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Abstract

Certain expansion formulae for a basic analogue of the Fox’s H-function have been derived by
the applications of the g-Leibniz rule for the Weyl type g-derivatives of a product of two
functions. Expansion formulae involving a basic analogue of Meijer’s G-function and
MacRobert’s E-function have been derived as special cases of the main results.
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1. Introduction

Recently, Purohit (2007) introduced a new g-extension of the Leibniz rule for the derivatives of a
product of two basic functions in terms of a finite g-series involving Weyl type g-derivatives of
the functions in the following manner:
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where U(z) and V(z) are two regular functions and the fractional g-differential operator
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—a(l+a)/2 ©

a _9q _ I+ 3
ZDw,q{f(z)}——rq o j (t=2)—q1./(tq" ) d(5:q), )
where Re(a) <0 and
v T 1-(y/x)q"
(x=y)y =x : 3)
s

the basic integration cf. Gasper and Rahman (1990), is defined as:
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In view of the relation (4), operator (2) can be expressed as:
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where Re() <0.
In particular, for f(z) =z 7, the equation (5) yields to
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We shall make use of the following notations and definitions in the sequel:

For real or complex a and |q| <1, the g-shifted factorial is defined as:
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In terms of the q-gamma function, (7) can be expressed as
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where the g-gamma function cf. Gasper and Rahman (1990), is given by
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Saxena, et al. (1983), introduced a basic analogue of the H-function in terms of the Mellin-
Barnes type basic contour integral in the following manner:
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and 0<m<B, 0<n<4; a; and pg; are all positive integers. The contour C is a line parallel to

cq - . . . b;i-p;
Re(ws) = 0, with indentations, if necessary, in such a manner that all the poles of G(g P S) ,

1< j<m, are to the right, and those of G(ql_aj +ajs) , 1< j <n to the left of C. The integral

converges if Re[slog(z)—logsinzs]< 0 for large values of |s| on the contour C, that is, if
‘{arg(z)—wzwl_l log|z| }‘< 7, where |q|<1, logg=-w=—(w; +iwy), Ww,wj,wyare definite

quantities. w; and w, being real.
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For a;=p;=1, j=1-,4;i=1--,B the definition (10) reduces to the g-analogue of the

Meijer's G-function due to Saxena, et al. (1983), namely
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where 0<m<B, 0<n<A4 and Re[slog(z)—logsin zs]< 0.

Further, if we set n =0 and m = B in the equation (12), we get the basic analogue of
MacRobert's E-function due to Agarwal (1960), namely

ay,:

BO| . :
GA’B{z,qb bB} Eq[Bibj:Asa;:z]

B b;—s

[I6Gq7 H)=z*
jA J=1 ds (13)
CHG(q D)G(g' ™ )sinzs

where Re[slog(z) — logsin zs]< 0.

The Fox’s H-function and Meijer’s G-function have been studied in detail by several
mathematicians for their theoretical and applications point of view. These functions have found
wide ranging applications in mathematical, physical, biological and statistical sciences. It would
be interesting to observe that almost all the classical special functions are the particular cases of
the Fox’s H-function. A detailed account of various classical special functions expressible in
terms of Meijer’s G-function or Fox’s H-function along with their applications to the
aforementioned fields can be found in the research monographs by Mathai et al. (1973, 1978).

A new generalization was considered by Saxena et al. (1983) in the form of the g-extensions of
the Fox’s H- function and Meijer’s G-function by means of the Mellin- Barne’s type of basic
integral. The advantage of these new extensions of the Fox’s H and Meijer’s G-functions lies in
the fact that a number of g-special functions including the basic hypergeometric functions,
happens to be the particular cases of the H,(.) and G, (.) functions, thus widening the scope for

further applications. In a paper, Saxena, et al. (1990), besides proving some interesting relations,
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have established an important limit formula for the ,(.) function when ¢ tends to 1. Various

basic functions expressible in terms of the basic analogue of Fox’s H-function or basic Meijer’s
G-function with their applications can be found in the research papers due to Saxena, et al.
(2005) and Yadav et al. (20006).

In the present paper, we shall explore the possibility for derivation of some expansion formulae
involving the basic analogue of the Fox’s H-function by the applications of the g-Leibniz rule for
the Weyl type g-derivatives of a product of two functions. We also investigate the expansion
formulae involving the basic analogues of Meijer’s G-function and MacRobert’s E-function.

2. Main Results

In this section, we shall establish certain results associated with the basic analogue of Fox's H-
function by assigning suitable values to the functions U(z), V'(z), and « in the g-Leibniz rule

(1). The main results to be established are as under:
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where 0<m<B, 0<n< 4, Re[slog(z)—logsin w]<0, kK >0 and p being any complex quantity.
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where 0<m<B, 0<n<4, Re[slog(z) —logsins]<0, k <0 and p being any complex quantity.

Proof of the main results:

A

To prove the results (14) and (15), we begin with U(z) =z ~ and
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in the equation (1) to obtain
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On making use of fractional g-derivative formula (6) in the above equation (17), we obtain
following interesting transformation for the /4, (.) function after certain simplifications:
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where kK > 0.

Again, if we takek <0, we obtain the following fractional g-derivative formula for the H,(.)

function, namely
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We now substitute 4 =0 and replace u# by r and then z by zg*™" respectively, in equation
(18) to obtain the following transformation for the H,(.) function:
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Further, in view of the result (6), one can easily obtain the following relation
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On substituting the values of the various expressions involved in the equation (16), from
equations (18), (20) and (21), we arrive at the main result (14).

The proof of the result (15) follows similarly when &£ < 0 and by the usages of the transformation
formula (19) and the relation (21).

3. Special Cases

In this section, we shall consider some special cases of the main results and deduce certain
expansion formulae involving the basic analogue of Meijer's G-function and basic analogue of

MacRobert's E-function.

If we set a;=p;i =1, j=1-,4;i=1---,B and k=1, in the main result (14), we obtain the

following interesting expansion formula involving Meijer's G, (.) function, namely
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where 0<m<B, 0<n< 4, Re[slog(z) —logsin zs]< 0 and p being any complex quantity.

Similarly, for a; =g, =1, j=1,+-,4;i=1,-+,B andk = -1, the main result (15) reduces to yet

another expansion formula associated with the basic analogue of Meijer's G-function, namely
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where 0<m<B, 0<n< 4, Re[slog(z) —logsin zs]< 0 and p being any complex quantity.

Finally, if we set n =0 andm = B, the result (22), yields to an expansion formula involving
MacRobert's £, (.) function, namely
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where Re[slog(z) —logsin zs]< 0 and p being any complex quantity.
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