0.305E-4
-0.4 0.670320 0.670320 0.660E-3 0.670450 0.130E-3  0.670343 0.233E-4
-0.5 0.606530 0.606530  0.494E-3 0.606625 0.949E-4  0.606530 0.170E-4
-0.6 0.548811 0.548811  0.332E-3 0.548875 0.633E-4  0.548823 0.116E-4
-0.7 0.496585 0.496585 0.171E-3 0.496621 0.364E-4  0.496592  0.680E-5
-0.8 0.449328 0.449328  0.229E-4 0.449342 0.139E-4  0.449331  0.246E-5
-0.9 0.406569 0.406569  0.782E-4 0.406563 0.616E-5 0.406569  0.153E-5
-1.0 0.367879 0.367879  0.730E-4 0.367849 0.302E-4  0.367874  0.495E-5
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Figure 3. Error function of Example 4.5 for various NV

5. Conclusion

The Chebyshev collocation methods are used to solve the linear integrodifferential- difference
equation numerically. A considerable advantage of the method is that the Chebyshev polynomial
coefficients of the solution are found very easily by using computer programs. Shorter
computation time and lower operation count results in reduction of cumulative truncation errors
and improvement of overall accuracy. Illustrative examples are included to demonstrate the
validity and applicability of the technique and performed on the computer using a program
written in Maple 9. To get the best approximating solution of the equation, we take more forms
from the Chebyshev expansion of functions, with, the truncation limit N chosen large enough. In
addition, an interesting feature of this method is finding the analytical solutions if the equation
has an exact solution that is a polynomial function. Illustrative examples with the satisfactory
results are used to demonstrate the application of this method. Suggested approximations make
this method very attractive and contribute to the good agreement between approximate and exact
values in the numerical example.
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