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Abstract 
 
The numerical solution of a mixed linear integro delay differential-difference equation with 
piecewise interval is presented using the Chebyshev collocation method. The aim of this article 
is to present an efficient numerical procedure for solving a mixed linear integro delay differential 
difference equations. Our method depends mainly on a Chebyshev expansion approach. This 
method transforms a mixed linear integro delay differential-difference equations and the given 
conditions into a matrix equation which corresponds to a system of linear algebraic equation. 
The reliability and efficiency of the proposed scheme are demonstrated by some numerical 
experiments and performed on the computer algebraic system Maple 10. 
 

Keywords:  Mixed linear integro delay differential-difference equations; Chebyshev 
polynomials and series; Approximation methods; Collocation points 
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1. Introduction 
 
In recent years, the studies of mixed integro delay differential-difference equations have 
developed very rapidly.  These equations may be classified into two types; the Fredholm integro-
differential-difference equations and Volterra integro-differential-difference equations. The 
upper bound of the integral part of Volterra type is variable, while it is a fixed number for that of 
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Fredholm type. In this paper we focus on Fredholm Volterra integro differential difference 
equations with piecewise intervals. Integro-differential-difference equations are important, but 
are often harder to solve, even numerically, and progress on how to solve them has been slow. 
Problems involving these equations arise frequently in many applied areas including engineering, 
mechanics, physics, chemistry, astronomy, biology, economics, potential theory, electrostatics, 
etc. [Emler (2001,2002), Ren (1999), Rashed (2004), Kadalbajoo (2002,2004), Bainov (2000), 
Cao (2004),]: The study of integro differential difference equations has great interest in 
contemporary research work. Several numerical methods, such as the successive approximations, 
Adomian decomposition, Chebyshev and Taylor collocation, Haar Wavelet, Tau and Walsh 
series methods, etc. [Ortiz (1998), Hosseini (2003), Zhao (2006), Maleknejad (2006), Sezer 
(2005a, 2005b), Synder (1966), Gülsu (2010)] are used for their solution. Mainly we deal with 
the following integro delay differential-difference equation with piecewise intervals 
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where )(xy  is an unknown function, the known )(xPk , )(xH s , ),( txFi , ),( txK j  and )(xg  are 

defined on an interval and also k
ijc , ijc , i  and s  are appropriate constant. Our aim is to find an 

approximate solution expressed in the form  
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where Nrar ,...,2,1,0,  , are unknown coefficients and N  is any chosen positive integer such 
that mN  . To obtained a solution in the form(3) of the problem (1) and (2), we may use the 
collocation points defined by  
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The remainder of the paper is organized as follows: Higher-order linear mixed integro-delay-
differential-difference equation with variable coefficients with piecewise intervals and 
fundamental relations are presented in Section 2. The method of finding approximate solution is 
described in Section 3. To support our findings, we present numerical results of some 
experiments using Maple10 in Section 4. Section 5 concludes this article with a brief summary. 
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2.  Fundamental Matrix Relations 
 
Let us write Eq.(1) in the form 
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the Fredholm integral part 
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and Volterra integral part 
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We convert these equations and the mixed conditions in to the matrix form. Let us consider the 
Eq. (1) and find the matrix forms of each term of the equation. We first consider the solution 

)(xy and its derivative )()( xy k  defined by a truncated Chebyshev series. Then we can put series 
in the matrix form 
 

AT )()( xxy  ,    AT )()( )()( xxy kk  ,                                                                                   (5) 
 

where          
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On the other hand, it is well known that [Synder (1966)] the relation between the powers nx  and 
the Chebyshev polynomials )(xTn  is 
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Using the expression (6) and (7) and taking Nn ...,,1,0 , we obtain the corresponding matrix 
relation as follows: 
 

)()( xx TT DTX    and  ,))(()( 1 Txx DTX                                                                                        (8) 
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and for even N,   
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Then, by (8), we obtain 
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Moreover it is clearly seen that the relation between the matrix )(xX  and its derivative )(x(k)X  is 
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2.1.  Matrix Representation for Differential and Difference Parts 
 
Let us assume that the function )(xy  and its derivatives have truncated the Chebyshev expansion 
of the form 
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The derivative of the matrix )(xT  defined in (10), and the relations (11),  give     
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Substituting (13) into (5) we obtain 
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where )(),...,(),(),()(),()( 10
)0()0( xTxTxTxTxTxyxy N  are first-kind Chebyshev polynomial, 

Naaa ,...,, 10  are coefficients to be determined in (3). Now, the matrix representation of the 

differential part is given by  
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To obtined the matrix form of the difference part 
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We know that; 
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Using relation (11), we can write 
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In a similarly way as (14), we obtain 
 

A)(DBBXAT -1
-

Tsks xxxy  )()()( )()(  .                                                               (19) 

 
So that, the matrix representation of the difference part become 
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2.2.   Matrix Representation for Fredholm Integral Part 
 
Let assume that ),( txFi   can be expanded to univariate Chebyshev series with respect to t  as 

follows: 
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Then the matrix representations of the kernel function ),( txFi  is given by  
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Hence, the matrix representation of the Fredholm integral part is given by 
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2.3.   Matrix Representation for Volterra Integral Part 
 
Similar to the previous section, suppose that the kernel functions ),( txK j   can be expanded to 

the univariate Chebyshev series with respect to t  as follows: 
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 2.4.  Matrix Representation of the Conditions 
 
Using the relation (14), the matrix form of the conditions defined by (2) can be written as  
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3.  Method of Solution 
 
We are now ready to construct the fundamental matrix equation corresponding to equation (1). 
For this purpose, substituting the matrix relations (15), (20), (23) and (26) into equation (1) we 
obtain  
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For computing the Chebyshev coefficient matrix A  numerically, Chebyshev collocation points 
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so, the fundamental matrix equation is obtained 
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The fundamental matrix equation (30) for equation (1) corresponds to a system for the )1( N  

unknown coefficients 0a , 1a ,…, Na . Briefly we can write equation (30) as 

 
WA=G or  [ W;G ] ,                                                                                                            (31) 

 
so that 
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The matrix form for conditions (2) are then 
 

CiA = [ i ]  or  [Ci; i ]  i=0,1,…,m-1,                                                                                (33) 

 
where 
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DBXC . 



566                                                                                                                                M. Gülsu and Y. Öztürk 

 

 

 
To obtain the solution of equation (1) under the conditions  (2), we replace the row matrices (33) 
by the last m  rows of the matrix (31) to get the required augmented matrix 
 

[W*;G*]=
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or the corresponding matrix equation 
 

W*A=G*.                                                                                                                              (34) 
 

If rank (W*) = rank [W*;G*]= 1N , then we can write  
 

A=(W*)-1G*.  
 
Thus, the coefficients Nnan ,...,1,0,  ,  are uniquely determined by equation (34). Also we can 

easily check the accuracy of the obtained solutions as follows: 

 

Since the obtained first-kind Chebyshev polynomial expansion is an approximate solution of 
equation (1), when the function )(xy  and its derivatives are substituted in equation (1), the 

resulting equation must be satisfied approximately; that is, for ixx  [-1,1] , i=0,1,2,…,  

0)()()()()()(
00

 


v

j
iijj

u

i
iiiiii xgxJxIxHxDxE  . 

 

4. Illustrative Examples 
 
In this section, several numerical examples are given to illustrate the accuracy and effectiveness 
properties of the method and all of them were performed on the computer using a program 
written in Maple 9. The absolute errors in Tables are the values of )()( xyxy N  at selected 

points. 
 



AAM: Intern. J., Vol. 7, Issue 2 (December 2012)                                                                                                    567                               
          

   

Example4.1. 
 
Let us first consider the second order linear Fredholm-Volterra integro-delay-differential-
difference equation with piecewise interval, 
 

 

 


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0

1

))(2))())()(

)1sin()1sin()1(2)sin()1()1()1(')()(')(''

 

 
with mixed conditions 0)0(,1)0(  yy  and seek the solution  )(xy   as a truncated first-kind 
Chebyshev series 
 



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N

r
rr xxTaxy

0

01),()( , 

 
so that  
 

,1)(,)(,1)( 210  xPxxPxP 1)(0 xH , xxH )(1 , 1),(0 txF , xtxF ),(1 , 

 
1),(0 txK 1),(1 txK , )1sin()1sin()1(2)sin()1()(  xxxxxxg . 

 
Then, for 5N , the collocation points are 
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and the fundamental matrix equation of the problem is  
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With the following  matrices for conditions  

 
   1010101))(0( 1  ADX T , 

 
   0503010)()0( 1  ADBX T , 

 
where 
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If these matrices are substituted in (34), we obtain the linear algebraic system and the 
approximate solution of the problem for 5N  as 
 

5432 005079.0045501.0004434.0503090.0000000.1)( x+x+x+x+xy  . 
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The exact solution of this problem is )cos()( xxy  . Figure 1 shows the comparison between the 
exact solution and the approximate different for various N  Chebshev collocation method 
solution of the system. In Table 1, we show that when N  is increasing, eN  is decreasing. 

 
Table 1: Numerical solution of Example 4.1 for different N . 

 
 
 

 
 

Figure 1. Error function of Example 4.1 for various N  

 
Example 4.2.  
 
Let us consider the second order linear Fredholm-Volterra integro delay differential-difference 
equation with piecewise intervals, 
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with conditions 5)0( y , 4)0(' y  and its exact solution is 542)( 2  xxxy . We obtained 
the approximate solution of the problem for 5N  which are the same with the exact solution. 
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Example 4.3.  
 
Consider the second order linear Fredholm-Volterra integro delay differential-difference 
equation with piecewise intervals, 
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with mixed conditions 1)0( y , 1)0(' y , 1)0('' y  and its exact solution is xexy )( . We 
obtain the approximate solution of the problem for 4N , 5N , 6N  which are tabulated 
and graphed in Table 2 and Figure 2 respectively. 
 

Table 2: Numerical solution of Example 4.3 for different N  

 
 

 
 

Figure 2. Error function of Example 4.3 for various N  

 



572                                                                                                                                M. Gülsu and Y. Öztürk 

 

 

Example 4.4.  
 
Consider the linear third order Fredholm-Volterra integro delay differential-difference equation, 
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with conditions 0)0( y , 0)0(' y , 2)0('' y  and its exact solution is 42)( xxxy  . We 
obtained the approximate solution of the problem for N = 5 which are the same with the exact 
solution. 
 
Example 4.5.  
 
Consider the first order linear Fredholm-Volterra integro-differential equation, 
 

 
1

0 0

)()('
x

x dttydttyeeyy  

with nonlocal boundary condition  

edttyy  
1

0

)()0(  

and its exact solution is xexy )( . We obtain the approximate solution of the problem for 
4N , 5N , 6N  which are tabulated and graphed in Table 3 and Figure 3 respectively. 

 
Table 3: Numerical solution of Example 4.5 for different N  
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Figure 3. Error function of Example 4.5 for various N  

 
5.  Conclusion 
 
The Chebyshev collocation methods are used to solve the linear integrodifferential-  difference 
equation numerically. A considerable advantage of the method is that the Chebyshev polynomial 
coefficients of the solution are found very easily by using computer programs. Shorter 
computation time and lower operation count results in reduction of cumulative truncation errors 
and improvement of overall accuracy. Illustrative examples are included to demonstrate the 
validity and applicability of the technique and performed on the computer using a program 
written in Maple 9. To get the best approximating solution of the equation, we take more forms 
from the Chebyshev expansion of functions, with, the truncation limit N chosen large enough. In 
addition, an interesting feature of this method is finding the analytical solutions if the equation 
has an exact solution that is a polynomial function. Illustrative examples with the satisfactory 
results are used to demonstrate the application of this method. Suggested approximations make 
this method very attractive and contribute to the good agreement between approximate and exact 
values in the numerical example. 
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