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Abstract 
 
Certain expansion formulae for a basic analogue of the Fox’s H-function have been derived by 
the applications of the q-Leibniz rule for the Weyl type q-derivatives of a product of two 
functions. Expansion formulae involving a basic analogue of Meijer’s G-function and 
MacRobert’s E-function have been derived as special cases of the main results. 
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1. Introduction 
 
Recently, Purohit (2007) introduced a new q-extension of the Leibniz rule for the derivatives of a 
product of two basic functions in terms of a finite q-series involving Weyl type q-derivatives of 
the functions in the following manner: 
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where )(zU  and )(zV  are two regular functions and the fractional q-differential operator 

(.),


qz D  of Weyl type is given by 
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 the basic integration cf. Gasper and Rahman (1990), is defined as: 
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In view of the relation (4), operator (2) can be expressed as: 
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where 0)Re(  . 
 

In particular, for pzzf )( , the equation (5) yields to 
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where 0)Re(  . 
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We shall make use of the following notations and definitions in the sequel: 
 
For real or complex a  and 1q , the q-shifted factorial is defined as: 
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In terms of the q-gamma function, (7) can be expressed as 
 

0,
)(

)1()(
);( 




 n

a

qna
qa

q

n
q

n ,                                                     (8) 

 
where the q-gamma function cf. Gasper and Rahman (1990), is given by 
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where ....,2,1,0 a  
 
Saxena, et al. (1983), introduced a basic analogue of the H-function in terms of the Mellin-
Barnes type basic contour integral in the following manner: 
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and AnBm  0,0 ; j  and  i  are all positive integers. The contour C is a line parallel to 
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converges if ]sinlog)log(Re[ szs   0 for large values of s  on the contour C, that is, if 
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12
   , where q 1, )(log 21 iwwwq  , 21,, www are definite 

quantities. 1w  and 2w  being real. 
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For ,1 ij  BiAj ,,1;,,1    the definition (10) reduces to the q-analogue of the 

Meijer's G-function due to Saxena, et al. (1983), namely 
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where AnBm  0,0  and  ]sinlog)log(Re[ szs   0. 
 
Further, if we set 0n  and  Bm   in the equation (12), we get the basic analogue of 
MacRobert's E-function due to Agarwal (1960), namely  
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where ]sinlog)log(Re[ szs   0. 
 
The Fox’s H-function and Meijer’s G-function have been studied in detail by several 
mathematicians for their theoretical and applications point of view. These functions have found 
wide ranging applications in mathematical, physical, biological and statistical sciences. It would 
be interesting to observe that almost all the classical special functions are the particular cases of 
the Fox’s H-function. A detailed account of various classical special functions expressible in 
terms of Meijer’s G-function or Fox’s H-function along with their applications to the 
aforementioned fields can be found in the research monographs by Mathai et al. (1973, 1978). 
 
A new generalization was considered by Saxena et al. (1983) in the form of the q-extensions of 
the Fox’s H- function and Meijer’s G-function by means of the Mellin- Barne’s type of basic 
integral. The advantage of these new extensions of the Fox’s H and Meijer’s G-functions lies in 
the fact that a number of q-special functions including the basic hypergeometric functions, 
happens to be the particular cases of the (.)qH  and (.)qG  functions, thus widening the scope for 

further applications. In a paper, Saxena, et al. (1990), besides proving some interesting relations, 



132                                                                                                                       Purohit et al. 

have established an important limit formula for the (.)qH  function when q  tends to 1. Various 

basic functions expressible in terms of the basic analogue of Fox’s H-function or basic Meijer’s 
G-function with their applications can be found in the research papers due to Saxena, et al. 
(2005) and Yadav et al. (2006). 
 
In the present paper, we shall explore the possibility for derivation of some expansion formulae 
involving the basic analogue of the Fox’s H-function by the applications of the q-Leibniz rule for 
the Weyl type q-derivatives of a product of two functions. We also investigate the expansion 
formulae involving the basic analogues of Meijer’s G-function and MacRobert’s E-function. 
 
 
2. Main Results  
 
In this section, we shall establish certain results associated with the basic analogue of Fox's H-
function by assigning suitable values to the functions )(),( zVzU , and   in the q-Leibniz rule 
(1). The main results to be established are as under: 
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where AnBm  0,0 , ]sinlog)log(Re[ szs   0, 0k  and   being any complex quantity. 
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where AnBm  0,0 , ]sinlog)log(Re[ szs   0, 0k  and   being any complex quantity. 
 
 
Proof of the main results:  
 

To prove the results (14) and (15), we begin with   zzU )(  and 
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in the equation (1) to obtain 
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n view of the definition (10), the left-hand side of equation (16) becomes 
 

 














 ),(
),(

;,
,, 


b
a

qzHzD knm
BAqz       

  dszD

sqGqGqG

qGqG

i
sk

qz
C

A

nj

ssa
B

mj

sb

s
n

j

sa
m

j

sb

jjjj

jjjj

)(
,

1

1

1

1

1

1

1

sin)()()(

)()(

2

1 






















 










. (17) 

 
On making use of fractional q-derivative formula (6) in the above equation (17), we obtain 
following interesting transformation for the (.)qH  function after certain simplifications: 
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where 0k . 
 
Again, if we take 0k , we obtain the following fractional q-derivative formula for the  (.)qH  

function, namely 
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We now substitute 0  and replace   by r  and then z  by rqz   respectively, in equation 

(18) to obtain the following transformation for the (.)qH  function: 
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Further, in view of the result (6), one can easily obtain the following relation 
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On substituting the values of the various expressions involved in the equation (16), from 
equations (18), (20) and (21), we arrive at the main result (14). 
 
The proof of the result (15) follows similarly when 0k  and by the usages of the transformation 
formula (19) and the relation (21). 
 
 
3.  Special Cases 
 
In this section, we shall consider some special cases of the main results and deduce certain 
expansion formulae involving the basic analogue of Meijer's G-function and basic analogue of 
MacRobert's E-function.  
 
If we set ,1 ij  BiAj ,,1;,,1    and 1k , in the main result (14), we obtain the 

following interesting expansion formula involving Meijer's (.)qG  function, namely 
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where AnBm  0,0 , ]sinlog)log(Re[ szs   0 and   being any complex quantity. 
 
Similarly, for ,1 ij  BiAj ,,1;,,1    and 1k , the main result (15) reduces to yet 

another expansion formula associated with the basic analogue of Meijer's G-function, namely 
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where AnBm  0,0 , ]sinlog)log(Re[ szs   0 and   being any complex quantity. 
 
Finally, if we set 0n  and Bm  , the result (22), yields to an expansion formula involving 
MacRobert's (.)qE  function, namely 
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where ]sinlog)log(Re[ szs   0 and   being any complex quantity. 
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