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Abstract 
 
Temperature measurements along one side of the rectangular plate showed severe temperature 
non-uniformity along one side of a wall of a cubical experimental apparatus where the uniform 
temperature was physically desired. Despite proper planning and analyses, this non-uniformity 
was high enough that a benchmark study could not be carried out to the desired accuracy of 
about one percent error. This paper presents and extends analyses made previously based on the 
modifications to the original design of the apparatus to reduce the temperature non-uniformity on 
the wall by adding an auxiliary heater around a wall where the uniform temperature was desired. 
A detailed mathematical analysis shows significant reduction in temperature non-uniformity 
from about four percent (based on the initial design) to less than one percent (for the modified 
design). By examining the temperature difference between two locations on the plate, the 
predicted temperature difference obtained through mathematical analyses show excellent 
agreement with the measured temperature difference. The temperature non-uniformity along the 
boundary of a wall was reduced to less than one percent of the overall temperature difference. 
 
Keywords:  Thermal constriction/spreading resistance, uniform temperature condition, 

analytical solution 
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1.  Introduction 
 
Computational fluid dynamics (CFD) has played a very important role in the heat transfer 
industry by enhancing performance to existing designs or by developing new designs for better 
performance, and by diagnosing issues related to existing designs and finding solutions to these 
issues.  Example where CFD is used is in the design of effective cooling of the moderator fluid 
in a nuclear reactor where heat removal is paramount so that over-heating of nuclear fuel 
channels does not occur (He and Gotts (2005) and Lee and Collins (1998)).  Ultimately, to a 
designer and/or an analyst, a “good” CFD code is one that can model a myriad of heat transfer 
engineering problems with a high degree of confidence. 
 
For numerical modelers, it is important to test their model against available and accurate 
experimental data based on a well-defined “simple” problem.  Depending on the type of problem 
considered to test their model, there may be no experimental data that can validate their model.  
Benchmark problems have been investigated by de Vahl Davis (1983) and de Vahl Davis and 
Jones (1983) to compare numerical results between different CFD codes for simple boundary 
conditions but there is little research work in comparing numerical results with experimental 
results.  For example, two-dimensional and three-dimensional benchmark problems in internal 
natural convection heat transfer assume an adiabatic wall or a uniform temperature along a wall 
or a combination of both of these conditions. Although the adiabatic boundary condition has 
been solved for various numerical problems, the actual implementation of this case for an 
experimental study is not physically realistic (La Quere (1991)).  For adiabatic wall cases, to 
validate a numerical solution against experimental data with high degree of accuracy is remote as 
adiabatic cases are physically difficult to achieve (El Sherbiny et al. (1982)).  For internal natural 
convection problems which involve a uniform temperature boundary condition, very few 
research work have been conducted where numerical solutions are compared with experimental 
data (for example, Leong et al. (1998) and (1999)). 
 
This paper will demonstrate that a physically-realizable “uniform” boundary condition imposed 
on a three-dimensional experimental apparatus for benchmark natural convection study can be 
achieved with a proper design (Leong et al. (1998) and (1999), and Leong (1996)).  The study 
involves measuring accurate Nusselt numbers, Nu, to be around 1% error for a wide range of 
Rayleigh numbers Ra. The experimental set-up is discussed in detail by Leong (1996), and a 
summary of the cubical experimental apparatus can be found by Lee and Leong (2013), but it is 
also summarized here. 
 
The experimental apparatus is represented in Figure 1 with the thermal boundary conditions 
imposed on the walls of the cubical enclosure, which is made up of two opposing main 
plates/walls and four sidewalls.  The temperatures of the two main plates are designed to be 
constant across each of the entire face (where one plate is at a “hot” temperature Th while the 
other opposing plate is at a “cold” temperature Tc). The temperatures on the four remaining walls 
(called the sidewalls) all vary linearly between the two main walls, as shown in Figure 1. 
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As indicated by Leong (1996) and Lee and Leong (2013), temperature difference measurements 
made between two points in the “hot” plate along the bottom-interior surface was in the excess of 
4% of T (= Th – Tc).  It was apparent from this difference that temperature non-uniformity 
existed on the “hot” plate. Although this temperature non-uniformity is small, this was large 
enough to render the benchmark study of internal natural convection heat transfer unattainable to 
the desired Nusselt number accuracy of about 1%.  In supporting these measurements, a detailed 
mathematical analysis was performed to investigate this temperature non-uniformity on the “hot” 
plate, and it was determined that this temperature non-uniformity was a result of the effect of 
thermal spreading/constriction resistance (Leong (1996) and Lee and Leong (2013)).  A thermal 
resistance model was developed using an approximate analytical temperature solution based on a 
boundary value problem of the “hot” plate. As a result, design changes had to be made to the 
apparatus to reduce the temperature non-uniformity to an acceptable level (to less than 1%) 
between the contact region and the entire “hot” plate, so that a “uniform” temperature boundary 
condition can be deemed appropriate for the experimental natural convection benchmark study. 
 
Due to time and budget constraints, redesigning the entire apparatus would not have been 
feasible (Leong (1996)). The decision was to use the existing apparatus, and add auxiliary 
heaters along the “exterior” portions of the “hot” plate (see Figures. 2 and 3a).  The addition of 
heat from the exterior regions of the plate would enable heat to flow to the sidewalls and the 
plate, thereby reducing the temperature non-uniformity in the interior side of the “hot” plate (see 
Figure 3a).  In order to understand the effect of the additional heat supplied by the auxiliary 
heaters to the “hot” plate, a detailed analysis was required, and to assess whether a reduction of 
the temperature non-uniformity in the interior side of hot plate to less than 1% of T is indeed 
attainable. 
 

T = Th – (Th – Tc) x/L 

  x 

y 

Tc 
Th 

Figure 1.  Idealized cubical enclosure with its thermal boundary conditions 

T = Th – (Th – Tc) x/L 
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Figure 2.  Cubical experimental apparatus with auxiliary heaters 

  

 
 
In this paper, an extension to an approximate analytical solution to the one presented by Lee and 
Leong (2013) is presented, which incorporates the heat flux boundary conditions (or 
inhomogeneous Robin boundary conditions) due to the auxiliary heaters. Comparisons of the 
approximate analytical temperature solution with a numerically converged finite-element 

Figure 3.  (a) A simplified sketch of the physical problem  
                 (b) Boundary value problem with boundary conditions and  
                           defined parameters 
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solution have shown excellent agreement over practical range of interest (Lee and Leong 
(2013)). Based on this extended/generalized solution, a detailed mathematical analysis is 
conducted, and a rationale for positioning the auxiliary heaters in the “exterior” portion of the 
“hot” plate will be presented.  In the process, a thermal resistance analysis will be developed and 
applied to validate the approximate analytical results with measured data (Leong (1996)). 
 

2.   Problem Description 
 
       Mathematical Statement of the Problem 
 
The physical layout of the present problem is similar to the one defined by Lee and Leong 
(2013), but incorporates the presence of the auxiliary heaters in the exterior portions of the “hot” 
plate as shown in Figs. 3a and 3b. The width and the thickness of the plate are denoted by b and 
c, respectively. The contact region where the sidewall meets the “hot” plate is modeled as a heat 
flux source/sink with a prescribed distribution q(x) over a contact length of 2a at a distance e 
from the y-axis. The auxiliary heater is positioned f (which must be less than or equal to e – 2g) 
away from the y-axis, and its heat flux q1(x) is prescribed with a contact length of 2g. On the 
opposite side of the “hot” plate, two sub-sections have been modeled to represent a set of tube 
banks which is in contact with two different circulating fluid temperatures at Tf1 and Tf2 with 
contact widths d1 and d2, and with convective heat-transfer coefficients h1 and h2, respectively. 
The remaining surfaces are assumed adiabatic.  All other assumptions used in the analysis are 
provided by Lee and Leong (2013). 
 
The differential equation to be solved is Laplace’s equation in temperature T.  It is assumed that 
there are no transient effects (that is, steady-state heat conduction only), and the material of the 
plate is a homogeneous, isotropic conductor with thermal conductivity k, and with no internal 
heat generation: 
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with the boundary conditions specified along all four sides given by: 
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3.   Analytical Solution 
 
Dimensionless variables similar to those defined by Lee and Leong (2013) are introduced: 
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is the weighted-average of the fluid temperature, and 
 





ae

e
dxxqLQ

2
)(                                                           (5) 

 
is the total heat flow at the sidewall (or contact) due to q(x) over length L (into the page). 
Additional dimensionless parameters are introduced: 
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and from Equation (3), the dimensionless fluid temperatures are given by 
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where the average fluid temperature (Equation (4)) expressed in terms of dimensionless variables 
is 
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and the Biot numbers/moduli, Bi, are defined by 
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The separation of variables method was used for finding the approximate solution to Laplace’s 
equation, Equation (1) as used by Lee and Leong (2013). An approximate analytical solution to 
the temperature field, in dimensionless form, is given by: 
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where 
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nnn  ,, , ni , are functions defined by Lee and Leong (2013), and 
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It is important to note here that the approximate solution given by Equation (10) is based on the 
assumption that the orthogonality condition of the cosine basis function (used in the infinite 
Fourier series solution) applies along the two subsections where the fluid is in contact with the 
solid. A detailed discussion of this orthogonality assumption and a comparison of the finite-
element method (FEM) solution comparison with the approximate analytical solution appear in 
Lee and Leong (2013). 
  
4.   Analysis Approach 
 
      Thermal Resistance Network 
 
To begin the analysis, Figure 4 illustrates a simplified network of thermal resistances based on 
the flow of heat due to the boundary conditions.  As shown in the figure, the circulating fluid has 
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been “lumped” to a representative temperature Tf (as defined in Equation 4), and as well, average 
temperatures for the auxiliary heater and the contact at the sidewall are denoted by Tht and Tc, 
respectively. 

 
Figure 4.  Simplified network of thermal resistances in the “hot” main plate 

 
Each component of thermal resistance network is defined by the following general expression: 
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where 21R  is the thermal resistance between the two locations 1 and 2 based on the respective 

mean temperatures 1T  and 2T  for the heat flow rate 21Q  between these two locations.  Also, 

thermal resistance, 2,1R , is defined as: 
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Note that the difference between Equations (12a) and (12b) is that Equation (12b) is the thermal 
resistance between two locations 1 and 2, but is based on the heat flow imposed at the sidewall 
(or contact), Q (which is defined in Equation (5)).  For example, based on Equation (12b), the 
thermal resistance between the contact (sidewall) region and the circulating fluid is expressed by: 
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Equation (13) can be represented as dimensionless resistance defined by 
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which in turn can be expressed in terms of the average dimensionless temperature over the 
contact region as given by Equation (15): 
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The purpose of the addition of htQ  into the “hot” plate by the auxiliary heater is to “smoothen-

out” the temperature non-uniformity in the bottom-interior surface of the “hot” plate (or to 
reduce the effect of thermal spreading/constriction resistance between the contact region of 
sidewall and the circulating fluid).  Since the extent of temperature non-uniformity will also 
depend on the location f and the contact length 2g of the applied heat flux by the auxiliary heater, 
an “optimal” or a suitable position needs to be determined based on htQ .  To achieve this task, it 

is desired to analyze the heat flow from the auxiliary heater to the sidewall, chtQ  , and to 

determine the effect of thermal resistance between the auxiliary heater and the sidewall chtR  . 

 
From Equations (12a) and (12b), thermal resistance chtR  can be expressed as: 
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In dimensionless form, the above equation can be rewritten as 
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To obtain chtQ  , a heat balance at the contact (sidewall) junction in Figure 4 reveals that: 
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Equation (18b) is rewritten by using Equation (19a) to obtain: 
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where (and it can be shown using the dimensionless thermal resistance (e.g. Equation (17)) and 
temperature (Equation (10)) that) 
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In Equation (19b), *

fcR   is the thermal resistance between the contact region of the sidewall and 

the circulating fluid. For the problem without the auxiliary heater, *
fcR   is equal to *

, fcR , and can 

be inferred from Equation (20b), since QQ fc  ,   01 q , and 1* Q  for this case as obtained 

by Lee and Leong (2013).  As a result, 
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To determine how much heat flows from the auxiliary heater to the sidewall chtQ  , the ratio of 

heat flow into the contact region to the heat flow generated by the auxiliary heater, htcht QQ /  is 

calculated.  From Equation (19a), this fraction is given by 
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where  is given in Equation (11d). 
 
5.   Special Cases for the Heat Flux Profiles 
 
In this section, three different heat flux profiles will be assumed initially, but the choice of one of 
these profiles will be discussed later.  As suggested by Schneider et al. (1980) and recently 
adopted by Lee and Leong (2013), the heat flux profiles to be considered are given by 
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where 0q  and 01q  are constant heat flux/parameters at the sidewall (or contact) and the auxiliary 

heater, respectively.  Local co-ordinate systems u and v are used to prescribe the heat flux 
distributions at the sidewall and at the auxiliary heater locations, respectively: 
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These heat flux distributions, given in Equations (23), are shown graphically in Figure 5. 
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Figure 5. Three cases of heat flux profiles 
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Due to heat flux profiles given in Equations (23), Equation (11b), Hn, can be rewritten, as: 
 

),(),(),,( **  nnnn GqFqHH  ,                                            (25) 

 
where 
 


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
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0

01*

q

q
q ,                                                                      (26) 

 
),( nF  is a functional form (based on the heat flux profile at the sidewall) defined by Lee and 

Leong (2013), and 
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1
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),(
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dvnvnv
G m

t

n


 .                                (27) 

 
It is important to note here that an additional dimensionless group q* defined by Equation (26) 
has been introduced, and it depends on the parameters q01 and q0, and the contact widths of the 
contact 2a and the auxiliary heater 2g. 
 
At the contact, it was determined that the overall thermal resistance and the thermal 
spreading/constriction resistance of the plate are insensitive to the choice of the heat flux profile 
(Lee and Leong (2013), and Schneider et al. (1980)).  As a result, the uniform heat flux profile 
(m = 0) at the contact will be used for the present analysis.  Therefore, the functional form 

),( nF  with m = 0, which is given by 

 
    





n

nn
Fn




cossin
),( ,                                                                       (28) 

 
will be used hereafter (Lee and Leong (2013)). The choice of the heat flux profile for the 
auxiliary heater will be discussed later in the next section. 
 
Table 1 lists the functional forms of Equation (27) for t = -1/2, 0, and 1/2 with m = 0 in terms of 
trigonometric and Bessel functions (Gradshteyn and Ryzhik (1965)).  Also, since   (given by 
Equation (11d)) is a ratio of the total heat flow rate supplied by the auxiliary heater to the total 
heat flow rate at the sidewall, its dependence on t for m = 0 are also listed in Table 1. 
 

Table 1. Functional forms of ),( nG  and  based on the choice of T for m = 0 

t ),( nG   

-1/2      nnJ cos0  2/*q  

0       nnn cossin  *q  

1/2       nnnJ cos2 1  4/*q  
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6.   Results and Discussion 
 
The general solutions provided in Equations (10), (20a), and (20b) are now used for the dimensions 
of the “hot” plate (Leong (1996) and Lee and Leong (2013)): 2a = 3.2 mm, b = 78 mm, c = 9.53 
mm, d1 = d2 = d = 22 mm, and e = 11 mm. 
 
Using these parameters, Equations (10), (20a), and (20b) are given by 
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and 
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respectively, where 

 




Bi2

1
 ,                                                           (32) 

 

nnn  ,,  and n  are parameters defined by Lee and Leong (2013). 

 
7.   Position of the Auxiliary Heaters 
 
To determine an adequate position f (or ) of the auxiliary heater within the “exterior” portion along 
ζ = 0 (or y = 0), Equations (29) to (31) will be used to determine the effect of position f (or ) on 

*
chtR   (Equation (19b)).  Also, with a proper choice of f, it is desired that the temperature non-

uniformity along the bottom-interior portion of the plate, T , be less than 1% of the overall 
temperature difference (T = Th – Tc).  The choice f (or ) within the constraints of the physical 
space may not be optimal, but as long as 01.0/ TT , the requirement of the “uniform” 

temperature profile along the bottom-interior portion of the plate has been met. 
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Figure 6 shows the dependence of *

chtR   as a function of *q , t (auxiliary heat flux profile), and δ 

(position of the auxiliary heater).  Two particular sets of values for δ have been chosen for plotting 
*

chtR   with *q : δ = 0 and 2 = 0.0641 (f = 0 and 2g = 5 mm), and δ = 2 = 0.0641 (f = 2g = 5 

mm).  Figure 6 shows that for each δ, *
chtR   is also insensitive to t (for t = -½, 0, ½), which coincides 

with the observations reported by Lee and Leong (2013) and Schneider et al. (1980).  Therefore, the 
uniform heat flux profile, i.e. t = 0, is a good approximation, which will be used in the subsequent 
analyses. 
 

 
 

Figure 6. The effect of thermal resistance between the auxiliary heater and the sidewall 

with *q  
 
A qualitative assessment is made based on the sensitivity of *

chtR   with respect to *q  from Figure 

6.  It can be seen that for *q  greater than 1.0, *
chtR   is relatively small compared to values of *

chtR 

when *q  is much less than 1.0.  Other qualitative assessments can be made from Figure 6: 
 
1. The choice of the auxiliary heater heat flux profile t does not strongly affect *

chtR  ; 

2. The auxiliary heater should be placed as close to the sidewall as possible (that is,  f = 2g = 5 mm 
or  = 2 = 0.0641); and 

0

0.0641
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3. The choice of *q  should be greater than approximately 1.0 in order to reduce *
chtR   to a 

significant level (as shown in Figure 6). 
 

Also, to determine the position f of the auxiliary heater, two requirements need to be met so that a 
“uniform” temperature condition can be met: 
 
1. Along the bottom-interior portion of the “hot” plate, (i.e., 0.182  ξ  1 and ζ = 0, see Figure 

3a), T/T  must be less than ±1%, where T  is the temperature deviation defined by 
 

T T = T  max ,                                                                                       (33) 

 

where Tmax and T  are the maximum and average temperatures along the bottom-interior portion 
of the “hot” plate, respectively. 
 

2. The temperature difference 
 
δT = T(ξ2, 0) – T(ξ1, 0)                                                                             (34) 

 
is minimized between the two locations within the “hot” plate (ξ1= 0.162 and ξ2= 0.75) along the 
bottom-interior of the plate (ζ = 0), such that δT/ΔT is also less than ±1%. The temperature 
difference between these two points was measured by a pair of thermocouple junctions in 
thermopile arrangement embedded in the plate (Leong (1996)). 

  
In achieving these two requirements, it is envisioned that the first requirement would also be 
satisfied when δT is minimized. 
 
Since the contact length of the auxiliary heater, 2g, needs to be positioned, a convenient choice  f  = 
2g is made.  The results for a particular value of δ = 2 = 0.0641 (that is, f = 2g = 5 mm) are 
tabulated in Table 2 for the four T (= Th – Tc) cases (Cases #1 through #4, Leong (1996)). The 
results based on the analysis demonstrate that by placing the auxiliary heater at δ = 0.0641 with 
contact length 2 = 0.0641, the temperature non-uniformity δT/ΔT along the bottom-interior of the 
plate is within ±1% when *q  is chosen to be approximately 1.4.  At these specifications, about 
80% of heat emanating from the auxiliary heater transfers to the sidewall (based on Equation (22)).  
The remainder of heat from the auxiliary heater transfers to the circulating fluid located at the 
opposite side of the “hot” plate.  It is important to note here that there may be other combinations of 
δ,  and *q  which may equally provide the desired temperature non-uniformity δT/ΔT of less than 
±1%.  Also shown in Table 2 is a comparison of δT/ΔT based on the current analysis using the 
approximate analytical solution and the measured data (Leong (1996)) for Case #2.  There is 
very good agreement between these two sets of results. 
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Table 2. Summary of results by minimizing T for  = 2 = 0.0641  

†measured Data (Leong (1996)) 

Case # T (K) *q  Qht-c/Qht δT /ΔT δT '/ΔT 

1 4.08 1.395 81.7% -0.03% 0.28% 

2 11.9 1.410 

1.44† 

80.8% -0.03% 

0.041%† 

0.28% 

3 21.2 1.439 79.1% -0.03% 0.28% 

4 31.2 1.441 79.1% -0.03% 0.28% 

 
A comparison of the relative temperature distributions,    0,078.00, TxT   along y = 0 between 
the approximate analytical temperature solution, given by Equation (29), with the Finite-Element 
Method (FEM) solution is obtained for Case #4 and plotted in Figure 7. As noted in the Figure 7, 
there is excellent agreement of the relative temperature solutions based on the present 
approximate analytical temperature solution with the FEM temperature solution. 

       x 
 

Figure 7.  Comparison of the relative temperature Distributions, T(X, 0) – T(0.078, 0), 
along Y = 0 for case #4 With Δ = 2 = 0.0641 (or F = 2g = 5 Mm) based on the 
approximate analytical solution and the Fem solution 

 
Now, to demonstrate the effectiveness of the auxiliary heater, dimensionless relative temperature 
distributions    0,10, ** TT   along ζ = 0 (or y = 0) for Case #4 is plotted in Figure 8 with and 

without the auxiliary heater.  Although there may be other chosen values of f, 2g, and *q , it is 
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clear that by adding the auxiliary heater and by choosing  = 2 = 0.0641 (or f = 2g = 5 mm), 
temperature non-uniformity is significantly reduced to within 1% for 0.182  ξ  1. 
 

 
 

Figure 8.  Dimensionless relative temperature distributions, T*(Ξ, 0) – T*(1, 0), along Ζ = 0 for case 
# 4 with Δ = 2 = 0.0641 

 

To assess whether the effect of thermal spreading/constriction resistance *
/ csR  between the contact 

region and the circulating fluid has been reduced by the addition of the auxiliary heater, Figure 9 
illustrates the dependence of *

/ csR  on *q .  Thermal spreading/constriction resistance *
/ csR  is 

defined as the difference between the overall thermal resistance *
, fcR  (Equation (31)) and  , the 

sum of the thermal resistances due to conduction and convection at solid-fluid boundaries (Equation 
(32)), which is given by 
 

 *
,

*
/ fccs RR .                                                                         (35) 

 
As shown in Figure 9, the effect of *

/ csR  is reduced from 1.2 to zero as *q  increases from 0 to 

0.67, respectively, and *
/ csR  further decreases linearly as a negative value for 67.0*  q .  This 

can be explained by examining the definition of *
, fcR  (Equation (16)): the mean temperature at the 

contact region exceeds that of the mean circulating-fluid temperature for 67.0*  q , which causes 
*

/ csR  to increase negatively (since Q < 0). Physically, for 67.0*  q , there has been an increase of 

heat flow from the auxiliary heater to the circulating fluid Qht-f . 
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Figure 9.  The Variation of Thermal Spreading/Constriction Resistance, *
/ csR , with *q  

 

8.   Concluding Remarks 
 
Wall temperature non-uniformity on a “hot” plate of a three-dimensional experimental apparatus 
was reduced from approximately 4% to less than 1% of the overall temperature difference.  This 
was achieved by placing auxiliary heaters on the “exterior” portions of the “hot” main plate.  A 
mathematical model was developed and an approximate analytical temperature solution was 
presented. A detailed analysis was conducted by using this approximate temperature solution to 
examine the effect of the position of the auxiliary heater on the exterior portion of the “hot” main 
plate.  Temperature difference between two points on the bottom-interior portion of the hot plate 
shows a reduction of temperature non-uniformity to an acceptable level to render the “uniform” 
temperature condition physically-realizable. Thermal resistance analyses show that the 
temperature non-uniformity can be reduced to within 1% by placing the auxiliary heaters close to 
the sidewall.  Based on the present mathematical analysis, the original design was successfully 
modified to conduct the benchmark internal natural convection experiment originally intended. 
  
Also, the approximate analytical temperature solution can serve to validate any computer codes 
for simulating heat conduction problems, and can be adapted to analyze a number of similar 
engineering applications: for example, but are not limited to, in design analyses of solar collector 
plates; in radioactive cooling of panels on satellites and/or spacecraft’s; and in thermal 
management of micro-electronic circuits.  
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Nomenclature 
 
a = half-width of contact at sidewall, m 
Bi = Biot number/modulus, hb/k, or Rcond /Rconv 
b = width of plate, m 
c = plate thickness, m 
d = fluid contact width, m 
e = location of the sidewall, m 
f = location of the auxiliary heater, m 
Fn(,) = functional form for sidewall heat flux profile 
Gn(,) = functional form for auxiliary heater heat flux profile 
g = half width of contact of auxiliary heater, m 
h = heat transfer coefficient, W/(m2K) 
k = thermal conductivity, W/(mK) 
L = length of plate into the page, m 
m, t = shape parameter for heat flux profile, q(x) and q1(x), respectively 
Q = total heat flow at sidewall, Equation (5), W 
q(x) = heat flux profile of the sidewall, W/m2 
q1(x) = heat flux profile of the auxiliary heater, W/m2 
R = thermal resistance, K/W 
Rc,f = sidewall (contact) to fluid thermal resistance based on Q, K/W 
Rc-f = sidewall (contact) to fluid thermal resistance based on Qc-f, K/W 
Rht-c = auxiliary heater to sidewall (contact) thermal resistance based on Qht-c, K/W 
Ro = overall/total thermal resistance, K/W 
Rs/c = spreading/constriction thermal resistance, K/W 
T = temperature, K 
T  mean temperature, K 
u, v = local co-ordinates for the sidewall and auxiliary heater heat flux distributions 
x, y = Cartesian co-ordinate system 
 dimensionless thickness, c/b
 dimensionless fluid contact width, d/b 

nnn  ,, function/parameter 

 dimensionless position of the auxiliary heater, f/b 
 temperature difference, T(ξ2, 0) – T(ξ1, 0), K 

T   = temperature deviation, difference between maximum and mean temperatures, K 
 dimensionless half contact length, a/b 
 dimensionless conduction and convection resistances 
 dimensionless distance to sidewall location, e/b 
 dimensionless half contact length, g/b

nin ,,  function/parameter 

 dimensionless co-ordinate, x/b and y/b 
Superscripts 
* = dimensionless variable 
Subscripts 
1, 2 = subsection of circulating fluid 
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c = sidewall (or contact), or otherwise noted 
f = fluid 
ht = auxiliary heater 
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