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Abstract  

In this paper, we apply the variational iteration method (VIM) for solving higher-order integro 
differential equations by converting the problems into system of integral equations. The 
proposed technique is applied to the re-formulated system of integro-differential equations. 
Numerical results show the accuracy and efficiency of the suggested algorithm. The fact that the 
VIM solves nonlinear problems without calculating Adomian’s polynomials is a clear advantage 
of this technique over the decomposition method. 
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1. Introduction 

 
In this paper, we consider the general higher-order integro-differential equation of the type 
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where )(xy m  indicates the mth derivative of y(x) and F(y(x)) is a nonlinear function. In addition 

the kernel f(x)  t),k(x, are assumed real, differential for ],0[ bx and , 0 ( 1),jA j r    

, ( 1)jC r j m   are real finite constants. The higher-order integro-differential equations occur 

in multiple diversified physical phenomena and various techniques including decomposition 
have been applied for solving such problems, (see Agarwal (1986), Morchalo (1975a), Agarwal 
(1983), Morchalo (1975b), Wazwaz (2000)). He developed the variational iteration method 
(VIM) for solving linear and nonlinear versatile physical problems, (see He (2006), (2007)).  
 
It is worth mentioning that the VIM was originated by Inokuti et al. (see Inokuti, Sekine and 
Mura (1978)). The method has been successfully applied on a wide class of initial and boundary 
value problems by various authors, (see Mohyud-Din, Noor and Noor (2008a), Noor and 
Mohyud-Din (2007a), Noor and Mohyud-Din (2007b), Noor and Mohyud-Din (2008b), Noor 
and Mohyud-Din (2008c), Noor and Mohyud-Din (2008d), Noor and Mohyud-Din (2008e). 
Inspired and motivated by the ongoing research in this area, we implement the variational 
iteration method (VIM) for solving higher-order integro-differential equations by converting the 
problems into systems of integral equations.  
 
The proposed algorithm is applied on the re-formulated systems of integral equations. The 
application of VIM on a re-formulated system of integral equations was developed and 
implemented first by Noor and Mohyud-Din, (see Noor and Mohyud-Din (2007a), Noor and 
Mohyud-Din (2007b)). The method has been used without any perturbation, restrictive 
assumptions or discretization. Moreover, the proposed technique is free from the complexities 
arising in calculating Adomian’s polynomials. 
  
2. Variational iteration technique 

 
To illustrate the basic concept of the technique, we consider the following general differential 
equation 
 

),(xgNuLu            (1) 

where L is a linear operator, N a nonlinear operator and g(x) is the  forcing term. According to 
variational iteration method, (see He (2006), (2007), Inokuti, Sekine and Mura (1978), Noor and 
Mohyud-Din (2007a), Noor and Mohyud-Din (2007b)), we can construct a correction functional 
as follows 

,))()(~)(()()(
0

1 dssgsuNsLuxuxu
x

nnnn          (2) 

where  is a Lagrange multiplier, which can be identified optimally via variational iteration 
method. The subscripts n denote the nth approximation, nu~  is considered as a restricted variation. 

i.e. 0~ nu ; (2) is called as a correction functional. The solution of the linear problems can be 

solved in a single iteration step due to the exact identification of the Lagrange multiplier. The 
principles of variational iteration method and its applicability for various kinds of differential 
equations are given in He (2006), (2007), Inokuti, Sekine and Mura (1978), Noor and Mohyud-
Din (2007a), Noor and Mohyud-Din (2007b), Noor and Mohyud-Din (2008f), Noor and 
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Mohyud-Din (2008g), Noor and Mohyud-Din (2008h)). For the sake of simplicity and to convey 
the idea of the technique, we consider the following system of differential equations: 

 
),,,,()( 21 nii xxxtftx     (3) 

,,....,3,2,1),,()(/ nixtftx iii   

subject to the boundary conditions nicx ii ,...,3,2,1,)0(  . 

 
To solve the system by means of the variational iteration method, we rewrite the system (3) in 
the following form: 
 

.,.....,3,2,1),()()(/ nitgxftx iiii         (4) 

subject to the boundary conditions. nicx ii ,...,3,2,1,)0(   and ig is defined in (1). The 

correction functional for the nonlinear system (4) can be approximated as: 
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where nii ,...,3,2,1,1  are Lagrange multipliers, nxxx ~,...,~,~
21 denote the restricted variations. 

 
For nii ,...,3,2,1,1   we have the following iterative schemes: 

.0)(1
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For ni ,3,2,1  . Therefore the Lagrange multipliers can be easily identified as: 

 .,3,2,1,1 nii              (6) 

Substituting (6) into the correct functional (5), results the following iteration formula: 
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If we start with the initial approximations nicx ii ,...,3,2,1,)0(  , then the approximations can 

be completely determined; finally we approximate the solution )(lim)( )( txtx n
i

k
i 

 by the nth term 

)()( tx n
i    for    ni ,...,3,2,1 .  

 

3.  Numerical Applications 

 
In this section, we first show that the higher order integro differential equations can be re-written 
in the form of a system of integral equations by using a suitable transformation. The VIM is used 
for solving the re-formulated system of integral equations. For the sake of comparison, we take 
the same examples as discussed in Wazwaz (2000). 
 

Example 3.1.  

 
Consider the linear boundary value problem for the fourth-order integro differential equation: 

( )

0

( ) (1 ) 3 ( ) ( ) , 0 1
x

iv x xy x x e e y x y t dt x        

with boundary conditions 
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Using the transformation  ),(),(),( xz
dx

dt
xf

dx

dq
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dx

dy
  the above boundary value problem 

can be transformed as: 














 ,)()(3)1(),(

),(),(

0

x
xx dttyxyeex

dx

dz
xz

dx

dt

xf
dx

dq
xq

dx

dy

 

with boundary conditions 



AAM: Intern. J., Vo1. 3, Issue 6 (December 2008)                                                                                    192 

  

.)0(,)0(,1)0(,1)0( BzAfqy   

The exact solution of the above boundary value problem is .1)( xexxy   

 
The above system of differential equations can be written as the following system of integral 
equations with Lagrange multipliers 1, 1,2,3,4.i i     
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Consequently, following approximants are obtained 
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The series solution is given as 
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Imposing the boundary conditions at x = 1, we obtained 
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Table 3.1 (Error estimates) 

x  Exact solution Series solution *Errors 
0.0 1.000000000 1.000000000 0.00000 
0.1 1.11105170920 1.1105170920 2.0 E-10 
0.2 1.2442805520 1.1.2442805510 6.09 E-10 
0.3 1.4049576420 1.4049576410 1.4 E-9 
0.4 1.5967298790 1.5967298780 1.2 E-9 
0.5 1.8243606360 1.8243606320 3.5 E-9 
0.6 2.0932712800 2.0932712780 2.0 E-9 
0.7 2.4096268950 2.4096268920 3.0 E-9 
0.8 2.7804327420 2.7804327410 1.0 E-9 
0.9 3.2136428000 3.2136427980 2.0E-9 
1.0 3.7182818280 3.7182818290 1.0E-9 
*Error=Exact solution-Series solution. 
 

Table 3.1 exhibits the errors obtained by applying the variational iteration method. Higher 
accuracy can be obtained by using some more terms of the series solution. 
 

Example 3.2. 

Consider the nonlinear boundary value problem for the integro differential equation 

10,1)(
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The above system of differential equations can be written as the following system of integral 
equations with Lagrange multipliers .4,3,2,1,1  ii  
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Consequently, following approximants are obtained: 
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The series solution is given by: 
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 Imposing the boundary conditions at ,1x  we obtained 

 
.010994057.1,9970859583.0  BA  

 
The series solution is given as 
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Table 3.2. (Error estimates) 

x  Exact solution Series solution *Errors 
0.0 1.000000000 1.000000000 0.00000 
0.1 1.1051581800 1.1051581800 1.27 E-5 
0.2 1.2214027580 1.2213591310 4.36 E-5 
0.3 1.3498588080 1.3497770620 8.17 E-5 
0.4 1.4918246980 1.4917081990 1.16 E-4 
0.5 1.6487212710 1.6485829960 1.38 E-4 
0.6 1.8221188000 1.8219791520 1.39 E-4 
0.7 2.0137527070 2.0136354170 1.17-4 
0.8 2.2255409280 2.2254662080 7.47 E-5 
0.9 2.4596031110 2.4595771740 2.59 E-5 
1.0 2.7182818280 2.7182818280 0.000000 
*Error=Exact solution-Series solution. 
 
Table 3.2 exhibits the errors obtained by applying the variational iteration method. Higher 
accuracy can be obtained by using some more terms of the series solution. 
 
Example 3.3.  
 
Consider the two dimensional nonlinear inhomogeneous boundary value problem for the integro 
differential equation related to the Blasius problem 
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Using the transformation ),(xq
dx

dy
  the above boundary value problem can be written as the 

following system of differential equations 
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The above system of differential equations can be written as the following system of integral 
equations with Lagrange multipliers .2,1,1  ii  
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Consequently, the following approximants are obtained 
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The series solution is given as:  
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is obtained. The diagonal Pade´ approximants can be applied, consequently, we obtained values 
of the constant   which are listed in the table 3.3, (see Wazwaz (2000)). 

 
Table 3.3 
Pade´ approximants 

[2/2] 0.5778502691 
[3/3] 0.5163977793 
[4/4] 0.5227030798 

 
Table 3.3 Pade´ approximants and numerical value of  . 
 
The above results are in full agreement with the calculations in Wazwaz (2000), (1997). 

 
4. Conclusion 

 
In this paper, we applied the variational iteration method (VIM) for solving the higher order 
integro differential equations by using the re-formulated system of integral equations. The 
method is used in a direct way without using linearization, perturbation, discretization or 
restrictive assumption. The method gives more realistic series solutions that converge very 
rapidly in physical problems. Thus we conclude that the variational iteration method can be 
considered as an efficient and effective method for solving linear and nonlinear initial and 
boundary value problems. The fact that the VIM solves nonlinear problems without using 
Adomian’s polynomials can be considered as a clear advantage of this technique over the 
decomposition method.  
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