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Abstract 

 
It is well recognized that the greenhouse gas such as Chlorofluoro Carbon (CFC) is responsible 
directly or indirectly for the increase in the average global temperature of the Earth. The 
presence of CFC is responsible for the depletion of ozone concentration in the atmosphere due to 
which the heat accompanied with the sun rays are less absorbed causing increase in the 
atmospheric temperature of the Earth. The increase in the temperature level directly or indirectly 
affects the dynamics of interacting species systems. Therefore, in this paper a mathematical 
model is proposed and analyzed using stability theory to asses the effects of increasing 
temperature due to the greenhouse gas CFC on the survival or extinction of populations in a 
prey-predator system. A threshold value in terms of a stress parameter is obtained which 
determines the extinction or existence of populations in the underlying system. 

 
Keywords:  Model, Equilibria and Stability, Prey-Predator Populations, Greenhouse gases, 

Temperature  
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1. Introduction 

The atmospheric concentration of greenhouse gas such as chlorofluoro carbon (CFC) is 
increasing due to rapid industrialization, extensive use of automobiles, burning of fossil fuels, 
construction of power plants and other anthropogenic activities. The excess of CFC depletes the 
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ozone layer in the atmosphere and therefore the heat accompanied with the sun rays are less 
absorbed, raising the atmospheric temperature (Stordal (1986), Singer (1989), Misra et al. 
(2012), Misra et al. (2011)). There is a growing body of evidence that the change in the 
environmental temperature has impacts on the existence of interacting species systems. 
Increasing evidence suggests that recent climate warming has already affected various aspects of 
ecological communities, including organism phenology, species abundance and distribution, 
population dynamics and community- and ecosystem-level properties (reviewed in (Hughes 
(2000), McCarty (2001), Stenseth et al. (2002), Walther et al. (2002)); meta-analyses in 
(Parmesan and Yohe (2003), Root et al. (2003), Jing and Morin (2004)).Both theoretical (Ives 
and Gilchrist (1993), Ives (1995), Abrams (2001) ) and empirical studies (Jing and Morin (2004), 
Brown et al. (2001),Davis (1998a), Davis (1998b), Post (1999) )have suggested that interspecific 
interactions could alter species’ responses to climate change substantially. Species interactions 
may themselves be affected by climate change. Both the sign and intensity of interactions may be 
influenced by climate. For example, climate warming can affect the strength of predator-prey 
interactions (Post (1999), Sanford (1999), Jing and Morin (2004)).  

 

Petchey et al. (2010) provide an intriguing example of how one of the fundamental food-web 
properties that is connectance-changes with increasing temperature. [Yvon-Durocher et al. 
(2010), Sarmento et al. (2010)] focus on how climatic warming affects the metabolic rate of 
organisms, that is, the power required to sustain them and how these changes in metabolism 
scale up to ecosystem processes. In both the papers the metabolic theory of ecology (Brown et al. 
(2004)) is used to predict the changes in the process rates under increasing temperature. It has 
been shown in the papers [Brown et al. (2004), West et al. (1997)] that the increasing 
temperature changes the processes at different levels of biological organization. Species higher 
in the food web like top predators tend to be more sensitive to temperature change [Voigt et al. 
(2003)]. Top predators moving towards cooler climates may trigger trophic cascades and 
coextinctions may also occur [Schmitz (2003)].  

 

A persistent warming trend, driven largely by anthropogenic production of greenhouse gases, is 

projected to cause the global surface temperature to rise between 1.4o and 5.8oC by the end of 

the 21st century (compared with 0·6oC  in the 20th century, IPCC 2001). How to predict 
accurately the responses of species and communities to rapid climate warming in the 21st 
century thus, emerges as an important question [Jing and Morin (2004)]. The increase in 
temperature level may directly or indirectly affect the dynamics of interacting species systems. 
Therefore, it is essential to assess mathematically the effects of increasing CFC on populations in 
order to take necessary measures to avoid any adverse impact of rising temperature on an 
ecosystem. It is suggested that for understanding the consequences of the greenhouse effects on 
ecosystem an investigation of the interspecific interactions within biotic communities is required. 
A very few models to study temperature dependent interacting species systems exist [Misra et al. 
(2012), Misra et al. (2011), Wollkind and Logan (1978), Wollkind et al. (1988), Wollkind et al. 
(1991), Collings et al. (1990), Collings (1992), Collings (1995), Logan et al. (2006), Logan and 
Wolesensky (2007), Norberg and Deangelts (1997), Zhang and Kreis (2008)].  
 
In view of the above, therefore in this paper, a mathematical model has been proposed and 
analyzed to study the effects of increasing temperature due to greenhouse gas CFC on the 
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survival or extinction of populations in a prey-predator system. In the model it is assumed that 
the temperature increases due to greenhouse gas CFC because of the depletion of the ozone 
concentration in the atmosphere. In the model it is further assumed that the rise in temperature 
negatively effects the intrinsic growth rate of the prey and adversely effects the prey-predator 
interaction phenomenon. 

2.  Mathematical Model 

 

Let 1N  denotes the density of a prey population which is growing logistically and 2N  denotes 
the density of a predator population. C denotes the concentration of CFC (Chlorofluoro carbon). 
Z denotes ozone concentration. We consider here that T is elevated temperature or average 
increased temperature of the surrounding environment where the species live. 
 
For a predator let its searching capacity per unit prey is 1d . Hence, searching capacity of the 

predator population for prey density 1N  is 11Nd . If the handling capacity per unit prey by a 

predator is 2d  then, the handling capacity for prey density 1N  is 12 Nd . 
 
It is assumed in the model construction that the searching capacity is adversely affected by the 

increasing temperature of the environment and therefore 1d  is taken to be 
)(1 0

1

TTB

d


. 

 
Similarly, it is also assumed in the model formulation that the handling capacity is also adversely 
affected by the increasing temperature of the environment and therefore, 2d  is considered to be 

equal to 
)(1 0

2

TTB

d


. Thus, the total searching and handling capacity by a predator for prey 

density 1N  is given by  
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where, 211a dd  .  
 
From the expression (1), we note that when the environment is at the normal temperature; 0T , 

that is, at 0TT  , the predator behaves naturally and there is no change in their searching and 

handling capacity. We also notice from (1) that the predation rate will only be affected when 
temperature T  exceeds 0T . With the above notations and assumptions, the mathematical model 

of the system under consideration is given by the following system of nonlinear differential 
equations:  
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with the initial conditions as: 
 

.0)0(,0)0(,0)0(,0)0,0)0( 21  TZCNN  
 
In the present analysis we assume the following form of )(1 Tr : 

    10011011101 ,0)(,)( rTrTTrTTrrTr                         (7) 

and 12 aa   where   is conversion coefficient. It may be noted here that at the normal 

temperature 0T , the growth rate of prey population is 10r  which is its intrinsic growth rate. The 

system parameters are defined as follows: 
 

20r  is natural death rate of predator population. B is a constant which measures the stress of 

temperature on both searching and handling capacity. P  is input rate of C .  is average 
atmospheric residence time of CFC.   is the depletion rate of ozone due to CFC.  0Q is the 

natural formation rate of ozone concentration in the atmosphere. 0T  is average normal 

temperature of earth surface of the area occupied by the populations under study.  )(1 Tr is 

growth rate of population 1N . 10K  is carrying capacity of prey population 1N . 1  is coefficient 

of surface heat transfer and 2  is natural depletion rate of ozone concentration. Here, all the 
parameters K1, K2, r10, K10, r11, B, a1, a2, Q0, β, α1, α2 and r20 are all taken to be positive 

constants. 
 
For the case when the effects of CFC, temperature and ozone on the prey-predator system are not 
considered then we have the following basic model for the system of prey-predator populations 
considering carrying capacity in prey population:  
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3.  Boundedness and Dynamical Behaviour 

 

In this section we will establish that the solutions of the model given by the set of equations (2) 

to (6) with equation (7) are bounded in R5
+. The boundedness of solutions is given by the 

following lemma. 

 
Lemma 3.1.  
 
All the solutions of the model will lie in the region 
 

 5 10 10
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Proof:  
 
From Equations (2) and (3) we get,  

 

)(
)(1

))((
)(

21
0

21
220101110

21 aa
TTB

NN
NrNTTrr

dt

NNd






 

                           )(
)(1

)( 21
0

21
22010111010 aa

TTB

NN
NrNTTrKr m 


  

                           )( 211010 NNKr   , 

   
if 12 aa  , i.e. γ < 1, where, )),(min( 20011 rTTr m  . 

 
Then by the usual comparison theorem we get as t→∞: 
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From Equation (6) we get,  
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Again from Equation (6) we get ,  
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Similarly from Equations. (4) and (5), we get as t→∞:  
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Again from Equation (5), we get  
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By the usual comparison theorem we get as t→∞:  
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This completes the proof of the Lemma 3.1.  
 
We now find all the feasible equilibria of the system (2) - (6). The system of equations (2) - (6) 
has three feasible equilibria )3,2,1( iEi  as given below: 
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Remark 1.  
 
The analytic threshold value of B can be determined from the expression given in the existence 
of equilibrium 3E  that is,  
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It is concluded that Equilibrium 3E  exists, i.e., the prey and predator populations would co-exist 

if the parameter B  is less than its threshold value 0B . Further, it is shown that if the value of the 

parameter B  is more than its threshold value 0B  then the predator will die out. This condition 

can be biologically stated as the product of carrying capacity, conversion coefficient and growth 
rate of prey population with temperature is greater than the product of growth rate of prey 
population, natural death rate of predator population and inverse of searching and handling 
capacities. 
 
Remark 2.  
 
From the equilibrium value it is noted that the environmental temperature increases on account 
of decreasing ozone concentration in the atmosphere (see Figure 1). Further, it may be noted that 
the equilibrium ozone concentration decreases due to the increase in the equilibrium 
concentration of Chlorofluoro-Carbon (see Figure 2). 
 
Remark 3.  
 
The system of equations (8) - (9) has three feasible equilibria )0,0('1E ,   
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The equilibrium '3E  exists if 10 1 20K a r   is satisfied. 

 
Here, we see that the equilibrium value E3'  and its existence criteria do not depend on 

temperature. 
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Stability Results of Basic Model 

 
From the stability analysis of the system (8) - (9), it is found that 
 

(i)  '
1E  is unstable. 

(ii)  '
2E is linearly asymptotically stable if the condition 20110 raK   is satisfied. 

(iii)  '
3E  is linearly asymptotically stable. 

 
Further, from the stability analysis it is noted that '

2E  is linearly asymptotically stable, only when 
'
3E  does not exist and '

3E  is linearly asymptotically stable only when '
2E  is unstable. 

 
Now we discuss the dynamical behaviour of the model (2) - (6). 

 

3.1.  Local Stability 

 

The characteristic equation associated with the variational matrix about equilibrium 1E  is given 
by  

 
(J1−λ)(J2−λ)(J7−λ){(J6−λ)(J3−λ)−J4J5}=0,                     (14) 

 
where,  
 

J1=r1(T*);J2=−r20;J3=− 
1
τ−βZ*;J4=−βC*;

J5=−βZ*;J6=−(α2+βC*);J7=−α1.
 

 

From the nature of the roots of the characteristic equation (14) we observe that the equilibrium 
point 1E  is locally unstable provided   0*

1 Tr . 

 

Remark 3.  

 

If   0*
1 Tr , then 1E  is locally asymptotically stable and obviously both prey and predator 

populations would die out eventually.  

 
The characteristic equation related to the equilibrium point E2 is obtained as  

 
(G2−λ)(G1−λ)(G7−λ){(G3−λ)(G6−λ)−G4G5}=0,    (15) 
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where  
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From the characterstic equation (15) we find that the equilibrium point E2 is linearly 
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The characteristic equation associated with the variational matrix about equilibrium E3 is given 

by  
 

(α1+λ){P6P7−(P5−λ)(P8−λ)}{(P1−λ)(P4−λ)−P2P3}=0,                     (17) 

 
where,  
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From the nature of the roots of characteristic equation (17) we find that the equilibrium point E3 

is linearly asymptotically stable provided 0
* TT  .  

 
Further, from the above analysis it is noted that E2 is linearly stable only when E3 does not exist 

and E3 is linearly stable only if E2 is unstable. 

 
It is observed from the analysis that the stability conditions are depending upon the equilibrium 
temperature level and average normal temperature. 
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3.2.  Global Stability 

 

Next, we discuss the global stability of the interior equilibrium point E3. 

 
Theorem 3.1.  
 
The box 1V  is a compact positively invariant set in space ),,,,( 21 TZCNN .  
 
Proof:  
 
Consider the system given by Equations. (2)-(6). To prove the theorem, we consider the point 
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again moving towards the box. Clearly we can say that box 1V  is compact positively invariant 
box. This completes the proof of the Theorem 3.1. 
 
Now it is clear by the above theorem that the trajectories of the system cannot cross 1V  once they 

enter inside. It is also observed that the interior equilibrium E3 lies inside 1V . Moreover, E3 is 

only attractor inside 1V , which is established in the following theorem. 
 
Theorem 3.2.  
 
The equilibrium E3 is non-linearly asymptotically stable with respect to solution initiating in the 

interior of 1V  if the following inequalities hold:  
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Proof:  
 
Taking the perturbations about the equilibrium value as follows:  
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The non-linearised system of equations from (2) to (6) about equilibrium point E3 is given by 
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dv1
dt =− 

v1
τ −βC*x−β(Z*+x)v1                               (22) 

dx
dt=−α2x−βC*x−β(Z*+x)v1                                (23) 

dt1
dt = 

−K1

(K2+Z*)(K2+Z*+x)
+hw1−α1t1.                    (24) 

Consider, 
 

G(t)= 
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*log(1+ 
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1
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1
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1
2A3x2+ 

1
2A4t1

2, 

 
where, Ai(i=1 to 4) are arbitrary positive constants. 

 
The time derivative of G(t) is given by 

 

dG
dt = 

u1

N1
*+u1

 
du1
dt +A1u2 

du2
dt +A2v1 

dv1
dt +A3x1 

dx1
dt +A4t1 

dt1
dt . 

Now, using the system of equations (20)-(24) in 
dG
dt  in the region 1V , we get 
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Using the Sylvester’s criteria in the right hand side of the above expression and then choosing A1
, A3, A4 as follow  
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K1

(K2+Z)(K2+Zm)

2
. 

 

It may be shown that 
dG
dt  is negative definite if the conditions (18) and (19) are being satisfied. 

Thus, it is proved that E3 is globally (non-linearly) asymptotically stable in the region 1V . 

4.  Numerical Example 

 

For the model, consider the following values of parameters- 

 
r10=5, r20=2, K10=20.0, r11=0.01, a1=0.4,a2=0.2, 

 
γ=0.5, P=0.8, T0=10, τ=20.0, β=0.02, 

 
Q0=2, α1=0.1, α2=1.0, K1=5, K2=1.  

 
For the above set of values of parameters and B=0.01<B0=0.0497, we obtain the following value 

of interior equilibrium point E3(N1
*,N2

*,C*,Z*,T*) 

 

N1
*=11.86, N2

*=5.48, C*=9.54, Z*=1.68, T*=28.62. 

 
It is noted that for the above set of parametric values, the stability conditions (13), (18) and (19) 

are satisfied. Hence, E3
* is globally asymptotically stable (see Figures 3 and 5). 

 
For the above parametric values, when B=0.052>B0=0.0497 is considered then the conditions for 

the existence of the interior equilibrium point E3 is violated and in this case the equilibrium point 

E2 exists with the following equilibrium values: 

 

N1
*=19.25, N2

*=0.00, C*=9.54, Z*=1.68, T*=28.62. 
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The linear stability condition given by (16) for E2 is satisfied for the above set of parametric 

values with B=0.0497 and the stability behaviour of the model for B>B0 is shown in Figure 4. 

N1'*=10.00 and N2'*=6.25 (when effect of temperature is not considered). 

 

5.  Conclusion 

 

From the linear stability analysis of the equilibrium point E2 it is concluded that the population 

with density N2 would tend to extinction and population with density N1 would survive but at 

lower equilibrium value due to the decrease in its growth rate on account of elevated 
temperature. The non-trivial positive equilibrium point E3 exists only when the equilibrium point 

E2 is not stable. Hence, from the linear as well as non-linear stability analysis of the non-trivial 

positive equilibrium E3 it is concluded that the prey and predator populations would co-exist if 

the parameter B; which measures the stress of temperature is less than its threshold value B0 (see 

Figures 3 and 6).  

 

Further, it is shown that if the value of the parameter B is more than its threshold value B0 then 

the predator population tends to extinction (see Figures 4 and 7). It is concluded from the 
analytical and numerical equilibrium value of E3 and E3' that the density of prey population with 

temperature is more than the density of prey population when effect of temperature is not 
considered (see Figure. 8). It is also shown from the equilibrium value of E3 and E3' that the 

density of predator population with temperature is less than the density of predator population 
when effect of temperature is not taken (see Figure 9).  

 

It is further concluded from the numerical example that the equilibrium density of prey 
population is more in the absence of predator under the adverse effect of temperature. However, 
in the presence of predator population there is a significant decrease in the equilibrium density of 
prey population as compared to the case when there is no predation under the stress of 
temperature. Numerical example has been supplemented to validate the analytical results. The 
graphs of all the variables have been plotted with respect to time and from these graphs the 
stability behaviour is illustrated (see Figures 3, 4 and 5). 

  



AAM: Intern. J., Vol. 7, Issue 2 (December 2012)                                                                                                    549                               
          

   

 

Figure 1. Phase space diagram for temperature T(t) and ozone concentration Z(t). 

 

Figure 2. Phase space diagram for concentration of chlorofluoro carbon C(t) and ozone 
concentration Z(t). 
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Figure 3. Time series graph for prey population N1(t), predator population N2(t) and 

temperature T(t) when B<B0. 

  

 

Figure 4. Time series graph for prey population N1(t), predator population N2(t) and 

temperature T(t) when B>B0. 
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Figure 5. Time series graph for concentration of chlorofluoro carbon C(t), ozone 
concentration Z(t) and temperature T(t).  

 

Figure 6. Phase space diagram for prey population N1(t) and predator population 

N2(t) when B<B0. 
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Figure 7. Phase space diagram for prey population N1(t) and predator 

population N2(t) when B>B0.  

 

Figure 8. Graph for prey population N1(t) and time t with and without the 

effect of temperature when B>B0. 
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Figure 9. Graph for predator population N2(t) and time t with and without the 

effect of temperature when B>B0. 
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