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Abstract

In this paper, we apply the variational iteration method (VIM) for solving higher-order integro
differential equations by converting the problems into system of integral equations. The
proposed technique is applied to the re-formulated system of integro-differential equations.
Numerical results show the accuracy and efficiency of the suggested algorithm. The fact that the
VIM solves nonlinear problems without calculating Adomian’s polynomials is a clear advantage
of this technique over the decomposition method.
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1. Introduction

In this paper, we consider the general higher-order integro-differential equation of the type
y™ ()= )+ [KHF (y(t)dt,
0

with boundary conditions
yP0)=A,, j=012:(r-1),
yP(b)=Cj, j=r,(r+1),(r+2),--,(m-1),
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where y™(x) indicates the mth derivative of y(x) and F(y(x)) is a nonlinear function. In addition
the kernel k(x,t), f(x)are assumed real, differential for xe[O,b]andA;, 0< j<(r-1),

C,;, r<j<(m-1)are real finite constants. The higher-order integro-differential equations occur

in multiple diversified physical phenomena and various techniques including decomposition
have been applied for solving such problems, (see Agarwal (1986), Morchalo (1975a), Agarwal
(1983), Morchalo (1975b), Wazwaz (2000)). He developed the variational iteration method
(VIM) for solving linear and nonlinear versatile physical problems, (see He (2006), (2007)).

It is worth mentioning that the VIM was originated by Inokuti et al. (see Inokuti, Sekine and
Mura (1978)). The method has been successfully applied on a wide class of initial and boundary
value problems by various authors, (see Mohyud-Din, Noor and Noor (2008a), Noor and
Mohyud-Din (2007a), Noor and Mohyud-Din (2007b), Noor and Mohyud-Din (2008b), Noor
and Mohyud-Din (2008c), Noor and Mohyud-Din (2008d), Noor and Mohyud-Din (2008e).
Inspired and motivated by the ongoing research in this area, we implement the variational
iteration method (VIM) for solving higher-order integro-differential equations by converting the
problems into systems of integral equations.

The proposed algorithm is applied on the re-formulated systems of integral equations. The
application of VIM on a re-formulated system of integral equations was developed and
implemented first by Noor and Mohyud-Din, (see Noor and Mohyud-Din (2007a), Noor and
Mohyud-Din (2007b)). The method has been used without any perturbation, restrictive
assumptions or discretization. Moreover, the proposed technique is free from the complexities
arising in calculating Adomian’s polynomials.

2. Variational iteration technique

To illustrate the basic concept of the technique, we consider the following general differential
equation

Lu + Nu = g(x), 1)

where L is a linear operator, N a nonlinear operator and g(x) is the forcing term. According to
variational iteration method, (see He (2006), (2007), Inokuti, Sekine and Mura (1978), Noor and
Mohyud-Din (2007a), Noor and Mohyud-Din (2007b)), we can construct a correction functional
as follows

1,10 =Uy (00 + [ 2(LU, (8) + N, (5) - g (9)ds. @

where Ais a Lagrange multiplier, which can be identified optimally via variational iteration
method. The subscripts n denote the nth approximation, U, is considered as a restricted variation.

i.e.ou, =0; (2) is called as a correction functional. The solution of the linear problems can be

solved in a single iteration step due to the exact identification of the Lagrange multiplier. The
principles of variational iteration method and its applicability for various kinds of differential
equations are given in He (2006), (2007), Inokuti, Sekine and Mura (1978), Noor and Mohyud-
Din (2007a), Noor and Mohyud-Din (2007b), Noor and Mohyud-Din (2008f), Noor and
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Mohyud-Din (2008g), Noor and Mohyud-Din (2008h)). For the sake of simplicity and to convey
the idea of the technique, we consider the following system of differential equations:

X/ (t) = f.(t, X, X000, X,) (©)
X ()= f.(t,%), 1=123,...,n,
subject to the boundary conditions x;(0) =c;, i=123,...,n.

To solve the system by means of the variational iteration method, we rewrite the system (3) in
the following form:

X (t)=f,(x)+g;(t), 1=123,....,n. (4)

subject to the boundary conditions.x;(0) =c;, i=123,...,n and g;is defined in (1). The

correction functional for the nonlinear system (4) can be approximated as:

X% (1) = Xl(k)(t)+j‘/11(xll(k)(-r)’ £, (X (T), XL (T),.., X0 (T)) - gl(T))dT,
X8 (£) = x(t) + jzz (9 (T), £, (RO (1), K (T),.... X (T) - g, (T))dT, )

X (1) = Xr(]k)(t)"'j/%n (X,/](k)(T), f X1, x8(T),...x (T)-g, (T))dT.

where A, =+1, i =123,...,nare Lagrange multipliers, X, X, ,..., X, denote the restricted variations.

For 4, = -1, i =1,2,3,..., n we have the following iterative schemes:
/Ii'(T)|T:t =0,
1+ A/ =0.

For i=123...,n. Therefore the Lagrange multipliers can be easily identified as:
A =41, i=123...,n. (6)

Substituting (6) into the correct functional (5), results the following iteration formula:



191 Muhammad Aslam Noor
t
XED ) =X (1) = [ (4 ), £, (1), %8 (1), X (T)) — 9 (T AT,
0

X§k+l) () = Xék) ) _j'(xé(k) T), f, (Xl(k) M), Xék) (M),..., xrgk) M) - gz(T)bT, )

KD () = X9 ()~ [ (9 ), £, (O (1), K0 (), X T) - g, (DHT.

If we start with the initial approximations x; (0) =c,, i=12,3,...,n, then the approximations can
be completely determined; finally we approximate the solution x; (t) = lim x,"™ (t) by the n" term

x (@) for i=123..,n.

3. Numerical Applications

In this section, we first show that the higher order integro differential equations can be re-written
in the form of a system of integral equations by using a suitable transformation. The VIM is used
for solving the re-formulated system of integral equations. For the sake of comparison, we take
the same examples as discussed in Wazwaz (2000).

Example 3.1.
Consider the linear boundary value problem for the fourth-order integro differential equation:

Y (0 =x@+e) +3e"+y() - [ y(O)dt, 0<x<1
0

with boundary conditions

y(0) =1, y'(0)=1, yQ=1+e, Yy'Q)=2e
. . dy dq dt
Using the transformation d_ =q(x), d_ = f(x), d_ = z(x), the above boundary value problem
X X X

can be transformed as:

dy dq

—=q(x), — = f(x),

i q(x) i (X)

M, Zoxare)+3et +y(x) + [y,
dx dx 5

with boundary conditions
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y(0) =1, q(0) =1, f(0)=A, z(0) = B.
The exact solution of the above boundary value problem is y(x) =1+ xe*.

The above system of differential equations can be written as the following system of integral
equations with Lagrange multipliers A, =+1,1=1,2,3,4.

y(k+1) (x) =1+ J'q(k) (t)dt, q(k+l) (x) = _1+J' £ () (t)dt,
0 0

£ D (%) = A+ i zO@Mmdt,  z*P(x)=B+ i[(t(1+ e') +3e' + y® (x))dx + I y® (t)jdt,

0
where
A=y"(0), B=y"(0).

Consequently, following approximants are obtained

vO(x)=1,9%(x) =1 fOx)=A z(x) =B,

y(x) =1+, q® (x) =1+ Ax,

f @(x) = A+ Bx, 2D(X) =B -2+ x+x* +2e* + xe*,

(2) 1 2 2) 1 5
YT =14 x4 2 A, g (x) =1+ Ax+ - Bx’,

fO(x)=A+ Bx—1—2x+%x2 +%x3 +e*+xe*, z2P(x) =B -2+ x+x%*+2e* + xe* —%xz -~

y(f*)(x):1+x+1Ax2 +§Bx3, q®(x) =1+ AX+1BX? — x— X2 42?4 Lyt + xe*,
2 3 2 3 41

fOMX)=A+ BX—1—2X+ 2 X2 + 2% 4" 4+ xe* — = x° —lx“,

2! 3 3 41

2P (X)=B -2+ x+ x> +2e* + xe* R +£Ax4,
2! 3 3! 4l
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y@(x) = 1o x+ LA + 3B +1-2x2 = 1y 4 lx4+lx5—ex+xex,
2 3 2 3 4l 5!
q@(x) = 14 A+ EBX? X X2+ 2P 4 Ext gxer Lyt _ L x>,
2 3! 4l 41 5!
fO(X)=A+Bx-1- ax+ix iyt e pxer mLys oLy +£AX4+£AX5,
2! 3 3 4l 4 5!
2 (X)=B -2+ x+x* +2e* + xe e s ae i a3k +38x5,
2! 3 3 4l 41 5!
y(s’(x):1+x+£Ax2+§Bx3+1—1x2——x3+£x4+—x5—ex+xex——x5—£x6,
2 3 2 3 41 5! ! 6!

q®(x) = 14 AX+EBX? X X2+ x4 Ext yxer Lyt Lys Ly +£x
2 3" 4 4" "5 Ta gl

fOMX) =A+Bx-1- o+ sxt sty peraxer —twe s iy L i a1 3y +3Bx
2! 3 3 4l 4l oS! 5! 6!
2P (X)=B -2+ x+x* +2e* + xe e sy I ac it a i 3ee s 3B 45
2" T3t T3 4 4 51

1 1 2 2 1
H3X+ = X2 == xP - xt + = x® + = xT —5e* + xe”
21 3l 41 6l 71

The series solution is given as

y(X):1+x+%Ax2+%Bx3+%x4+ix5+(iA+ijx6+( t 1 A+ L Bjx7

24 720 180 840 5040 5040

11 1 8 9 1 1 10
+( - Bjx + X +( + ij
40320 40320 40320 453600 3628800

1 1 1 1 1 1 1 12
+| - A+ B+ X"+ A— B+ X+
19958400 39916800 3326400 479001600 239500800 29937600

Imposing the boundary conditions at x = 1, we obtained
A =1.999999953, B =3.000000151.

y(X) =1+ x+0.9999999765x” +0.5000000252 x° + % x* + i x° +0.008333333269x° +0.001388888928 x

+0.0001984126946 x® + 40;20 x® +0.27557310x10°x™® +0.2755731983x10 % x**

+0.2505210766x107" x** +
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Table 3.1 (Error estimates)

X Exact solution Series solution *Errors
0.0 1.000000000 1.000000000 0.00000
0.1 1.11105170920 1.1105170920 2.0 E-10
0.2 1.2442805520 1.1.2442805510 6.09 E-10
0.3 1.4049576420 1.4049576410 1.4 E-9
0.4 1.5967298790 1.5967298780 1.2 E-9
0.5 1.8243606360 1.8243606320 3.5E-9
0.6 2.0932712800 2.0932712780 2.0E-9
0.7 2.4096268950 2.4096268920 3.0E-9
0.8 2.7804327420 2.7804327410 1.0 E-9
0.9 3.2136428000 3.2136427980 2.0E-9
1.0 3.7182818280 3.7182818290 1.0E-9

*Error=Exact solution-Series solution.

Table 3.1 exhibits the errors obtained by applying the variational iteration method. Higher
accuracy can be obtained by using some more terms of the series solution.

Example 3.2.

Consider the nonlinear boundary value problem for the integro differential equation
y™(x) :1+Lxe‘xy2dx, 0<x<1

with boundary conditions
y(0) =1, y'(0) =1, y(d) =e, y'd)=e

The exact solution of the above boundary value problem is y(x) =e*.
. . dy dq df
Using transformatlond— =q(x), o = f(x), o =2(x), the above boundary value problems
X X X
can be transformed as the following system of differential equations

dy dg

— =((X), — = f(x),
i q(x) i (x)
df

dz 1
z2(x), —=1+|ey*(x)dx,
=10, +£ y* (x)

with boundary conditions

y(0) =1, q(0) =1, f(0)=A  z(0)=B.
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The above system of differential equations can be written as the following system of integral
equations with Lagrange multipliers 4, =1, i=12,34.

VU0 =1+ Ja@dt. g 00=1+ [ f(De,
0 0x

£ () = A4 j 20, 2%V =B+ f(1+ je‘s (y® (s)f dS]dt-

Consequently, following approximants are obtained:

yO(x) =1, g2 =1 fOx=A z9x) =B,
y @ (x) =1+ x, q® (x) =1+ Ax,
fO(x)=A+Bx, 29 (x)=B+4-4e™*,

y@(x) =1+ x+%Ax2, q?(x) :1+Ax+1|Bx2,

fOX)=A+Bx—-4+4x+4e™*, zP(x)=B+8-8e* —4xe™*,

y&(x) =1+ X+%AX2 +%Bx3, q®(x)=q® (x) =1+ Ax+%Bx2 +4—4x+%—4e‘x,

fO(x)= A+(B+8)x+4e™ —4xe™,

29(x)=z?(x)=B+8-8e* —4xe™ +% A(2 —2e7 —2xe* —x%e™ )

The series solution is given by:

1

y(x) =1+ Xt o AX? + B Lyt e +( A jx7 +( ! 1
2! 3! 4 5 6! 2520 1680

-t ALt gi bt Wyt Ayt gilw
30240 45360 72576 181440 181440 10!

-t At g Gt a1 g lhe,l
1330560 997920 7983360 11404800 6842880 12!
Imposing the boundary conditions at x =1, we obtained

A =0.9970859583, B =1.010994057.

The series solution is given as

- A+ B+
6720 20160 8064

jxs
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y(X) =1+ x+0.4985429792 x* +0.1684990095 x* +%x4 +%x5 +% x® +-0.0001995690641 x

+0.00002578056453 x° +0.00002446285010 x° +0.3522271752x10° x*°

—0.1384676012x10"°x* +0.624047474716x10~ " x*? + .-

Table 3.2. (Error estimates)

X Exact solution Series solution *Errors
0.0 1.000000000 1.000000000 0.00000
0.1 1.1051581800 1.1051581800 1.27 E-5
0.2 1.2214027580 1.2213591310 4.36 E-5
0.3 1.3498588080 1.3497770620 8.17 E-5
0.4 1.4918246980 1.4917081990 1.16 E-4
0.5 1.6487212710 1.6485829960 1.38 E-4
0.6 1.8221188000 1.8219791520 1.39 E-4
0.7 2.0137527070 2.0136354170 1.17-4
0.8 2.2255409280 2.2254662080 7.47 E-5
0.9 2.4596031110 2.4595771740 2.59 E-5
1.0 2.7182818280 2.7182818280 0.000000

*Error=Exact solution-Series solution.

Table 3.2 exhibits the errors obtained by applying the variational iteration method. Higher

accuracy can be obtained by using some more terms of the series solution.

Example 3.3.

Consider the two dimensional nonlinear inhomogeneous boundary value problem for the integro
differential equation related to the Blasius problem

" _ _l X "
V') =a-= [ yOy'©d,

with boundary conditions

y(0) =0, y'(0) =1.
and

limy'(x) =0,

X—>—0

where « is a constant and is given by

y"(0) = «, a > 0.

—0<X<0
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Using the transformation d—:q(x), the above boundary value problem can be written as the
X

following system of differential equations

dy

&ZQ(X),
dq _ 1 (x "
&—Q—EL y(t)y"(t)dt,

with boundary conditions

y(0)=0, q(0)=1, q'(0) =a.

The above system of differential equations can be written as the following system of integral

equations with Lagrange multipliers 4, =1, i=12.

y0) = [ a® @,

X 1 X K r(k
q(x) =1+j0 (a _EL y® (t)g'¢ ’(t)dtjdt.

Consequently, the following approximants are obtained

yOox =1 q9(x=1
{ym (x) =X,

qY(x) =1+ ax,
@) 1 .2
y (x)=x+§ax ,

1
@(x)=1+ax—-—ax?,
Y 12

1 1
(3) 2 4
X)=X+—-—aX ——aX,

12 12

The series solution is given as:

48

160

480

1 1
VX)) =1l+ax-—ax’-—ax® ke Loaxe +ia2x6,
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1 , 1 , 1 ,5 1 6 1, 1 5 1 8
y(X) =X+=-aX*  ——aX ——a X +——a X +——a" X' + a’+ a (X
2 48 240 960 20160 161280 960

43 a2X9+ L a— > 0{3 X10+ >87 az— > 0!4 X11
967680 52960 387072 212889600 4257792

N 1 3\
a+ a’ X4,
16220160 7257792

and consequently

y’(x)=1+o¢x—iocx3—iozzx“jtiozxf’+—o¢2x6 1 ad - a |x’
12 48 160 2880 20160 2688

— 4 a’x® +10 1 o — S a x? +1 587 a’ — S a’ |x¥
107520 552960 387072 212889600 4257792

-t L1 XM
16220160 725760

is obtained. The diagonal Pade” approximants can be applied, consequently, we obtained values
of the constant « which are listed in the table 3.3, (see Wazwaz (2000)).

Table 3.3

Pade” approximants a
[2/2] 0.5778502691
[3/3] 0.5163977793
[4/4] 0.5227030798

Table 3.3 Pade” approximants and numerical value of « .

The above results are in full agreement with the calculations in Wazwaz (2000), (1997).
4. Conclusion

In this paper, we applied the variational iteration method (VIM) for solving the higher order
integro differential equations by using the re-formulated system of integral equations. The
method is used in a direct way without using linearization, perturbation, discretization or
restrictive assumption. The method gives more realistic series solutions that converge very
rapidly in physical problems. Thus we conclude that the variational iteration method can be
considered as an efficient and effective method for solving linear and nonlinear initial and
boundary value problems. The fact that the VIM solves nonlinear problems without using
Adomian’s polynomials can be considered as a clear advantage of this technique over the
decomposition method.
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