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Abstract 
 

The steady flow of an incompressible couple stress fluid in a two dimensional uniform channel with 

stenosis under the influence of a magnetic field has been investigated. Assuming the stenosis to be mild, 

the flow equations have been analytically solved using the slip condition and expressions for the 

resistance to flow and wall shear stress have been derived. The effects of various parameters on these 

flow variables have been studied. It is found that the resistance to flow as well as the wall shear stress 

increase with the height of the stenosis and decrease with the couple stress and magnetic parameters. The 

effects of other parameters on resistance to flow and the wall shear stress have been considered. 
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1. Introduction 
 

It is known that one of the major health hazards is atherosclerosis, which refers to narrowing of 

the arterial lumen, i.e., the inner open space or cavity of an artery, due to deposition of fatty 

substances. This may lead to hypertension, myocardial infarction, etc. The formation of stenosis, 

i.e., the abnormal and unnatural growth, disturbs the normal blood flow and there is considerable 

evidence to show that hydro dynamical factors such as wall shear stress, resistance to flow etc. 

can play a significant role in the development and progression of this pathological condition. 

Hence, a detailed knowledge of the flow field in a stenosed tube may help in the proper 
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understanding and prevention of arterial diseases.  

 

In view of this, several authors have considered various mathematical models to study the flow 

of fluid in a stenosed artery. Young (1968) considered mild stenosis and analyzed the effect of 

stenosis growth on shear stress and resistance to flow. Tu and Deville (1996) presented a 

theoretical analysis of pulsatile flow of blood in stenotic arteries. Young and Tsai (1973) have 

experimentally investigated blood flow in the vicinity of stenosis in artery. Lee and Fung (1970) 

have obtained the numerical results for the streamlines and distribution of velocity, pressure, 

vorticity, and the shear stress for different Reynolds number in blood flow through locally 

constricted tube. Subsequently several researchers have considered fluid mechanical studies in 

stenotic region flow (Shukla et al., 1980; Forrester and Young, 1970; Misra and Chakravarty, 

1986). 

 

In most of the above studies, blood is considered as a Newtonian fluid, although it is well known 

that most of the physiological fluids including blood behave as a non-Newtonian fluid. The non-

Newtonian behavior of blood is mainly due to the suspension of red blood cells in the plasma. 

When neutrally buoyant corpuscles are contained in a fluid in which exists a velocity gradient 

due to shearing stress, corpuscles have rotatory motion. Furthermore, it is observed that the 

corpuscles have spin angular momentum, in addition to orbital angular momentum. As a result, 

the symmetry of stress tensor is lost in the fluid motion that is subjected to spin angular 

momentum. The fluid that has neutrally buoyant corpuscles, when observed microscopically, 

exhibits non-Newtonian behavior, and its constitutive equation is expressed by Stokes (1966). 

Stokes (1966) represents the simplest generalization of the classical viscous fluid theory that 

sustains couple stresses and the body couples. The important feature of these fluids is that the 

stress tensor is not symmetric and their accurate flow behavior cannot be predicted by the 

classical Newtonian theory. The main effect of couple stresses will be to introduce a size 

dependent effect that is not present in the classical viscous theories. The importance of the 

consideration of couple stress effects in studies of physiological and some other fluids was 

indicated by Cowin (1974). Studies on the couple stress fluid behavior are very useful, because 

such studies bear the potential to better explain the behavior of rheologically complex fluids, 

such as liquid crystals, polymeric suspensions that have long-chain molecules, lubrication as well 

as human/sub-human blood (Stokes, 1966; Ghosh et al., 2010). Shehawey and Mekheimer 

(1994) analyzed the flow of a couple stress fluid for any arbitrary Reynolds’ number and wave 

number, considering the wave amplitude to be small. Sankad and Radhakrishnamacharya (2011) 

discussed peristaltic transport of couple stress fluid in a channel with magnetic field and wall 

properties. 

 

Magneto hydrodynamics (MHD) is the science which deals with the motion of highly conducting 

fluids in the presence of a magnetic field. The motion of the conducting fluid across the magnetic 

field generates electric currents which change the magnetic field and the action of the magnetic 

field on these currents gives rise to mechanical forces which modify the flow of the fluid 

(Mekheimer, 2008). As early as 1937, Hartmann and Lazarus (1937) studied the influence of a 

uniform transverse magnetic field on the flow of a viscous incompressible electrically 

conducting fluid between two infinite parallel thermally insulated plates that are in a stationary 

state. Since then, this work on magneto hydrodynamic (MHD) flow has received much attention. 

This is due to the fact that such studies are useful particularly for getting a proper understanding 
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of the functioning of different machines used by clinicians for pumping blood (Misra et al., 

2008). Misra et al. (2008) pointed out that theoretical researches with an aim to explore the effect 

of a magnetic field on the flow of blood in atherosclerotic vessels also find application in a blood 

pump used by cardiac surgeons during the surgical procedure. The MHD principles may be used 

to reaccelerate the flow of blood in a human artery system and thereby it is useful in the 

treatment of certain cardiovascular disorders (Korchevskii and Marochunik, 1965) and in the 

diseases with accelerated blood circulation like hemorrhages and hypertension, etc. 

 

The study of fluid flow in confined geometry requires specification of the boundary condition for 

the fluid velocity at the solid wall. No slip boundary condition is the core concept in fluid 

dynamics. The no slip condition for a viscous fluid states that the fluid velocity at all fluid 

boundary is equal to that of the solid boundary i.e., the fluid and the boundary move with the 

same velocity. Although this assumption is successful in describing fluid flow on macroscopic 

length scales, it needs a revision for the micro and nano-scales due to possible slip of the fluid 

relative to the wall. Interaction of couple stresses and slip flow on peristaltic transport in uniform 

and non-uniform channels has been considered by Sobh (2008). Srinivas et al. (2009) attempted 

to study the influence of slip conditions, wall properties and heat transfer on MHD peristaltic 

transport. Ramakrishnan and Shailendhra (2011) investigated the combined effects of the 

magnetic field, permeable walls and slip parameter on the steady flow of a fluid in a channel. 

 

In the present paper, the effect of slip condition on steady couple stress fluid flow in a two 

dimensional uniform channel with stenosis is considered. Assuming that a uniform magnetic 

field is applied perpendicular to the wall of the channel and the stenosis is to be mild, closed-

form solution has been obtained and expressions for resistance to flow and shear stress at the 

wall have been derived. The effects of various relevant parameters on these flow variables have 

been studied. Since this study has been carried out for a situation when the channel is subjected 

to an external magnetic field, it bears the promise of significant application in magnetic/ 

electromagnetic therapy, which has gained enough popularity today. 

 
 
2. Formulation of the Problem 

 
We consider the steady, incompressible couple stress fluid flow through a two dimensional 

uniform channel with local stenosis. The Cartesian coordinate system ( )x, y  is chosen so that the 

x -axis coincides with the center line of the channel and the y -axis normal to it. Further, it is 

assumed that a uniform magnetic field 0B  is applied to the fluid normal to the walls of the 

channel. The stenosis is supposed to be mild and develops in a symmetric manner. The boundary 

of the channel is taken as (Shukla et al., 1980) 

 

1 1 1

2
1

2 2

otherwise

0
0 0

0

0

L
d cos ( x d ) , d x d L ,

( x ) L

d , ,

 



  
        

   



                                             (1) 

 

where 
0d is the  mean half width of the non-stenotic region of the channel, 0L

 
is the length of 
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stenosis, L  is the length of the channel and  is the maximum height of the stenosis (Figure 1). 

 

 

Figure 1. Geometry of the channel with local stenosis 

 

It is also assumed that the fluid is of small electrical conductivity with magnetic Reynolds 

number much less than unity, so that the induced magnetic field can be neglected in comparison 

with applied magnetic field. The equations governing the motion of the incompressible couple 

stress fluid for the present problem by neglecting body forces and body couples are given as 

(Alemayehu and Radhakrishnamacharya, 2011) 
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 


,                                                (4)

 
 

where u  and v  are the velocity components along the x  and y   directions respectively, p, the 

pressure,  , the electric conductivity of the fluid,  , the viscosity coefficient  of the classical 

fluid dynamics and  , the couple stress fluid viscosity. 

The boundary conditions are given by 



58                                                                                                                                                   Gurju Awgichew et. al 
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Here, (5) is the slip boundary condition (Bahtt and Sacheti, 1979) and (6) indicates the vanishing 

of couple stress. Further, Da  is the permeability parameter (or Darcy number) and   is the slip 

parameter. 

 

Taking the restriction for mild stenosis (Young, 1968) and solving equations (2-4) under the 

boundary conditions equation (5) and equation (6), the velocity is given as 

 

( ) ( ) ( ) 12 1 1 22
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0
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3. Analysis 
 

 
The flux Q  of the fluid is given by  
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Introducing the following dimensionless quantities  
 

1
1 2( )
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in equation (1) and equation (8) , we get ( after dropping asterisks)  
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where 
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From equation (10), we obtain 
 

1
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Integrating equation (11) with respect to x , we get the pressure difference p  along the total 

length of the channel as  
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The resistance to flow, denoted by , is defined by 
 

p

Q


  .                           (13) 

 

Using equation (12) in equation (13), we get 
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The pressure drop in the case of no stenosis ( 1H  ), denoted by pn, is obtained from equation 

(12) as 
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The resistance to flow in the absence of stenosis, n, is obtained from equation (13) as 
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Using equation (15) in equation (16), we get 
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The normalized resistance to the flow,  , is  given by   
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The shear stress acting on the wall of the channel is given by 
       

u
w

y y

 




 

 

 .                   (19) 

 

Using 

 

 
* w

w

0

U

d






 
 
 

  

 

and non-dimensional quantities given by equation (9) in equation (7) and equation (19), we get 

(after dropping asterisks) 
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The shear stress at the wall in the absence of stenosis ( 1H  ), denoted by ( )w n , can be obtained 

from equation (20) as 
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The normalized shear stress at the wall is,
w , given by 

  

 
( )

w
w

w n





 .                              (22) 

 

4. Results and Discussion 
 

The resistance to flow and the wall shear stress are two important characteristics in the study of 

blood flow through a stenosed artery. The expressions for resistance to the flow and wall shear 

stress, given by equation (18) and equation (22) respectively have been numerically evaluated 

using MATHEMATICA software for different values of the relevant parameters and presented 

graphically. Tabular representations are also used for those parameters whose effects cannot be 

seen from the graphs. 

 

Figures 2-6 show the effects of various parameters on the resistance to flow in a uniform channel 

with mild stenosis in the presence of a uniform magnetic field. It can be observed that the 

resistance to flow increases with the height of the stenosis (Figures 2-6). This result agrees with 

the previous results obtained by Young (1968), Shukla et al. (1980), Forrester and Young (1970). 

Further, it can be noticed that the resistance to flow increases with the length of the stenosis 

(Figures 2 and 3) and the slip parameter (Figure 4), but decreases with the couple stress 

parameter (Figures 2 and 3), the Darcy number (Figure 5) and the magnetic parameter (Figure 6). 

 

Figures 7-8 and Tables 1-2 show the effects of various parameters on the wall shear stress. The 

wall shear stress increases with the height of stenosis (Figures 7 and 8) and (Tables 1 and 2). This 

result agrees with previous results obtained by Young (1968), Lee and Fung (1970). Moreover, 

the wall shear stress increases with the slip parameter (Figure 7), but decreases with the Darcy 

number (Figure 8), the couple stress parameter (Table 1) and the magnetic parameter (Table 2). It 

can also be noticed that the effect of different parameters is not very significant on the wall shear 

stress compared to that of the resistance to flow (Figures 2-8 and Tables (1 and 2)).  
 

 
 

    Figure 2. Effect of ( 0.2 0.4 0.02 0.002 5)
1

m on λ L = ,d = ,α = ,Da= ,M =
0  
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Figure 3. Effect of ( 0.3 0.4 0.02 0.002 5)
1

m on λ L = ,d = ,α = ,Da= ,M =
0   

 

Figure 4. Effect of ( 0.2 0.4 0.002 0.2 5)
1

α on λ L = ,d = ,Da= ,m= ,M =
0

 

 

 

Figure 5. Effect of ( 0.2 0.4 0.02 0.2 5)
1

Da on L ,d , ,m ,M
0

       
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Figure 6. Effect of ( 0.2 0.4 0.02 0.2 )
1

M on λ L = ,d = ,α = ,m= ,Da= 0.002
0  

 

 

 

 

 

 

 

 

 

Figure 7. Effect of ( 0.2 0.4 0.5 0.002 0.2 5)
1

α on τ L = ,d = , x = , Da= ,m= ,M =
w 0  

 

 
Figure 8. Effect of ( 0.2 0.4 0.5, 0.02 0.2 5)

1
Da on τ L = ,d = , x = α = ,m= ,M =

w 0  
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Table 1: Effect of ( 0.2 0.4 0.5 0.002 0.02 5)
1

m on τ L = ,d = ,x= ,Da= ,α= ,M =w 0
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2:  Effect of ( 0.2 0.4 0.5 0.002 0.2 0.02)
1

M on τ L = ,d = ,x= ,Da= ,m= ,α=w 0
 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 
 

A mathematical model of the steady flow of an incompressible couple stress fluid in a two 

dimensional channel with stenosis has been studied. It is considered that a uniform magnetic 

field is applied to the fluid normal to the wall of the channel. Further, assuming the stenosis to be 

mild and using slip boundary condition, a closed form solution has been obtained and 

                            m                          

0.1 0.2 0.3 

0 1 1 1 

0.05 1.06066 1.0606 1.0605 

0.1 1.12819 1.12808 1.12789 

0.15 1.20382 1.20365 1.20338 

0.2 1.28905 1.28883 1.28848 

                            w  

 

  

                                     M  

4 5 6 7 

0 
1 1 1 1 

0.05 
1.06063 1.0606 1.06057 1.06053 

0.1 
1.12813 1.12808 1.12802 1.12794 

0.15 
1.20372 1.20365 1.20356 1.20345 

0.2 

1.28893 1.28883 1.28871 1.28857 

                                        w  
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expressions for the resistance to flow and the wall shear stress have been derived. It is observed 

that both the resistance to flow and the wall shear stress increase with the height of the stenosis 

and the slip parameter but decrease with the couple stress parameter, the Darcy number and the 

magnetic parameter.   
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