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Abstract  
 

In this article, acceptance sampling plans are developed for the exponentiated half logistic 

distribution percentiles when the life test is truncated at a pre-specified time. The minimum 

sample size necessary to ensure the specified life percentile is obtained under a given customer’s 

risk. The operating characteristic values (and curves) of the sampling plans as well as the 

producer’s risk are presented. Two examples with real data sets are also given as illustration. 
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1. Introduction  
 

Acceptance sampling is the most popularly used sampling because it is simple for practical 

implementation. The decision on the lot disposition (acceptance or rejection) by acceptance 

sampling is based on the single inspection or life test. Today, products are produced to be of high 
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reliability. To collect product lifetime information, products must suffer a destructive life test. 

Due to the fact that it could take long experimental time to observe the complete lifetime of a 

high reliability item, the life test must be ended within a specified schedule and such life test is 

called a truncated life test. Acceptance sampling plans under a truncated life test have been 

investigated in the past few decades by many authors for example Epstein (1954), Sobel and 

Tischendrof (1959), Goode and Kao (1961), Gupta and Groll (1961), Gupta (1962), Fertig and 

Mann (1980), Kantam and Rosaiah (1998), Kantam et al. (2001), Baklizi (2003), Wu and Tsai 

(2005), Rosaiah and Kantam (2005) and Tsai and Wu (2006).  

 

All these authors considered the design of acceptance sampling plans based on the population 

mean under a truncated life test. Whereas Lio et al. (2009) considered acceptance sampling plans 

from truncated life tests based on the Birnbaum-Saunders distribution for percentiles and contend 

that the acceptance sampling plans based on mean may not satisfy the requirement of 

engineering on the specific percentile of strength or breaking stress. Where the quality of a 

specified low percentile is concerned, the acceptance sampling plans based on the population 

mean could pass a lot which has the low percentile below the required standard of consumers. 

Furthermore, a small decrease in the mean with a simultaneous small increase in the variance can 

result in a significant downward shift in small percentiles of interest. This means that a lot of 

products could be accepted due to a small decrease in the mean life after inspection. But the 

material strengths of products are deteriorated significantly and may not meet the consumer’s 

expectation. Therefore, engineers pay more attention to the percentiles of lifetimes than the mean 

life in life testing applications. Moreover, most of the employed life distributions are not 

symmetric. In viewing Marshall and Olkin (2007), the mean life may not be adequate to describe 

the central tendency of the distribution. This reduces the feasibility of acceptance sampling plans 

if they are developed based on the mean life of products.  

 

Actually, percentiles provide more information regarding a life distribution than the mean life 

does. When the life distribution is symmetric, the 50th percentile or the median is equivalent to 

the mean life. Hence, developing acceptance sampling plans based on percentiles of a life 

distribution can be treated as a generalization of developing acceptance sampling plans based on 

the mean life of items. In view of this, more authors are proposing the acceptance sampling plans 

based on percentile, see for example, Balakrishnan et al. (2007), Lio et al. (2009, 2010), Rao and 

Kantam (2010), Rao et al. (2012) and Rao (2013a, 2013b). They argued that the sampling plans 

proposed at the mean life in a skewed distribution will pass out the product with lower 

percentiles. These reasons motivate to develop acceptance sampling plans based on the 

percentiles of the exponentiated half logistic distribution under a truncated life test. 

 

The rest of the article is organized as follows. We describe the exponentiated half logistic 

distribution in Section 2. The proposed sampling plans are established for the exponentiated half 

logistic percentiles under a truncated life test, along with the operating characteristic (OC) and 

some relevant tables are given in Section 3. Two examples based on real fatigue life data sets are 

provided for the illustration in Section 4 and some conclusions are made in Section 5. 

  

 

 

 



AAM: Intern. J., Vol. 9, Issue 1 (June 2014)                                                                                                                41                                                                                                              

          

   

2. The Exponentiated Half Logistic Distribution 
 

The class of distributions  (.)TF


 can be defined as the exponentiated class of distributions with 

base distribution (.)TF  where   is a positive real number. On similar lines Gupta and Kundu 

(1999) proposed a new model called generalized exponential distribution or exponentiated 

exponential distribution. In this paper, we stick to the terminology of Mudholkar and Srivastava 

(1993) as the exponentiated half logistic distribution with base distribution consider as half 

logistic distribution. 

 

Half logistic model obtained as the distribution of absolute standard logistic variate is a 

probability model of recent origin (Balakrishnan, 1985). The probability density function, 

cumulative distribution function and hazard function with scale parameter   are given by 
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As this model is free from any shape parameter with IFR nature, it would be more useful in 

reliability studies and survival analysis. This model is parallel to half normal distribution also. If 

  is a positive real number, the cumulative distribution function (cdf) of exponentiated half 

logistic distribution is given by  
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and the probability density function (pdf) of exponentiated half logistic distribution (EHLD) with 

 > 0 and  > 0 is given by 
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The hazard function is given by 
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Here,  and   are the shape and scale parameters respectively. Given 0 1q   the 100q
th

 

percentile (or the q
th

 quantile) is given by 
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The qt is increases as q increases. Let 
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. Then, Equation (7) implies that  

qt  .                                                  (8) 

 

To develop acceptance sampling plans for the exponentiated half logistic percentiles, the scale 

parameter   in the exponentiated half logistic cdf is replaced by Equation (8) and the 

exponentiated half logistic cdf is rewritten as  
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Letting qt t  , F(t) can be rewritten emphasizing its dependence on   as  
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Taking partial derivative with respect to  , we have 
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3.  Acceptance Sampling Plans 

 

A common practice in life testing is to terminate the life test by a pre-determined time t, the 

probability of rejecting a bad lot be at least p , and the maximum number of allowable bad items 

to accept the lot be c. The acceptance sampling plan for percentiles under a truncated life test is 

to set up the minimum sample size n for this given acceptance number c such that the 

consumer’s risk, the probability of accepting a bad lot, does not exceed 1- p . A bad lot means 

that the true 100q
th

 percentile, qt , is below the specified percentile, 
0

qt . Thus, the probability p is 

a confidence level in the sense that the chance of rejecting a bad lot with 
0

q qt t  is at least equal 

to p . Therefore, for a given p , the proposed acceptance sampling plan can be characterized by 

the triplet 0( , , )qn c t t . 
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3.1. Minimum Sample Size 

 

For a fixed p our sampling plan is characterized by 0( , , )qn c t t .  Here, we consider sufficiently 

large sized lots so that the binomial distribution can be applied.  The problem is to determine for 

given values of p  (0 < p  <1), 0

qt  and c, the smallest positive integer, n required to assert that 

0

q qt t must satisfy 
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where 0( ; )p F t  is the probability of a failure during the time t given a specified 100q
th

 

percentile of lifetime 0

qt  and depends only on 0

0 qt t  , since ( ; ) 0, ( ; )F t F t     is a 

nondecreasing function of  . Accordingly, we have  

 

0 0( , ) ( , )F t F t      , 

 

or equivalently, 

 
0

0( , ) ( , ) q qF t F t t t    . 

 

The smallest sample size n satisfying the inequality (10) can be obtained for any given q, 0

qt t , 

p . To save space, only the results of small sample sizes for q = 0.1, 0

qt t =0.7, 0.9, 1.0, 1.5, 2.0, 

2.5, 3.0, 3.5; p =0.75, 0.90, 0.95, 0.99; c = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 2   are reported 

in Table 1. 

 

If 0( ; )p F t  is small and n is large the binomial probability may be approximated by Poisson 

probability with parameter λ = np so that the left side of (10) can be written as 
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where λ=n 0( ; )F t  . The minimum values of n satisfying (11) are obtained for the same 

combination of q, 
0

qt t and p  values as those used for (10). The results are reported in Table 2. 

3.2. Operating Characteristic of the Sampling Plan
0( , , )qn c t t  

The operating characteristic (OC) function of the sampling plan 
0( , , )qn c t t  is the probability of 

accepting a lot. It is given as 
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where ( ; )p F t  . It should be noticed that ( ; )F t  can be represented as a function of qt t  . 
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q q qd t t . Using Eq. (12), the OC values and OC curves can be 

obtained for any sampling plan 0( , , )qn c t t . To save space, we present Table 3 to show the OC 

values for the sampling plan 0

0.1( , 5, )n c t t . Figure1 shows the OC curves for the sampling 

plan 0

0.1( , , )n c t t with 2   and p =0.90 for 0 1  , where c = 0,1,2,3,4,5,6,7,8,9,10. 

 

3.3. Producer’s Risk 
 

The producer’s risk is defined as the probability of rejecting of the lot when 0

q qt t . For the 

sampling plan under consideration and a given value for the producer’s risk, say  , one may be 

interested in knowing the value of 
qd that will ensure the producer’s risk to be at most  . The 

sampling plan 0( , , )qn c t t  is developed at a specified confidence level p
. Based on (9), the 

probability ( ; )p F t  , with fixed  , F(.) may be obtained as function of qd , that is, 
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To save space, based on sampling plans 0( , , )qn c t t  established in Tables 1 the minimum ratios of 

0.1d  for the acceptability of a lot at the producer’s risk of  =0.05 are presented in Table 4.  

 

4.  Illustrative Examples and Discussion  

 

In this section, two examples with real data sets are given to illustrate the proposed acceptance 

sampling plans. The first data set is of the data given arisen in tests on endurance of deep groove 

ball bearings (Lawless (1982), p.228). The data are the number of million revolutions before 

failure for each of the 23 ball bearings in life test and they are: 17.88, 28.92, 33.00, 41.52, 42.12, 

45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.44, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 

105.84, 127.92, 128.04 and 173.40. The second data set regarding the software reliability was 

presented by Wood (1996), analyzed via the acceptance sampling viewpoint by Rosaiah and 
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Kantam (2005), Balakrishnan et al. (2007), Lio et al. (2009) and Rao and Kantam (2010). The 

software reliability data set was reported in hours as 519, 968, 1430, 1893, 2490, 3058, 3625, 

4422, and 5218. As the confidence level is assured by this acceptance sampling plan only if the 

lifetimes are from the exponentiated half logistic distribution. Then, we should check if it is 

reasonable to admit that the given sample comes from the exponentiated half logistic distribution 

by the goodness of fit test and model selection criteria.  

 

The first data set was used by Sultan (2007) to demonstrate the goodness of fit for generalized 

exponential distribution and Gupta and Kundu (1999) fitted for extended exponential 

distribution. However, the acceptance sampling plans under the truncated life test based on the 

exponentiated half logistic distribution for percentiles has not yet been developed. Balakrishnan 

et al. (2007) compared the goodness of fits among the Rayleigh, generalized BS, and BS 

distributions for the software reliability data set presented here using probability plots and 

showed that the generalized BS model (R-square (RS) = 0.97) was slightly better than the BS 

model (RS = 0.96) and both models were much better than the Rayleigh model (RS = 0.87). We 

have applied QQ plot and RS method to test the goodness of fit for both data sets for 

exponentiated half logistic distribution and we got RS = 0.9809 for first data set and RS=0.9909 

for second data set. Therefore, it is clear that exponentiated half logistic model fits quite well to 

both the data sets. 

 

4.1.   Example 1. 

 

Assume that the lifetime distribution is exponentiated half logistic distribution and that the 

experimenter is interested to establish the true unknown 10
th

 percentile lifetime for the ball 

bearings to be at least 20 million revolutions with confidence p =0.75 and the life test would be 

ended at 40 million revolutions, which should have led to the ratio 0

0.1t t  = 2.0. Thus, for an 

acceptance number c =5 and the confidence level p =0.75, the required sample size n found 

from Table 1 should be at least 23. Therefore, in this case, the acceptance sampling plan from 

truncated life tests for the exponentiated half logistic distribution 10th percentile should be 
0( , , )qn c t t = (23, 5, 2.0). Based on the ball bearings data, the experimenter must have decided 

whether to accept or reject the lot. The lot should be accepted only if the number of items of 

which lifetimes were less than or equal to the scheduled test lifetime, 40 million revolutions, was 

at most 5 among the first 23 observations. Since there were 3 items with a failure time less than 

or equal to 40 million revolutions in the given sample of n =23 observations, the experimenter 

would accept the lot, assuming the 10th percentile lifetime 0.1t  of at least 20 million revolutions 

with a confidence level of p =0.75. The OC values for the acceptance sampling plan 
0( , , )qn c t t = (23,5,2.0) and confidence level p =0.75 under exponentiated half logistic 

distribution from Table 3 is as follows: 

  
0

0.1 0.1t t  1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 

OC 0.2140 0.6001 0.8464 0.9468 0.9818 0.9936 0.9976 0.9991 
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This shows that if the true 10
th

 percentile is equal to the required 10
th

 percentile ( 0

0.1 0.1t t = 2.00) 

the producer’s risk is approximately 0.7860 (=1- 0.2140). The producer’s risk is almost equal to 

zero when the true 10
th

 percentile is greater than or equal to 2.50 times the specified 10
th

 

percentile.  

 

From Table 4, the experimenter could get the values of 0.1d  for different choices of c and 0

0.1t t in 

order to assert that the producer’s risk was less than 0.05. In this example, the value of 0.1d  

should be 1.7489 for c = 5, 0

0.1t t =2.0 and p =0.75. This means the product can have a 10
th

 

percentile life of 1.7489 times the required 10
th

 percentile lifetime in order that under the above 

acceptance sampling plan the product is accepted with probability of at least 0.95.  

 

Alternatively, assume that products have an exponentiated half logistic distribution and 

consumers wish to reject a bad lot with probability of p =0.75. What should the true 10
th

 

percentile life of products be so that the producer’s risk is 0.05 if the acceptance sampling plan is 

based on an acceptance number c =5 and 0

0.1t t =0.7. From Table 4, we can find that the entry for 

p =0.75, c = 5, and 0

0.1t t =0.7 is 0.1d = 1.7030. Thus, the manufacturer’s product should have a 

10
th

 percentile life at least 1.7030 times the specified 10
th

 percentile life in order for the products 

to be accepted with probability 0.75 under the above acceptance sampling plan. Table 1 indicates 

that the number of products required to be tested is n = 56 so that the sampling plan is 
0

0.1( , , )n c t t = (146, 5, 0.7).  

 

4.2.    Example 2. 

Suppose an experimenter would like to establish the true unknown 10
th

 percentile lifetime for the 

software mentioned above to be at least 100h and the life test would be ended at 250 h, which 

should have led to the ratio 0

0.1t t =2.5. The goodness of fit test for these nine observations were 

verified and showed that exponentiated half logistic model as a reasonable goodness of fit for 

these nine observations. Thus, with  c = 1 and p =0.95, the experimenter should find from Table 

1 the sample size n must be at least 9 and the sampling plan to be 0

0.1( , , )n c t t = (9, 1, 2.5). Since 

there were no items with a failure time less than or equal to 250h in the given sample of n =9 

observations, the experimenter would accept the lot, assuming the 10
th

 percentile lifetime 0.1t  of 

at least 100h with a confidence level of p =0.95. 

 

The acceptance sampling plans based on the exponentiated half logistic population mean could 

have less chance to report a failure than the acceptance sampling plans based on 10
th

 percentile. 
The acceptance sampling plans based on population mean could accept the lot of bad quality of 

the 10
th

 percentiles. The minimum sample sizes are reported in Table 1 of this article for the 10
th

 

percentiles are compared with the minimum sample sizes are reported in Table 1 of Lio et al. 

(2009) and Rao and Kantam (2010). It shows that the minimum sample sizes using 

exponentiated half logistic population are smaller than those reported in Tables 1 of Lio et al. 

(2010) whereas, the minimum sample sizes using exponentiated half logistic population are very 

close to those reported in Tables 1 of Rao and Kantam (2010) for the 10
th

 percentile. 
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5.  Conclusions 

 

This article has inferred the acceptance sampling plans based on the exponentiated half logistic 

percentiles when the life test is truncated at a pre-fixed time. The procedure is provided to 

construct the proposed sampling plans for the percentiles of the exponentiated half logistic 

distribution with known parameter =2. To ensure that the life quality of products exceeds a 

specified one in terms of the life percentile, the acceptance sampling plans based on percentiles 

should be used. Some useful tables are provided and applied to establish acceptance sampling 

plans for two examples.  
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Table 1.  Minimum sample sizes necessary to assert the 10
th

 percentile to exceed a given 

values, 0

0.1t , with probability p and the corresponding acceptance number, c, 

for the exponentiated  half logistic distribution using the binomial 

approximation with 2  . 

p  c 

0

0.1/t t  

0.7 0.9 1.0 1.5 2.0 2.5 3.0 3.5 

0.75 0 27 17 14 6 4 3 2 2 

0.75 1 53 32 27 13 8 5 4 4 

0.75 2 77 47 39 18 11 8 6 5 

0.75 3 100 62 51 24 15 11 8 7 

0.75 4 123 76 62 30 18 13 10 9 

0.75 5 146 90 73 35 23 15 12 10 

0.75 6 168 103 85 40 25 18 14 12 

0.75 7 190 117 96 46 28 20 16 13 

0.75 8 212 131 107 51 32 23 18 15 

0.75 9 234 144 118 56 35 25 20 17 

0.75 10 256 158 129 62 38 27 22 18 

0.90 0 45 27 22 10 6 4 3 3 

0.90 1 76 46 38 18 11 7 6 5 

0.90 2 104 64 52 24 15 10 8 7 

0.90 3 130 80 65 31 19 13 10 8 

0.90 4 156 96 78 37 23 16 12 10 

0.90 5 181 111 91 43 26 19 14 12 

0.90 6 206 127 104 49 30 21 16 14 

0.90 7 230 142 116 55 34 24 18 15 

0.90 8 254 156 128 61 37 26 20 17 

0.90 9 278 171 140 66 41 29 22 19 

0.90 10 301 186 152 72 44 31 24 20 

0.95 0 58 35 29 13 8 5 4 3 

0.95 1 92 56 46 21 13 9 7 5 

0.95 2 122 75 61 29 17 12 9 7 

0.95 3 151 93 76 35 21 15 11 9 

0.95 4 178 109 89 42 25 18 14 11 

0.95 5 205 126 103 48 29 21 16 13 

0.95 6 231 142 116 55 33 23 18 15 

0.95 7 256 158 129 61 37 26 20 17 

0.95 8 282 173 142 67 41 29 22 18 

0.95 9 307 188 154 73 44 31 24 20 

0.95 10 331 204 167 79 48 34 26 22 

0.99 0 89 54 44 20 12 8 6 5 

0.99 1 128 79 64 30 18 12 9 7 

0.99 2 163 100 81 38 22 15 12 9 

0.99 3 195 119 97 45 27 19 14 11 

0.99 4 225 138 113 53 32 22 17 13 

0.99 5 255 156 127 60 36 25 19 15 

0.99 6 283 174 142 66 40 28 21 17 

0.99 7 311 191 156 73 44 31 23 19 

0.99 8 339 208 170 80 48 34 26 21 

0.99 9 366 224 183 86 52 36 28 23 

0.99 10 392 241 197 92 56 39 30 25 
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Table 2. Minimum sample sizes necessary to assert the 10
th

 percentile to exceed a given 

values, 0

0.1t , with probability p and the corresponding acceptance number, c, 

for the  exponentiated   half logistic distribution using the Poisson 

approximation with 2  . 

p  c 
0

0.1/t t  

0.7 0.9 1.0 1.5 2.0 2.5 3.0 3.5 

0.75 0 28 17 14 7 5 4 3 3 

0.75 1 45 28 23 11 7 5 4 4 

0.75 2 75 47 38 19 12 9 7 6 

0.75 3 100 62 51 25 16 12 9 8 

0.75 4 124 77 63 31 19 14 12 10 

0.75 5 147 91 75 36 23 17 14 12 

0.75 6 169 105 86 42 26 19 16 13 

0.75 7 191 119 97 47 30 22 18 15 

0.75 8 213 132 109 53 33 24 19 17 

0.75 9 235 146 120 58 37 27 21 18 

0.75 10 257 159 131 63 40 29 23 20 

0.90 0 46 29 24 12 7 6 5 4 

0.90 1 71 44 36 18 11 8 7 6 

0.90 2 104 64 53 26 16 12 10 8 

0.90 3 132 82 67 33 21 15 12 10 

0.90 4 158 98 80 39 25 18 15 12 

0.90 5 183 114 93 45 29 21 17 14 

0.90 6 208 129 106 51 32 24 19 16 

0.90 7 232 144 118 57 36 26 21 18 

0.90 8 257 159 130 63 40 29 23 20 

0.90 9 280 174 143 69 43 32 25 22 

0.90 10 304 188 155 75 47 34 28 24 

0.95 0 60 37 30 15 10 7 6 5 

0.95 1 89 55 46 22 14 10 8 7 

0.95 2 124 77 63 31 19 14 11 10 

0.95 3 153 95 78 38 24 18 14 12 

0.95 4 181 112 92 45 28 21 17 14 

0.95 5 208 129 106 51 32 24 19 16 

0.95 6 234 145 119 58 36 27 21 18 

0.95 7 260 161 132 64 40 29 24 20 

0.95 8 285 176 145 70 44 32 26 22 

0.95 9 310 192 158 76 48 35 28 24 

0.95 10 335 207 170 82 52 38 30 26 

0.99 0 91 57 47 23 14 11 9 7 

0.99 1 128 79 65 32 20 15 12 10 

0.99 2 166 103 84 41 26 19 15 13 

0.99 3 198 123 101 49 31 23 18 16 

0.99 4 229 142 117 57 36 26 21 18 

0.99 5 259 160 132 64 40 29 24 20 

0.99 6 288 178 146 71 45 33 26 22 

0.99 7 316 195 160 78 49 36 29 25 

0.99 8 343 213 175 85 53 39 31 27 

0.99 9 371 229 188 91 57 42 34 29 

0.99 10 397 246 202 98 61 45 36 31 
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Table 3.  Operating characteristic values of the sampling plan 0

0.1( , 5, / )n c t t for a 

given p  Under exponentiated half logistic distribution with 2  . 

p  n 
0

0.1/t t  

0

0.1 0.1/t t  

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 

0.75 146 0.70 0.2499 0.6543 0.8790 0.9610 0.9874 0.9957 0.9985 0.9994 

0.75 90 0.90 0.2390 0.6366 0.8684 0.9565 0.9856 0.9950 0.9982 0.9993 

0.75 73 1.00 0.2140 0.6001 0.8464 0.9468 0.9818 0.9936 0.9976 0.9991 

0.75 35 1.50 0.2489 0.6272 0.8574 0.9505 0.9829 0.9939 0.9978 0.9991 

0.75 22 2.00 0.2193 0.5821 0.8277 0.9364 0.9771 0.9916 0.9968 0.9987 

0.75 15 2.50 0.2133 0.5608 0.8093 0.9262 0.9723 0.9895 0.9959 0.9983 

0.75 12 3.00 0.0988 0.4508 0.7610 0.9106 0.9679 0.9883 0.9956 0.9982 

0.75 10 3.50 0.0993 0.4498 0.7595 0.9097 0.9674 0.9881 0.9955 0.9982 

0.90 181 0.70 0.0976 0.4452 0.7559 0.9078 0.9666 0.9878 0.9953 0.9982 

0.90 111 0.90 0.0944 0.4316 0.7431 0.9007 0.9634 0.9864 0.9948 0.9979 

0.90 91 1.00 0.0948 0.4227 0.7324 0.8941 0.9601 0.9849 0.9941 0.9976 

0.90 43 1.50 0.0719 0.3614 0.6778 0.8631 0.9456 0.9786 0.9914 0.9964 

0.90 26 2.00 0.0927 0.3935 0.6977 0.8717 0.9488 0.9798 0.9918 0.9966 

0.90 19 2.50 0.0665 0.3221 0.6274 0.8277 0.9265 0.9693 0.9871 0.9944 

0.90 14 3.00 0.0490 0.3309 0.6667 0.8623 0.9469 0.9796 0.9920 0.9967 

0.90 12 3.50 0.0483 0.3269 0.6622 0.8595 0.9455 0.9790 0.9917 0.9966 

0.95 205 0.70 0.0479 0.3247 0.6596 0.8579 0.9447 0.9787 0.9916 0.9966 

0.95 126 0.90 0.0491 0.3213 0.6531 0.8530 0.9421 0.9774 0.9910 0.9963 

0.95 103 1.00 0.0481 0.3091 0.6368 0.8419 0.9363 0.9747 0.9898 0.9958 

0.95 48 1.50 0.0355 0.2572 0.5779 0.8032 0.9163 0.9653 0.9856 0.9938 

0.95 29 2.00 0.0351 0.2446 0.5564 0.7857 0.9060 0.9601 0.9830 0.9926 

0.95 21 2.50 0.0347 0.2315 0.5328 0.7655 0.8935 0.9534 0.9797 0.9910 

0.95 16 3.00 0.0097 0.1540 0.4663 0.7334 0.8818 0.9498 0.9787 0.9908 

0.95 13 3.50 0.0098 0.1532 0.4640 0.7313 0.8804 0.9491 0.9784 0.9906 

0.99 255 0.70 0.0100 0.1537 0.4642 0.7311 0.8802 0.9489 0.9783 0.9906 

0.99 156 0.90 0.0086 0.1387 0.4372 0.7084 0.8665 0.9419 0.9749 0.9890 

0.99 127 1.00 0.0083 0.1299 0.4176 0.6899 0.8546 0.9354 0.9717 0.9874 

0.99 60 1.50 0.0076 0.1175 0.3901 0.6631 0.8368 0.9255 0.9666 0.9849 

0.99 36 2.00 0.0070 0.1057 0.3614 0.6332 0.8158 0.9134 0.9602 0.9816 

0.99 25 2.50 0.0085 0.1099 0.3605 0.6272 0.8095 0.9089 0.9575 0.9802 

0.99 19 3.00 0.2499 0.6543 0.8790 0.9610 0.9874 0.9957 0.9985 0.9994 

0.99 15 3.50 0.2390 0.6366 0.8684 0.9565 0.9856 0.9950 0.9982 0.9993 
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Table 4.  Minimum ratio of true 
0.1d for the acceptability of a lot for the exponentiated 

half logistic distribution for producer’s risk of 0.05 when 2  . 

p  c 

0

0.1/t t  

0.7 0.9 1.0 1.5 2.0 2.5 3.0 3.5 

0.75 0 5.3639 5.4086 5.3107 5.7800 6.2531 6.1226 7.1423 8.1619 

0.75 1 2.7732 2.8249 2.9061 3.0021 2.8877 3.0423 3.5537 4.0617 

0.75 2 2.2075 2.2292 2.2292 2.2738 2.3624 2.3810 2.4649 2.8161 

0.75 3 1.9600 1.9685 1.9857 2.0392 2.1249 2.0859 2.2237 2.5407 

0.75 4 1.8044 1.8044 1.8409 1.8447 1.8986 1.9186 2.0812 2.3810 

0.75 5 1.7030 1.6966 1.7191 1.7658 1.7489 1.8116 1.8522 2.1151 

0.75 6 1.6239 1.6327 1.6356 1.6717 1.7094 1.7322 1.8080 2.0670 

0.75 7 1.5706 1.5733 1.5926 1.5982 1.6239 1.6748 1.6717 1.9106 

0.75 8 1.5284 1.5284 1.5413 1.5733 1.6038 1.6297 1.6565 1.8947 

0.75 9 1.4908 1.4932 1.5006 1.5258 1.5466 1.5926 1.6415 1.8790 

0.75 10 1.4643 1.4620 1.4786 1.4883 1.4981 1.5598 1.5598 1.7832 

0.90 0 6.7650 6.7852 6.8568 7.0811 7.2218 7.5081 8.7596 10.0030 

0.90 1 3.3445 3.3693 3.4459 3.5537 3.4855 3.8388 4.0437 4.6189 

0.90 2 2.5840 2.5840 2.5988 2.6991 2.6911 2.8425 3.0525 3.4990 

0.90 3 2.2346 2.2292 2.2738 2.3261 2.3502 2.4062 2.4384 2.7816 

0.90 4 2.0346 2.0300 2.0623 2.1200 2.1501 2.1654 2.2401 2.5621 

0.90 5 1.8986 1.9026 1.9227 1.9433 2.0255 2.0076 2.1151 2.4125 

0.90 6 1.8080 1.8116 1.8262 1.8560 1.8790 1.8986 2.0210 2.3143 

0.90 7 1.7355 1.7355 1.7556 1.7902 1.8225 1.8152 1.8636 2.1299 

0.90 8 1.6748 1.6779 1.6998 1.7126 1.7322 1.7522 1.8225 2.0859 

0.90 9 1.6297 1.6327 1.6415 1.6748 1.6998 1.7030 1.7902 2.0437 

0.90 10 1.5926 1.5926 1.6067 1.6210 1.6385 1.6595 1.6966 1.9391 

0.95 0 7.6988 7.7912 7.8180 8.1766 8.0821 8.6678 8.7596 10.0030 

0.95 1 3.6832 3.7133 3.7286 3.8880 3.9904 4.1929 4.0437 4.6189 

0.95 2 2.8074 2.8074 2.8694 2.8877 2.9824 3.0423 3.0525 3.4990 

0.95 3 2.4125 2.4190 2.4254 2.4582 2.5478 2.5549 2.6288 3.0021 

0.95 4 2.1706 2.1758 2.2075 2.2237 2.3084 2.3810 2.3872 2.7315 

0.95 5 2.0255 2.0300 2.0392 2.0670 2.1501 2.1863 2.2292 2.5478 

0.95 6 1.9146 1.9186 1.9433 1.9600 1.9857 2.0483 2.1200 2.4254 

0.95 7 1.8335 1.8335 1.8560 1.8790 1.9106 1.9474 2.0392 2.3321 

0.95 8 1.7658 1.7727 1.7902 1.8188 1.8522 1.8674 1.9026 2.1706 

0.95 9 1.7126 1.7159 1.7355 1.7455 1.7727 1.8044 1.8560 2.1249 

0.95 10 1.6717 1.6748 1.6903 1.7062 1.7388 1.7556 1.8225 2.0812 

0.99 0 9.5712 9.5914 9.7040 10.0140 10.2281 10.6225 11.3097 12.9349 

0.99 1 4.3956 4.3956 4.4823 4.5956 4.6425 4.7893 4.8924 5.5835 

0.99 2 3.2489 3.2373 3.3080 3.3080 3.3693 3.5817 3.5537 4.0617 

0.99 3 2.7315 2.7397 2.7647 2.8161 2.9155 2.9438 2.9727 3.4072 

0.99 4 2.4516 2.4582 2.4919 2.5407 2.5840 2.6752 2.6596 3.0321 

0.99 5 2.2568 2.2568 2.2967 2.3321 2.3747 2.4319 2.6518 3.0321 

0.99 6 2.1249 2.1299 2.1450 2.1810 2.2292 2.2568 2.3084 2.6364 

0.99 7 2.0210 2.0255 2.0437 2.0717 2.1249 2.1299 2.1968 2.5126 

0.99 8 1.9391 1.9433 1.9685 1.9857 2.0392 2.0812 2.1151 2.4190 

0.99 9 1.8713 1.8751 1.8947 1.9186 1.9391 1.9944 2.0483 2.3381 

0.99 10 1.8188 1.8225 1.8335 1.8636 1.8868 1.9268 1.9944 2.2795 
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Figure 1. OC curves for c = 0,1,2,3,4,5,6,7,8,9,10, respectively under p =0.90, 

0 1   based on  

             the 10
th

 percentile, 
0.1d d , of exponentiated  half logistic distribution with 2  . 

 

 


