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Abstract

Multidimensional perfect reconstruction (PR) quadrature mirror filter (QMF) banks with finite

impulse response (FIR) filters induced from systems of biorthogonal multivariate scaling functions

and wavelets are investigated. In particular, bivariate scaling functions and wavelets with dilation

as an expansive integer matrix whose determinant is two in absolute value are considered.

Demonstrative quincunxial examples are explicitly given and new FIR filters are constructed.
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1. Introduction

T
ENSOR product wavelets have been used in a variety of successful applications due to their

simplicity and easy implementation. However, they have several drawbacks, for example,

there is no design freedom, and their separable property may be the main reason for high image

compression ratios when applied to image processing. Indeed, tensor product scaling functions

are scaling functions with matrix dilation A = 2Is, where Is is the identity matrix of order s. The

number of corresponding wavelet generators is as large as 2s−1 for a multivariate scaling function

in P ∈ R
s. In general, the number of multivariate multiwavelet generators corresponding to a

multivariate scaling function vector φ = [φ1, . . . , φr]
> with matrix dilation A is (| detA| − 1)r.

Hence, to reduce the number of wavelet generators, it is natural to consider dilation matrices

with small determinants in modulus such as two or three.
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Some tedious but necessary notations and definitions in Section 2. Simple properties of dilation

matrices will be listed in Section 3. Polynomial preservation order will be considered in Section

4. Bivariate scaling functions as the four-directional box splines will constitute Section 5. Finally,

we investigate bivariate biorthogonal quincunx scaling functions and wavelets in Section 6 while

the orthonormality will be considered in Section 7.

2. Preliminaries

To facilitate our presentation and to be more precise, we list some fairly standard but neces-

sary notations and definitions in this section. A multivariate refinable function vector φ(x) =

[φ1(x), . . . , φr(x)]> is a vector-valued function satisfying the two-scale relation

φ(x) =
∑

k∈Z
s

Pkφ(Ax− k), x ∈ R
s, (1)

where A is an expansive integer dilation matrix, meaning that it has integer entries and all its

eigenvalues are greater than 1 in modulus, {Pk}k∈Z
s , a set of square matrices of order r and with

only finitely many nonzero, is the two-scale sequence of φ. Such a refinable function vector φ

is called an scaling function vector, if {φ1(· − k1), . . . , φr(· − kr) : k1, . . . ,kr ∈ Z
s} forms a

Riesz basis of V0 ⊂ L2(Rs), where

V0 = spanL2{φ1(· − k1), . . . , φr(· − kr) : k1, . . . ,kr ∈ Z
s}.

It is well-known that, corresponding to such a scaling function φ, there are a − 1 multiwavelet

vectors, denoted by

ψ`(x) = [ψ`
1(x), . . . , ψ`

r(x)]>, ` = 1, · · · , a− 1, (2)

where a := | det(A)|. With the Fourier transform f̂ of f defined by f̂(ω) =
∫

R
s f(x)e−jω·x dx, it

follows from (1) and with notations in (2), that

φ̂(ω) = P (e−jA−>ω) φ̂(A−>ω), (3)

ψ̂`(ω) = Q`(e−jA−>ω) φ̂(A−>ω), ` = 1, · · · , a− 1, (4)

where P and Q` are the two-scale symbols of φ and ψ` given by

P (z) =
1

a

∑

k∈Z
s

Pkz
k, (5)

Q`(z) =
1

a

∑

k∈Z
s

Q`
kz

k, ` = 1, · · · , a− 1, (6)

respectively. Here the notion zk :=
∏s

j=1 z
kj

j has been used for z = [z1, · · · , zs]
> and k =

[k1, · · · , ks]
> ∈ Z

s. Hence, a multivariate scaling function vector φ and a set of a−1 multiwavelets

corresponding to φ can be well-defined via their Fourier transforms, namely,

φ̂(ω) =

[
∞∏

n=1

P (e−jA−n>ω)

]
φ̂(0), (7)

ψ̂`(ω) = Q`(e−jA−>ω)

[
∞∏

n=2

P (e−jA−n>ω)

]
φ̂(0), ` = 1, . . . , a− 1. (8)
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If we let γ0, . . . , γa−1 be a set of a representors of the coset space Z
s/A>Z

s, with γ0 = 0, it

follows from (3) that

a−1∑

`=0

(P ΦP ?)
(
e−jA−>(ω+2πγ`)

)
= Φ(e−jω), ω ∈ [0, 2π]s, (9)

where ? denotes the transpose of the complex conjugation, Φ is the autocorrelation symbol of φ

or the bracket product of φ and itself, namely,

Φ(z) = [φ, φ](ω) =
∑

k∈Z
s

〈φ(·), φ(· − k)〉zk, (10)

where the notation z = e−jω = [e−jω1, · · · , e−jωs ]> has been used. We will also call (10)

the multivariate z-transform of the vector-valued function φ. The stability of φ can be simply

described by the positive definiteness of Φ(z) on |z1| = · · · = |zs| = 1, while the orthonormality

(o. n.) of φ is equivalent to Φ(z) = Is.

For ψ1, · · · , ψa−1 to be a set of a− 1 multiwavelets corresponding to such a φ, their two-scale

symbols Q1, · · · , Qa−1 have to satisfy

a−1∑

`=0

(
P Φ(Qk)?

) (
e−jA−>(ω+2πγ`)

)
= 0, k = 1, · · · , a− 1. (11)

Analogously, if Ψ` is the z-transform of ψ` in (2), namely,

Ψ`(z) = [ψ`, ψ`](ω) =
∑

k∈Zs

〈ψ`(·), ψ`(· − k)〉zk,

it is also easy to see that

Ψ`(e−jω) =
a−1∑

`=0

(
Q` Φ(Q`)?

) (
e−jA−>(ω+2πγ`)

)
, ω ∈ [0, 2π]s, (12)

for ` = 1, · · · , a− 1. If we further require that the wavelet subspaces generated by ψ1, · · · , ψa−1

be mutually orthogonal, their two-scale symbols Q1, · · · , Qa−1 are further required to satisfy

a−1∑

`=0

(Qp Φ(Qq)?)
(
e−jA−>(ω+2πγ`)

)
= 0, (13)

for p 6= q and p, q = 1, · · · , a−1. To summarize, similar to the univariate setting, if we introduce

M(z) =




P (e−jA−>2πγ0z) · · · P (e−jA−>2πγa−1z)

Q1(e−jA−>2πγ0z) · · · Q1(e−jA−>2πγa−1z)

· · · · · · · · ·
Qa−1(e−jA−>2πγ0z) · · · Qa−1(e−jA−>2πγa−1z)


 ,

all identities in (9), (11), (12), and (13) can be rewritten as the following matrix identity

M(z)D(z)M(z)? = diag
(
Φ(e−jω),Ψ1(e−jω), · · · ,Ψa−1(e−jω)

)
,

D(z) = diag
(
Φ(e−jA−>2πγ0z), · · · ,Φ(e−jA−>2πγa−1z)

)
.

In the wavelet literature, there were some studies for the setting when A = 2I2, particularly

with box spline prewavelets (cf., e.g., Chui, et al. [10], Riemenschneider & Shen [26], [27]).
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Quincunx dilation was also investigated, e.g., bidimensional o. n. quincunx wavelets in Cohen

& Daubechies [11] and Lian [24], biorthogonal box spline wavelets in He & Lai [16], quincunx

subdivision in Velho & Zorin [29], quincunx biorthogonal wavelets in Han & Jia [15] and Lian

[23], and semi-orthogonal bivariate quincunx wavelets in Lian [22]. In Vetterli & Kovačević [30],

the authors studied nonseparable orthogonal quincunx bivariate wavelets as well.

We are interested in, in this paper, the setting when

a = | det(A)| = 2, As = ±2Is, (14)

so that the number of multivariate wavelet generators corresponding to such a scaling function

vector is one. In other words, corresponding to such a multivariate scaling function vector φ with

r components, there are r wavelets as well. By doing so, some of the identities induced can also

be significantly simplified. Observe also that if As = 2Is, φ is also a scaling function vector with

dilation matrix 2Is, namely,

φ̂(ω) = P̌
(
e−jω/2

)
φ̂
(

1

2
ω
)
, (15)

with

P̌
(
e−jω/2

)
=

1

2s

∑

k∈Z
s

P̌kz
k =

s∏

`=1

P
(
e−jA−`>ω

)
, z = e−jω/2. (16)

In particular, when s = 2,

P̌
(
e−jω/2

)
= P

(
e−jA−>ω

)
P
(
e−jω/2

)
. (17)

We would also like to mention that, most recently, there is a related study in Bakić, et al. [1] to

the family E(2)
n of expanding matrix dilations A with |detA| = 2.

3. Dilation Matrices

Under the assumption (14), the dilation matrices are plenty. This fact can be demonstrated by

the following.

Lemma 1. Let s = 2 and λ1 and λ2 be the two eigenvalues of an expansive integer dilation

matrix A =

[
a1 b1
c1 d1

]
, i.e., a1, b1, c1, d1 ∈ Z, |λ1|, |λ2| > 1. Then A satisfies both | detA| = 2

and A2 = ±2I2 if and only if d1 = −a1 and |a2
1 + b1c1| = 2.

Proof. The conclusion follows immediately from b1c1 6= 0 and the formulation of A’s eigenvalues

λ, namely, λ = (a1 + d1 ±
√

(a1 + d1)2 − 4det(A))/2.

A typical and probably the most interesting example of such a dilation matrix is the quincunx

dilation matrix, namely,

A1 =

[
1 1

1 −1

]
. (18)
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Other examples of dilation matrices satisfying A2 = 2I2 and with entries being ±1’s are listed

in the following,

A2 =

[
1 −1

−1 −1

]
,

[
−1 1

1 1

]
= −A2,

[
−1 −1

−1 1

]
= −A1.

The dilation matrix A =

[
0 2

−1 0

]
was considered in Grochenig & Madych [14] while the

dilation matrix A =

[
0 2

1 0

]
was considered in Belogay & Wang [2], which correspond respec-

tively to a1 = 0, b1 = 2, and c1 = ∓1 in Lemma 1. It is also clear that when A2 = −2I2, both

eigenvalues λ1 and λ2 of A are conjugate complex, namely, λ1, λ2 = ±
√

2j. When A2 = 2I2, both

λ1 and λ2 are real, namely, λ1, λ2 = ±
√

2. In general, it is easy to see from λsIs−As = (λs±2)Is

that det(λIs − A)|(λs ± 2)s. Hence, we have the following.

Lemma 2. Let w1, . . . , ws be a group of s roots of ws = 2. Then A ∈ R
s×s satisfies both

| detA| = 2 and As = ±2Is if and only if

A = ±S diag (w1, . . . , ws)S
−1,

for some nonsingular matrix S ∈ R
s×s.

In particular, when s = 3 and A3 = 2I3, either w1 = w2 = w3 = 3
√

2 or w1 = 3
√

2 and

w2, w3 = 3
√

2(−1 ±
√

3j)/2. An example of such a dilation matrix, being called face-centered

orthorhombic (FCO) sampling matrix and considered as a generalization of the quincunx bivariate

to trivariate scaling functions and wavelets (Vetterli & Kovačević [30], p. 435), is given by

A =




1 0 1

−1 −1 1

0 −1 0


 .

4. Polynomial Preservation and Smoothness

Let πs
m−1 be the collection of all s-dimensional polynomials of total degree ≤ m−1. A compactly

supported scaling function vector φ(x) = [φ1(x), · · · , φr(x)]> ∈ (Rs)r is said to have polynomial

preservation of order m, φ ∈ PPm for short, if there is a superfunction f(x), which is a finite

linear combination of integer shifts of φ(x), such that it satisfies the Fix-Strang conditions in

Fix & Strang [13], namely, Dα
ω f̂(2πk) = δ0,α δ0,k for all |α| ≤ m− 1 with α ∈ Z

s
+ and k ∈ Z

s,

which, in turn, is equivalent to
∑

k∈Z
s

q(k) f(x− k) = q(x), q ∈ πs
m−1. (19)

Here the notations |α| =
∑s

j=1 αj and Dα
ω =

∏s
j=1 ∂

αj/∂ω
αj

j for α = [α1, · · · , αs]
> and ω =

[ω1, · · · , ωs]
> have been used. Denote by S(φ) the shift-invariant space generated by φ, namely,

S(φ) = span`(Z
s) {φ(· − k) : k ∈ Z

s}, (19) is equivalent to the fact that πs
m−1 ⊂ S(φ) in the

distributional sense. To be more precise, there are vectors

{aj
α}j∈Zs ⊂ R

s, |α| ≤ m− 1,
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such that

xα =
∑

j∈Z
s

(
aj

α

)>
φ(x− j), |α| ≤ m− 1.

The two-scale symbol P of φ satisfies sum rule of order m with respect to A, P ∈ SRm for

short, if the two-scale sequence {Pk}k∈Zs of φ satisfies

∑

k∈Zs

q(Ak + j)PAk+j =
∑

k∈Zs

q(Ak)PAk, j ∈ Z
s; q ∈ πs

m−1.

We use the Sobolev exponent to describe the smoothness ν(φ) of φ, namely,

ν(φ) = sup {ν : φ` ∈ W
ν(Rs), ` = 1, · · · , s} , (20)

W
ν(Rs) =

{
f :

∫

R
s
(1 + |ω|2)ν|f̂ (ω)|2dω <∞

}
. (21)

There were a plenty of papers in the wavelet literature that studied PPm, SRm, and the Sobolev

smoothness of scaling function vectors and wavelets. We are not in the position here to further

elaborate along this topic. For more details of PPm and SRm, the relationship between SRm and

PPm, the similar notion “polynomial reproduction” introduced earlier in the wavelet literature,

and the Sobolev (and Hölder) smoothness, the reader is referred to, e.g., de Boor, et al. [3], Jia

[17], Jiang [18], Chui & Jiang [9], Lian [21], and the references therein.

Back to assumptions (14) and r = 1, a (single and real-valued) scaling function φ that has PPm

can be significantly simplified. Indeed, in terms of its two-scale symbol P in (5), φ ∈ PPm if

P (1) = 1, (22)

Dα
ω

(
P (e−jω

) ∣∣∣∣
ω=π1

= 0, |α| ≤ m− 1, (23)

where 1 = [1, · · · , 1]>. The following proposition can be obtained straightforward from (22)–(23)

and a direct application of the multivariate Taylor expansion of a polynomial f at −1, namely,

f(z) =
∑

q∈Z+

1

q!

(
(1 + z)D1

z

)q
f(−1),

(
(1 + z)D1

z

)q
=

(
s∏

`=1

(1 + z`)
∂

∂z`

)q

.

Proposition 3. Let A be a dilation matrix satisfying (14) and φ be a scaling function (i.e., r = 1)

with two-scale symbol P satisfying (22), namely,

φ̂(ω) = P (e−jA−>ω) φ̂(A−>ω),

P (z) =
1

2

∑

k∈Z
s

pkz
k,

where
∑

k∈Zs pk = 2. Then the following are equivalent.

1) φ ∈ PPm.

2) P satisfies (23).
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3) {pk}k∈Zs satisfies
∑

k∈Zs

(−1)|k| kα pk = 0, |α| ≤ m− 1.

4) P ∈ SRm, i.e., {pk}k∈Zs satisfies
∑

k∈Z
s

(Ak)αpAk =
∑

k∈Z
s

(Ak + γ1)
αpAk+γ1 ,

|α| ≤ m− 1, α ∈ Z
s
+, (24)

where γ1 is a representor of the coset space Z
s/AZ

s.

5) P has the form

P (z) = zβ
∑

α∈Z
s
+,|α|≥m

sα

(
1 + z

2

)α

, (25)

for some β ∈ Z
s, where sα, α ∈ Z

s
+, |α| ≥ m, are constants satisfying
∑

α∈Z
s
+,|α|≥m

sα = 1.

First, observe that, from (22) and (24), P ∈ SRm if and only if {pk}k∈Zs satisfies
∑

k∈Z
s

pAk =
∑

k∈Z
s

pAk+γ1 = 1, (26)

∑

k∈Z
s

(Ak)αpAk =
∑

k∈Z
s

(Ak + γ1)
αpAk+γ1 , (27)

for 1 ≤ |α| ≤ m − 1, α ∈ Z
s
+, which is completely similar to the univariate single scaling

function setting. Secondly, it is clear from (25) that an immediate family of scaling functions

φ ∈ PPm of non-tensor-product type can be determined by the symbols

P (z) =
(
1 + z

2

)α

, |α| = m, (28)

which include symbols of certain box splines as we will see in the following section.

5. Four Directional Box Splines

Let Md1,d2,d3,d4 be the bivariate box spline (c. f., e.g., Chui [7] and de Boor [4]), generated by

the four directions

ξ` = [ξ`
1, ξ

`
2]
>, ` = 1, · · · , 4,

with multiplicities d1, · · · , d4, respectively, i.e.,

M̂d1,d2,d3,d4(ω) =
4∏

`=1

(
1 − e−jξ`·ω

jξ` · ω

)d`

. (29)

Then it is easy to see that, for an expansive integer dilation matrix A satisfying (14) with s = 2,

M̂d1,d2,d3,d4(ω)

M̂d1,d2,d3,d4(A
−>ω)

=

(
1 + e−jξ1·A−>ω

2

)d1 (
1 + e−jξ2·A−>ω

2

)d2

, (30)
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if d3, d4 and ξ3, ξ4 are given in terms of d1, d2 and ξ1, ξ2, namely,

d3 = d1, d4 = d2, ξ3 = Aξ1, ξ4 = Aξ2. (31)

In other words, under the conditions in (31), the box spline in (29) is a refinable function with

dilation matrix A and two-scale symbol in (30). In particular, when A is the quincunx dilation

matrix in (18), d1 = d2 = 1, and

ξ1 = [1, 0]>, ξ2 = [0, 1]>, (32)

M1,1,1,1 is the classical ZP-element, or Zwart-Powell function (not a scaling function though). For

wavelets corresponding to M1,1,1,1, see, for instance, Chui, et al. [8]. Under the same assumptions

in (32) but with the dilation matrix A as A = [ 2 −21 −2 ], we have a new refinable function

that looks like a “twisted” ZP-element.

Observe that (29) gives a family of bivariate refinable scaling functions, as the four-directional

box splines, with dj’s and ξj’s satisfying (31), two-scale symbols in (30), and arbitrary dilation

matrices A satisfying (14) with s = 2. It is also easy to see that the simple two-scale symbols

in (28) include those for all four-directional box splines’ when s = 2.

6. Bivariate Biorthogonal Scaling Functions and Wavelets

We will focus on the quincunx setting, namely, A is fixed as A1 in (18). Then a representor γ1

of Z
2/A>

Z
2 can be simply chosen as γ1 = [1, 0]>. Hence, the identity in (9) becomes

|P (z)|2 Φ(z) + |P (−z)|2 Φ(−z) = Φ(z1z2, z1z
−1
2 ), z = e−jA−>ω. (33)

Following Vaidyanathan ([28], p. 553), a multidimensional filter H(ω) has linear phase if H(ω) =

ce−jk>ωHR(ω) for some constant c, real constant vector k, and real-valued function HR(ω). For

bivariate setting, we extend the notion of linear phase filter to bi-linear phase filter, if both

H(ω1, ω2) and H(ω2, ω1) have linear phase. It is easy to see that a bi-linear phase filter is indeed

circularly symmetric. To motivate our further presentation, we start with the following 5-tap

diamond-shape bi-linear phase filter

pk =
1

4




1

1 4 1

1


 . (34)

It can be obtained straightforward from (26)–(27) with both m = 2 and circular symmetry. If,

without loss of generality, the origin is at the middle, it is easy to see that the two-scale symbol

corresponding to the 5-tap quincunx bi-linear phase filter is given by

P (z) =
1

2

(
1 +

1

4

(
z1 + z−1

1 + z2 + z−1
2

))
, (35)

which satisfies (25) with β = −1 and m = 2, i.e., P ∈ SR2. In fact,

P (z) = z−1

[
− 1

2

(
1 + z

2

)
[
2

0

]

− 1

2

(
1 + z

2

)
[
0

2

]

+
(
1 + z

2

)
[
2

1

]

+
(
1 + z

2

)
[
1

2

]
]
. (36)
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Furthermore, Φ in (33) can be calculated (by comparing the coefficients of (33) both sides),

omitted here, which is indeed positive on |z1| = |z2| = 1 after appropriate normalization. Hence,

there is a unique scaling function φ, to be called 2-d hat quincunx-scaling function, with its two-

scale symbol P given by (35) or (36). By applying the Matlab routines in Jiang [19], we have

φ ∈ W
1.5776, where W

µ denotes the Sobolev smoothness class of functions f introduced in (20)–

(21). This 2-d hat quincunx-scaling function is a natural extention of the 1-d hat function which

is the second order cardinal B-spline N2(x) := (1−|x|)χ[−1,1](x), where χB is the characteristic

function of a set B. Observe also that the 2-d hat quincunx-scaling function φ determined by

the two-scale symbol P in (35) is also a scaling function with dilation matrix 2I2 and two-scale

symbol P̌ given by (17). Its two-scale sequence {p̌k} is consequently given by

p̌k =
1

16




1 1

1 4 6 4 1

6 16 6

1 4 6 4 1

1 1



.

As usual, let φ, ψ and φ̃, ψ̃ be a bivariate quincunx scaling function and wavelet system such

that φ, φ̃ and ψ, ψ̃ are biorthogonal each other. Let P,Q, P̃ , and Q̃ be their two-scale symbols,

respectively. Then, without going into any detail here, we can construct a φ̃ ∈ PP4 with non-

diamond shaped bi-linear phase filter {p̃k} given by

p̃k =
1

256




3 3

6 −12 −16 −12 6

3 −12 −38 88 −38 −12 3

−16 88 424 88 −16

3 −12 −38 88 −38 −12 3

6 −12 −16 −12 6

3 3




. (37)

Consequently,

Q(z) = z1 P̃ (−z), Q̃(z) = z1P (−z). (38)

The graphs of both φ and ψ̃ are illustrated in Fig. 1, where φ was plotted and approximated by

φ8, the eighth iteration of the following cascade algorithm:

φn (x) =

φn−1 (Ax) +
1

4

[
φn−1

(
Ax−

[
1

0

])
+ φn−1

(
Ax−

[
0

1

])

+φn−1

(
Ax −

[
−1

0

])
+ φn−1

(
Ax−

[
0

−1

])]
,

φ0(x) =
1

4
χ[−1,1)×[−1,1)(x),

for n = 1, 2, · · · , while ψ̃ was plotted by the fifth iteration of the cascade algorithm with respect

to φ̃. Regarding their Fourier transforms φ̂ and ej(ω1+ω2)/2 ̂̃ψ, it follows from (7), (8), and (17)
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(a) φ̃ (b) ψ

Fig. 1. An illustration of the 2-d hat quincunx-scaling function φ determined by the 5-tap bi-linear phase filter in (34), and a

wavelet ψ̃ biorthogonal to φ.

(a) φ̃ (b) ψ

Fig. 2. An illustration of φ̃ and ψ.

that

φ̂(ω) = P (e−jA−>ω)

[
∞∏

k=1

P (e−jω/2k

)P (e−jA−>ω/2k+1

)

]
,

̂̃
ψ(ω) = Q̃(e−jA−>ω)

[
∞∏

k=1

P̃ (e−jω/2k

) P̃ (e−jA−>ω/2k+1

)

]
,

where P is in (35) and Q̃ is in (38). We plot both φ̂ and ej(ω1+ω2)/2 ̂̃ψ in Fig. 3, where the infinite

products were truncated up to the seventh factor.

Meanwhile, by applying the Matlab routines in Jiang [19], we have φ̃ ∈ W
0.3141. The graphs of

φ̃ and ψ are illustrated in Fig. 2, where both φ̃ and ψ were plotted by using the fifth iteration of

its cascade algorithm with respect to φ. Again, it follows from (7), (8), and (17) that

̂̃
φ(ω) = P̃ (e−jA−>ω)

[
∞∏

k=1

P̃ (e−jω/2k

) P̃ (e−jA−>ω/2k+1

)

]
,
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(a) φ̂(ω) (b) ej(ω1+ω2)/2̂̃ψ(ω)

Fig. 3. An illustration of φ̂(ω) and ej(ω1+ω2)/2 ̂̃ψ(ω).

(a)
̂̃
φ(ω) (b) ej(ω1+ω2)/2ψ̂(ω)

Fig. 4. An illustration of
̂̃
φ(ω) and ej(ω1+ω2)/2ψ̂(ω).

ψ̂(ω) = Q(e−jA−>ω)

[
∞∏

k=1

P (e−jω/2k

)P (e−jA−>ω/2k+1

)

]
,

where P̃ is determined from (37) and Q is given in (38). Both
̂̃
φ(ω) and ej(ω1+ω2)/2ψ̂(ω) are

plotted in Fig. 4, where the infinite products were truncated up to the seventh factor.

It is worthwhile to point out the following. First, the bivariate bi-linear phase filter {pk} in (34)

can be generalized to the (2s + 1)-tap s-dimensional s-linear phase filter, namely, in terms of

its two-scale symbol denoted by Ps,2,

Ps,2(z) =
1

2

(
1 +

1

2s

(
z1 + z−1

1 + · · · + zs + z−1
s

))
, (39)

which satisfies Ps,2 ∈ SR2 and determines a scaling function, to be called the s-d hat function.

In other words, the s-d hat function, denoted by φs,2, is a A-refinable scaling function with s-

dimensional dilation matrix A satisfying | det(A)| = 2 and As = 2Is. Secondly, if we denote by
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P2(z) = ((1 + z)/2)2/z the two-scale symbol of the second order cardinal B-spline N2, (39) is

the direct consequence of the McClellan transformation [25], an efficient method of generating

2-d filters from 1-d prototype filters. (See also algorithms in Charoenlarpnopparut & Bose [5]

by using Gröbner bases.) More precisely,

Ps,2(z) = f

(
z1 + z−1

1 + · · · + zs + z−1
s

2s

)
,

where

f

(
z + z−1

2

)
=

1

2

(
1 +

z + z−1

2

)
= P2(z).

However, our dual filter in (37) is not obtained from an McClellan transformation [25] of any 1-d

filter dual to {1/2, 1, 1/2}. Thirdly, it was shown in Kovačević & Vetterli [20] that the following

bi-linear phase filter

p̃k =
1

16




−1

−2 4 −2

−1 4 28 4 −1

−2 4 −2

−1




is also dual to {pk} in (34). But, by applying the Matlab routines in Jiang [19], the corresponding

φ̃ ∈ W
−0.3370. That is, φ̃ is not even a function. It was also shown in Cohen & Daubechies [11]

that the size of such a diamond-shaped dual filter was as large as 57 in order for the corresponding

scaling function to be regular. For more details of the design of multidimensional multirate filters

and filter banks derived from 1-d prototype filters, the reader is referred to Dudgeon & Mersereau

[12], Chen & Vaidyanathan [6], Vetterli & Kovačević [30], Charoenlarpnopparut & Bose [5] and

the references therein.

7. Conclusion

Algorithms for constructing multidimensional PR FIR QMF filter banks induced from systems

of different kinds of compactly supported multivariate scaling functions and wavelets were

established. In particular, when dilation is an expansive integer matrix whose determinant is

two in absolute value, bidimensional PR FIR QMF filter banks corresponding to bivariate scaling

functions and wavelets were studied. To demonstrate the algorithm, new quincunxial PR FIR QMF

filter banks are constructed. Meanwhile, we plan to continue working on: (1) multidimensional

PR FIR QMF filter banks with respect to multivariate scaling functions and wavelets with

various dilation matrices; (2) developing more robust methods for the design of multidimensional

multirate filters and filter banks derived from 1-d and 2-d prototype filters; and (3) various PR

FIR QMF filter banks with respect to all four orthorhombic lattices: simple, base-centered, body-

centered, and face-centered.
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[4] C. de Boor, K. Höllig, and S. Riemenschneider, “BOX SPLINES,” Springer-Verlag, New York, NY, 1993.

[5] C. Charoenlarpnopparut and N. K. Bose, “Multidimensional FIR filter bank design using Gröbner bases,” IEEE Trans.
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[8] C. K. Chui, K. Jetter, and J. Stöckler, “Wavelets and frames on the four-directional mesh,” in: WAVELETS: THEORY,

ALGORITHMS AND APPLICATIONS, C. K. Chui, L. Montefusco and L. Puccio (eds.), Academic Press, NY, 1994, 213–230.

[9] C. K. Chui and Q. T. Jiang, “Multivariate balanced vector-valued refinable functions,” in: MODERN DEVELOPMENT IN

MULTIVARIATE APPROXIMATION, ISNM 145, V. W. Haussmann, K. Jetter, M. Reimer, and J. Stöckler (eds.), Birkhäuser
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