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Abstract

This paper deals with the stability of a retrial queueing system with two orbits, abandoned and
feedback customers. Two independent Poisson streams of customers arrive to the system, and
flow into a single-server service system. An arriving one of type i, i = 1, 2, is handled by the
server if it is free; otherwise, it is blocked and routed to a separate type-i retrial (orbit) queue
that attempts to re-dispatch its jobs at its specific Poisson rate. The customer in the orbit either
attempts service again after a random time or gives up receiving service and leaves the system
after a random time. After the customer is served completely, the customer will decide either to
join the retrial group again for another service or leave the system forever with some probability.
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1. Introduction

In classical Queueing theory, it is assumed that any customer who cannot get service immediately
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upon arrival either joins a waiting line or leaves the system forever. But there are real situations
where the blocked customers leave the service area temporarily but returns to repeat their demand
after some random time. This Queueing behavior is referred to as retrial queues (Parveen and
Begum (2014)).

Retrial queues are characterized by the feature that if a customer finds the server busy or down or
on vacation, he/she may decide to join a group of blocked customers (called orbit) for repeating
their demand, or request after some random amount of time, or leave the system immediately.

Retrial queues have wide applications. In the case of many real life systems, these later can
be applied in the performance modelling, for instance, in modelling magnetic disk memory
system, cellular mobile networks, computer networks, and local area networks with non-persistent
CSMA/CD protocols, with star topology, with random access protocols, and with multiple access
protocols.

The study of retrial queues in queueing theory has been a focus by many authors because of its
wide applicability in web access, telephone switching systems, telecommunication networks and
computer networks, and many daily life situations. Extensive survey articles in retrial queues are
due to Yang and Templeton (1987) and Falin (1990). For an excellent scenario of retrial queues,
a monograph on this topic is given by Falin and Templeton (1997).

Feedback in queueing literature represents customer dissatisfaction because of inappropriate qual-
ity of service. In case of feedback, after getting partial or incomplete service, the customer retries
for service. In computer communication, the transmission of a protocol data unit is sometimes
repeated due to occurrence of an error. This usually happens because of non-satisfactory quality of
service. Rework in industrial operations is also an example of a queue with feedback (Sharma and
Kumar (2014)). Takacs (1963) was the first to study feedback queueing models. The author studied
queues with feedback to determine the stationary process for the queue size and the first two
moments of the distribution function of the total time spent in the system by a customer. Studies
on queue length, the total sojourn time and the waiting time for an M/G/1 queue with Bernoulli
feedback were provided by Vanden Berg and Boxma (1991). Choi et al. (1998) studied an M/M/c

retrial queueing model with geometric loss and feedback. Santhakumaran and Thangaraj (2000)
considered a single server feedback queue with impatient and feedback customers. Choudhury
and Paul (2005) derived the queue size distribution at random epoch, and at a service completion
epoch for M/G/1 queue with two phases of heterogeneous services and Bernoulli feedback
system. Krishna Kumar et al. (2006) considered a generalized M/G/1 feedback queue in which
customers are either “positive” or “negative”. Thangaraj and Vanitha (2009) obtained transient
solution of M/M/1 feedback queue with catastrophes using continued fractions, the steady-state
solution, moments under steady state and busy period analysis are calculated. Ayyapan et al.
(2010) studied M/M/1 retrial queueing systems with loss and feedback, under non preemptive
priority service, by matrix geometric method. Kumar and Sharma (2012) analyzed a single server
queueing system with retention of reneged customers. Arivudainambi and Godhandaraman (2012)
considered a batch arrival queueing system with two phases of service, feedback and K optional
vacations under a classical retrial policy. Bouchentouf et al. (2014) analyzed a queueing model
with two heterogeneous servers balking, reneging and feedback.
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A queueing system with two orbits and two exogenous streams of different types serves as a
model for two competing job streams in a carrier sensing multiple access system, where the
jobs, after a failed attempt to network access, wait in an orbit queue (Nain (1985); Szpankowski
(1994)). The retrial queueing systems with a constant retrial rate and a single type of jobs were
considered in Fayolle (1986), Choi et al. (1993a), Choi et al. (1993b), Artalejo et al. (2001),
and Avrachenkov and Yechiali (2010). A two-class retrial system with a single server, no waiting
room, batch arrivals and classical retrial scheme was introduced and analyzed in Kulkarni (1986).
Then, in Falin (1988), the author extended the analysis of the model in Kulkarni (1986) to the
multi-class setting with arbitrary number of classes. In Grishechkin (1992) the author established
equivalence between the multi-class batch arrival retrial queues with classical retrial policy and
branching processes with immigration. In Moutzoukis and Langaris (1996) a non-preemptive
priority mechanism was added to the model of Falin (1988) and Kulkarni (1986). In Langaris
and Dimitriou (2010), the authors considered a multi-class retrial system where retrial classes
are associated with different phases of service. Retrial queueing model MMAP/M2/1 with two
orbits was studied in Avrachenkov et al. (2010), where the authors considered a retrial single-
server queueing model with two types of customers. In case of the server occupancy at the arrival
epoch, the customer moves to the orbit depending on the type of the customer, where one orbit is
infinite while the second one is finite. Joint distribution of the number of customers in the orbits
and some performance measures are computed. In Bouchentouf and Belarbi (2013), the authors
considered two retrial queueing system with balking and feedback, the joint generating function
of the number of busy server, and the queue length was found by solving Kummer differential
equation, and by the method of series solution. In Avrachenkov et al. (2014), the authors analyzed
a retrial model with two input streams and two orbit queues. Bouchentouf et al. (2014) gave a note
on fluid approximation of retrial queueing system with two orbits, abandonment and feedback.
And in Bouchentouf and Sakhi (2015), the authors presented a note on an M/M/s queueing
system with two reconnect and two redial orbits.

Motivated by the need to analyze retrial queueing networks, and by the need to develop analytical
tools that support performance analysis of many large telecommunication systems (call centers),
where abandonments, retrial, and feedback arise naturally and are prevalent, we study in the
present paper a retrial queueing model with abandonment and feedback customers, system with
two orbits, constant retrials, abandoned and feedback customers is carried out.

The layout of the paper is given as follows. After the introduction, the retrial queueing model is
described in Section 2. In Section 3, we give the main result; we formulate our retrial system as a
three-dimensional Markovian queueing network, then we derive balance equations and generating
functions, and finally we give its necessary stability condition.

2. The Model

The Markovian retrial queueing system with two classes of jobs and constant retrial, abandonment
and feedback customers, is considered (Figure 1).
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Figure 1: A queueing model with two orbits, abandonment and feedback

Two independent Poisson streams of jobs, S1 and S2, flow into a single-server service system.
The service system can hold at most one job. The arrival rate of stream Si is αi, i = 1, 2, with
α1+α2 = α. The required service time of each job is independent of its type and is exponentially
distributed with mean 1/µ. If an arriving type-i job finds the (main) server busy, it is routed to
a dedicated retrial (orbit) queue from which jobs are re-transmitted at an exponential rate. The
rates of retransmissions may be different from the rates of the original input streams. So the
blocked jobs of type i form a type-i single-server orbit queue that attempts to retransmit jobs
(if any) to the main service system at a Poisson rate of γi, i = 1, 2. This creates a system with
three dependent queues. The customer in the orbit either attempts service again after a random
time or gives up receiving service and leaves the system after a random time at rate δi i = 1, 2.

After the customer is served completely, it will decide either to join the retrial group again for
another service with probability β or to leave the system forever with probability β̄ = 1− β.

Let C(t) denotes the number of jobs in the main queue. C(t) takes the values of 0 or 1. Let Ni(t)

be the number of jobs in orbit queue i, i = 1, 2. The Markov process {(N1(t), N2(t), C(t)) : t ∈
[0,+∞)} is irreducible on the state-space {0, 1, ...} × {0, 1, ...} × {0, 1}.

Such a network can serve as a model for two competing job streams in a carrier sensing multiple
access system “CSMA”. A Local Area Computer Network (LAN) can be an example of CSMA.

3. Main Result: Necessary stability condition

The main objective of this work is to give the necessary stability condition of a retrial queueing
system with two orbits, constant retrials, abandoned and feedback customers. The main result is
given in the following proposition.
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Proposition 1.

The following condition

α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi

γi + δi

)
< 1, (1)

for i = 1, 2 and

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1 6= 0 (2)

is necessary for the stability of the system.

Proof:

We will prove that our Markovian retrial queueing system with two classes of jobs and constant
retrial rates, abandonment and feedback customers, is stable.

First we have to show that
α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1
≤ 1 (3)

and for i = 1, 2

α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi

γi + δi

)
≤ 1 (4)

are necessary conditions for the existence of a steady-state.

� Let us present the balance equations and generating functions. Consider the system in steady-
state, where we define by (N1, N2, C) the stationary version of the Markov chain
{(N1(t), N2(t), C(t)) : t ∈ [0,∞)}. Define the set of stationary probabilities Pn1n2(c) as follows:

Pn1n2(c) = lim
t→∞

P (N1(t) = n1, N2(t) = n2, L(t) = c)

= P (N1 = n1, N2 = n2, C = c),

for n1, n2 = 0, 1, ..., and c = 0, 1, when these limits exist. Define the marginal probabilities

Pn1·(c) =
∞∑

n2=0

Pn1n2(c) = P (N1 = n1, C = c), n1 = 0, 1, 2, ..., c = 0, 1

and

P·n2(c) =
∞∑

n1=0

Pn1n2(c) = P (N2 = n2, C = c), n2 = 0, 1, 2, ..., c = 0, 1.

Now, let us write the balance equations

1. N2 = n2 = 0

1.1. N1 = n1 = 0, c = 0

αP00(0) = βµP00(1) + δ1P10(0) + δ2P01(0). (5)
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1.2. N1 = n1 ≥ 1, c = 0

(α + γ1 + δ1)Pn10(0) = βµPn10(1) + βµPn1−10(1) + δ1Pn1+10(0) + δ2Pn11(0). (6)

1.3. N1 = 0, c = 1

(α + µ)P00(1) = αP00(0) + γ1P10(0) + γ2P01(0) + δ1P10(1) + δ2P01(1). (7)

1.4. N1 = n1 ≥ 1, c = 1

(α + µ+ δ1)Pn10(1) = αPn10(0) + γ1Pn1+10(0) + γ2Pn11(0)

+δ1Pn1+10(1) + δ2Pn11(1) + α1Pn1−10(1).

(8)

2. N2 = n2 ≥ 1

2.1. N1 = 0 c = 0

(α + γ2 + δ2)P0n2(0) = βµP0n2(1) + βµP0n1−1(1) + δ1P1n2(1) + δ2P0n2+1(0). (9)

2.2. N1 = n1 ≥ 1 c = 0

(α + γ1 + γ2 + δ1 + δ2)Pn1n2(0) = βµPn1−1n2(1) + βµPn1n2−1(1)

+βµPn1n2(1) + δ1Pn1+1n2(0) + δ2Pn1n2+1(0).

(10)

2.3. N1 = 0 c = 1

(α + µ+ δ2)P0n2(1) = αP0n2(0) + γ1P1n2(0) + γ2P0n2+1(0) + δ1P1n2(1)

+δ2P0n2+1(1) + α2P0n2−1(1).

(11)

2.4. N1 = n1 ≥ 1 c = 1

(α + µ+ δ1 + δ2)Pn1n2(1) = αPn1n2(0) + γ1Pn1+1n2(0) + γ2Pn1n2+1(0)

+δ1Pn1+1n2(1) + δ2Pn1n2+1(1) + α1Pn1−1n2(1) + α2Pn1n2−1(1).

(12)

The probability generating function of the stationary version of the Markov process
{(N1(t), N2(t), C(t)) : t ∈ [0,+∞)} is given by

F (z1, z2, z) =
∞∑

n1=0

∞∑
n2=0

1∑
c=0

Pn1n2(c)z
n1
1 z

n2
2 z

c. (13)

Let us also define the following (partial) probability generating function

R(c)
n2

(z1) =
∞∑

n1=0

Pn1n2(c)z
n1
1 , c = 0, 1, n2 = 0, 1, ...,

and

F (c)(z1, z2) =
∞∑

n2=0

∞∑
n1=0

Pn1n2(c)z
n1
1 z

n2
2 =

∞∑
n2=0

R(c)
n2

(z1)z
n2
2 , c = 0, 1. (14)
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F (z1, z2, z) = F (0)(z1, z2) + zF (1)(z1, z2), |z1| ≤ 1, |z2| ≤ 1.

For n2 = 0 and c = 0 we multiply (5) and (6) by zn1
1 , we get

((α + γ1 + δ1)z1 − δ1)R(0)
0 (z1)− ((γ1 + δ1)z1 − δ1)P00(0)

=
(
βµz1 + βµz21

)
R

(1)
0 (z1) + δ2z1R

(0)
1 (z1).

(15)

For n2 = 0 and c = 1 we multiply (7) and (8) by zn1
1 , we get

((α + µ+ δ1)z1 − δ1 − α1z
2
1)R

(1)
0 (z1)− (δ1z1 − δ1)P00(1)

= (αz1 + γ1)R
(0)
0 (z1)− γ1P00(0) + δ2z1R

(1)
1 + γ2z1R

(0)
1 .

(16)

For n2 ≥ 1 and c = 0 we multiply (9) and (10) by zn1
1 , we get

((α + γ1 + γ2 + δ1 + δ2)z1 − δ1)R(0)
n2 (z1)− ((γ1 + δ1)z1 − δ1)P0n2(0)

=
(
βµz1 + βµz21

)
R

(1)
n2 (z1) + βµz21R

(1)
n2−1(z1) + δ2z1R

(1)
n2+1(z1).

(17)

For n2 ≥ 1 and c = 1 we multiply (11) and (15) by zn1
1 , we get

((α + µ+ δ1 + δ2)z1 − δ1 − α1z
2
1)R

(1)
n2 (z1)− (δ1z1 − δ1)P0n2(1)

= (αz1 + γ1)R
(0)
n2 z1 + γ2z1R

(0)
n2+1(z1) + α2z1R

(1)
n2−1(z1)

+δ2z1R
(1)
n2+1(z1)− γ1P0n2(0).

(18)

Using Equations (15) and (17) then multiplying by zn2
2 , we get

(z1(α + γ1 + γ2 + δ1 + δ2)z2 − δ1z2 − δ2z1)F (0)(z1, z2)

− (z1(γ2 + δ2)z2 − δ2z1)F (0)(z1, 0)− (z1(γ1 + δ1)z2 − δ1) z2F (0)(0, z2)

=
(
βµz1z2 + βµz21z2 + βµz21z

2
2

)
F (1)(z1, z2).

(19)

We do the same with Equations (16) and (18)

(z1(α + µ+ δ1 + δ2)z2 − α1z
2
1z2 − δ1z2 − δ2z1 − α2z1z

2
2)F (1)(z1, z2)

−(z1z2δ2 − δ2z1)F (1)(z1, 0) + γ2z1F
(0)(z1, 0)

−z2(δ1z1 − δ1)F (1)(0, z2) + γ1F
(0)(0, z2)

= ((αz1 + γ1)z2 + γ2z1)F
(0)(z1, z2).

(20)

Let
α1Pn1·(1) = γ1Pn1+1·(0) + δ1Pn0+1·(1). (21)
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Summing over n1, we get

1− F (0)(0, 1) =

(
1 +

α1

γ1 + δ1

)
F (1)(1, 1). (22)

Then by symmetry

1− F (0)(1, 0) =

(
1 +

α2

γ2 + δ2

)
F (1)(1, 1). (23)

Then

F (1)(1, 1) =
α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1
, (24)

with [α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1 6= 0.

Second, we have to prove that for i = 1, 2, if

α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi

γi + δi

)
= 1, (25)

then both queues N1 and N2 are unbounded with probability one.

z Assume, for instance, that

α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi

γi + δi

)
= 1,

so that F (0)(1, 0) = 0 from (23). Since F (0)(1, 0) =
∑
n1=0

Pn1,0(0) (see (14)), the condition

F (0)(1, 0) = 0 implies that
Pn1,0(0) = 0 for n1 = 0, 1, ..., (26)

so that from (5) to (6)
Pn1,0(1) = 0 for n1 = 0, 1, .... (27)

We now use an induction argument to prove that

Pn1,n2(0) = 0 for n1, n2 = 0, 1, .... (28)

We have already shown in (26) that (28) is true for n2 = 0. Assume that (28) is true for
n2 = 0, 1, ..., k and let us show that it is still true for n2 = k + 1.

From (10) and the induction hypothesis we get that Pn1,k(0) = Pn1,k(1) = 0 for n1 = 1, 2, ....

The latter equality implies, using (15), that Pn1,k+1(0) = 0. This shows that (28) holds for
n1 = 0, 1, ..., and n2 = k + 1, and completes the induction argument, proving that (28) is true.
We have therefore proved that Pn1,n2(0) = 0 for all n1, n2 = 0, 1, ....

Let us prove that Pn1,n2(1) = 0 for all n1, n2 = 0, 1, .... The latter is true for n1, n2 = 1, 2, ...,

(10). It is also true for n2 = 0, n1 = 0, 1, ..., from (27).

It remains to investigate the case where n1 = 0 and n2 = 0, 1, ....



AAM: Intern. J., Vol. 10, Issue 2 (December 2015) 675

By (9) and (28) we get that P0,n2(1) = 0 for n2 = 1, 2, ..., whereas we have already noticed
that P0,0(1) = 0. In summary, Pn1,n2(0) = Pn1,n2(1) = 0 for all n1, n2 = 0, 1, ..., so that
P (N1 = n1, N2 = n2) = Pn1,n2(0) + Pn1,n2(1) for all n1, n2 = 0, 1, ..., which completes the
proof.

4. Conclusion

In this article, a Markovian retrial queueing system with two classes of jobs and constant retrial,
abandonment and feedback customers is studied. A necessary condition for the stability of this
system is derived. For further work, it will be interesting to analyze the sufficient condition for
the stability of the system. To this end we have to obtain the generating functions for this system
via the solution of a Riemannian Hilbert boundary value technique.
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