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Abstract 
 
This paper deals with the testing function space Z and its dual ,Z   which is known as 
ultradistrbution. Some theorems and properties are investigated for the Mehler-Fock 
transformation and its inverse for the ultradistribution. 
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1.   Introduction 
 
One of the distribution space, known as ultradistribution, has been defined on many 
transformations by researchers Pathak (1997) and Zemanian (1965). In an earlier work 
Loonker and Banerji (2008), authors have studied the Mehler-Fock transform to the tempered 
distribution.  
 
The Mehler – Fock transformation is defined as [cf. Yakubovich and Luchko (1994, p. 149)] 
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The generalization of the Mehler-Fock transformation is given by [cf. Pathak (1997, p. 343)] 
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where )(cosh,
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 is the generalized Legendre function, defined for complex values of the 

parameters mk,  and n by 
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for complex z not lying on the cross-cut along the real x-axis from 1 to  .  
 
 
The inversion formula of (3) is 
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when nm  ,  (3) and (5) can be written as 
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whereas for 0 nm , (3) and (5) reduce to (1) and (2), respectively. 
 
 
The Parseval relation for the Mehler-Fock transformation is defined as [Sneddon (1974, pp. 
393-94)] 
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whose convolution is 
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The asymptotic behaviour for (4) is defined [Pathak (1997, p.345)] as 
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Similarly, the function )(r , defined by (6), possesses the following asymptotic behaviour 
[cf. Pathak (1997, p.345)] 
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The distributional generalized Mehler-Fock transform )(If 

M , where )Re(m and 

2/1 ,  is defined as [Pathak (1997, p. 346)] 
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where the space )(I

M ) is the dual of the space )(I
M , which is the collection of all 

infinitely differentiable complex valued function   defined on  I such that for every non-
negative integer q, 
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The topology over )(I

M is generated by separating the collection of seminorms  
0}{ qq  and 

is a sequentially complete locally convex topological vector space. )(I , the space of 
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infinitely differentiable functions of compact support with the usual topology, is a linear 
subspace of )(I

M . 

 
From the properties of the hypergeometric functions, the generalized Legendre function 
[Pathak (1997, p.346)], satisfies the following differential equation 
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Relations (11) and (12) prove the boundedness for the Legendre function [Pathak (1997), pp. 
346-347, Lemma 11.3.1, Eqn. (11.3.2)] 
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where C is a constant independent of  x and r and, rm  is )Re(m . 
 
 
The differentiability of the Mehler-Fock transform is defined by [Pathak (1997, p.347)] 
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When q is non-negative integer depending on f, the asymptotic behavior of the Mehler-Fock 
transform is 
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and for f being  the generalized Mehler-Fock transformation, 
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2.   The Space Z and its Dual Z   
 
Let Z be the space of the entire function )(z on l – complex variables such that there exists 

constants tsC ,  and laaa ,,, 21   such that 

 llts
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for all 0),,,( 21  jl ttttt   and 0),,,( 21  jl sssss  . If the sequence }{  satisfies (26), 

it is said to converge in the sense of Z, where s and t are non-negative integers and )Im(zy  . 

A sequence }{  of functions in Z is said to converge in the sense of Z if and only if 

 
(i) The sequence }{   converges to a limit function uniformly on every compact set 

in the z – plane. 
(ii) For every }{,0 

sDs  converges to }{ sD  uniformly on every compact set in the 

z-plane. 
(iii) There exists constants tsC ,  and a , independent of   such that 
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The dual of the space Z is defined as Z   and the function f is said to be in Z   if and only if it 
satisfies the following: 
 

(i) Linearity: If 1  and 2  are testing functions and   and   are two complex 
numbers, then 

(ii)  
      ),(),(),( 2121  fff  . 
 

(iii) Continuity: If 
1}{   converges in Z to zero, then the sequence of numbers 


1)},{( f   also converges to zero. 

 
If 

1}{   converges in Z to a limit function   that is not identically zero, then 
1)},{( f   

converges to ),( f . The generalized Mehler-Fock transform of distributions in    (dual of 

) are generalized function in Z  . 
 
The results proved in the section that follows, satisfy the testing function space Z whose 
Mehler-Fock transformation are in  , and satisfy (26) also. 
 
 



242                                      Loonker and Banerji  

3. Mehler-Fock Transformation and the Testing Function Space Z 
 
Employing the notions and terminologies of those of Zemanian (1965, p.193), we define the 
testing function space Z and the ultradistribution space Z   for the Mehler-Fock 
transformation. Let )(r  be an arbitrary testing function in whose support is contained in 
the finite interval  r0  and the inverse Mehler-Fock transformation of it can be written 
as an integral over ),0(   as 
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The function )(x  in (27), can be extended to an entire function over the complex z plane 
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is analytic for all finite z and converges uniformly over every bounded domain of the z – 
plane. 
 
The integrand is a continuous function of ),( rz  for every complex z and every real r and also 
is an analytic function of z for every real r. Moreover, if (28) is integrated by parts q times, 
we obtain 
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Thus, if )(r  is in  with its support in ,0  r then )(z can be extended to an entire 

function with the existence of a set of constants ),2,1,0( qCq such that the inequality (33) 

is satisfied. The converse holds true. Indeed, 
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where )(z being an entire function, satisfying (33). The path of integration may be shifted in 
the  z – plane onto any line that is parallel to the z-axis, which is justified by the Cauchy’s 
theorem and due to the fact that, for all y in any fixed finite interval, )( iyx   goes to zero 

faster than any power of x/1  as x , according to the relation (33). Thus, such a shifting 

for every y, yields 
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For the reason, stated above, the last integral (36) converges uniformly for  r0 , which 
on formal differentiation under the integral sign, yields 
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where qA is a constant . 

 
 
Now invoking (33), we obtain from (37) 
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By virtue of the asymptotic behaviour and boundedness property of the function 
)(cosh,

2/1 zP nm
ir , it implies that 0)(  r , for 0r . 

 
Lemma 1:  
 
A necessary and sufficient condition for )(r  to be in , with its support contained 
in  r0 , is that its inverse Mehler-Fock transformation can be extended to an entire 
function that satisfies the inequality (33). 
 
Proof:  
 
Z is the testing function space, whose Mehler-Fock transformation  are elements of Above 
Lemma characterizes that Z is the space of all entire functions, that satisfy the inequality (33) 
for some constant qN , which implies that Z is a linear space. Also, the Mehler-Fock 

transformation and its inverse are linear one-to-one mapping of Z onto onto Z, respectively. 
Further, for the convergence in space Z, we claim that the sequence 

1)}({  z  converges in Z 

if the following conditions are satisfied 
 

(i) Each }{   is in Z. 

(ii) There exists a constant ),2,1,0( qNq , which does not depend upon   such that 

for all ,2,1,0,)(,  qNzziyxz q
q

  . 

(iii) 
1)}({  z  converges uniformly on every bounded domain of the z- plane. 

 
As a consequence, the limit function   of 

1)}({  z  is also in Z, for which it will satisfy 

condition (ii), and the uniformity of convergence in condition (iii) ensures that )(z is 
analytic for all z. Thus, the space Z is closed under convergence. The Conditions (ii) and (iii) 
imply that 

1)}({  zz q  converges to )(zz q uniformly. The lemma is, therefore, completely 

proved. 
 
Theorem 1:  
 
The sequence 

 1}{   converges in  to the limit  if and only if the inverse Mehler-Fock 

transformation 
1)}({  z  converges in Z to the limit  1M , where notations have usual 

meaning. 
 
Proof:  
 
Let 

 1)}({  r  converges in  to   and that the support of all )(r be contained in 

 r0  . Then, )(z  and   are also in Z. Also, 
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Since 
 1)}({  r  converges to )(r in , )()(sup )( rr qq    is, indeed, uniformly bounded 

for all values to   . Thus,   satisfy the inequality (38).Thereby the Condition (iii) for the 

convergence in Z is also justified. Indeed, according to (39) 
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Conversely, if 

1)}({  z  converges in Z to  , then by the Condition (ii) and Lemma 1, all 

)(r  and )(r are in  and their supports are contained in  r0 . Also, for each non-

negative integer q, 
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By Conditions (ii) and (iii), the above inequality converges to zero. Thus, 

 1)}({  r  

converges in  to )(r . This completes the proof of the theorem.  

 
Theorem 2:  
 
Z is a proper subspace of S, where S is the testing function space of rapid descent. 
 
Proof:   
 
If   is in Z, then indeed, it is an entire function and, thus, )(z  is infinitely smooth for all z. 

Also, its Mehler-Fock transformation )(r  is in , which implies that )(r  is also in . 

Therefore, by (38) )()( rq is again in Z, so that for each pair of non-negative integer q, 
 

 rNr q
q 0,)()(   . 

 
Hence   is in S. Finally,  is subset of S and since  does not intersect Z, except for the zero 
function. Therefore, Z is truly a proper subspace of S. The theorem is completely proved. 
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Theorem 3:  
 
If the sequence 

1)}({  z  converges in Z to , then it also converges in S to  . 

 
Proof:  
 
By Theorem 1, it implies that 

 1)}({  r  converges in  to )(r . For 

 1

)( )}({,,2,1,0  rq q  converges in  to )(r . Hence 
1)}({  zz q  converges in Z 

to )(zz k , which shows that )()( rq
  converges in )()( rq  uniformly for  r0 . 

 
Theorem 4:   
 
For each )(z  in S there exists a sequence 

1)}({  z , with the elements exclusively in Z, that 

converges in S to , that is, Z is dense in S.  
 
Proof:   
 
Since the Mehler-Fock transformation maps S onto itself,   is also in S. Moreover,  is 
dense in S. Therefore, choose a sequence 

 1)}({  r   in  which converges in S to . By the 

continuity of the inverse Mehler-Fock transformation as a mapping of S onto itself, 

1)}({  z , is the sequence we seek. 

 
 
4. Ultradistribution Spaces Z   for Mehler-Fock Transformation 
 
The ultradistribution for the Mehler-Fock transformation can be defined by the Paresval’s 
relation, as 
 

)(),()(),( xxfrrF          (40) 
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Theorem 5:  
 
Z  contains S  , where S  is the dual of S. 
 
Proof:   
 
According to Theorem 2, since Z is the subspace of S, hence each distribution f of slow 
growth in linear on Z. Furthermore, since convergence in Z implies convergence in S [cf. 
Theorem 3], f is also continuous on Z. For regular distribution, the testing function spaces 
have their identification [Pathak (1997, p. 201)] as  
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ZSSZ    .        (42) 
 

From (41), evidently, the Mehler-Fock transformation )(rF of any distribution f  is in   . 
As  traverses ,   traverses Z, so that )(rF is defined as functional, which assigns to each 
  in Z the same number that )(xf  assigns to )(r . By using Theorem 1, for f in   , )(rF is 
a continuous linear functional on Z and , thus, is an ultradistribution.   
 
The inverse Mehler-Fock transformation is well served by relations (40) and (41). It follows 
that Mehler-Fock transformation is a mapping of    onto Z   and its inverse is the mapping 
of Z   onto  . This shows the correspondence to be one-to-one. Similarly, through the 
identification of testing function space with distribution (42), Mehler-Fock transformation for 
slow growth have the mapping S   onto Z   and its inverse have the mapping Z   onto S  , 
From Theorem 5, similar mapping can easily be proved for (40) and (41).  
 
Commentary:  
 
We state following properties, without detailed proof, of Mehler-Fock transformation for the 
ultradistribution owing to the basic cause that the linearity and continuity have been defined 
in the preceding pages. 
 

(i) Addition :  )(),()(),()(),()( zzgzzfzzgzf    

(ii) Multiplication by constant  : )(),()(),( zzfzzf    

(iii) Differentiability (Eqn. (21)): )(),()(),( )1()1( zzfzzf    

(iv) Operator formula (Eqn. (24)) : *( ) ( ), ( ) ( ), ( ) ,q q
x xf x x f x x     

 
where Zzgzf )(),(  and Zz )( . 
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