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Abstract  

 In this paper we shall consider the Symmetrical Hierarchical Network (SHN) and show that 
SHN possesses poor properties of survivability. There are several methods for raising the 
survivability of SHN. Here we consider the effectiveness of radial reserve to raise the 
survivability of SHN taking account of destruction of the main radial edges, and radial reserve. 
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1. Introduction 

An arbitrary Multicommodity Flow Network (MFN) is determined by two graphs, physical G  
and logical P  on the same set V  of nodes (cf. Phillips,D. and Garcia-Dias (1981)). Edges kr  of 
graph G  mean physical lines of communications between the nodes from V , and they are 
ascribed with non-negative numbers kc  called capacity of edges nkrk ,,1, = . Edges 

mipi ,,1, =  of graph P  correspond to logical connection between certain pairs of nodes 
(source-sink pairs). This means that there are demands of flow transmission from one node to the 
other ip  through the edges of network graph G . Thus, each ip  is specified by source-sink pair 

Vvv t
i

s
i ∈,  and positive demand id . 

 
An MFN is called Hierarchical Network (HN) if its logical graph has the structure of a star (i.e., 

the source - sink pairs are given in the form },,2,1{),,( 0 mMivv
def

i =∈ , with the common source 
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0v ). The physical graph of an HN usually repeats its logical structure and also is a star network: 
>=< EVG , , where  },,...,,{ 10 mvvvV =  },...,,{ 21 meeeE =  and ),( 0 ii vve = . A formal 

hierarchical network is considered by M.B. Ahmadi, Yu.E. Malashenko and N.M. Novikova 
(2001). An HN is called symmetrical if all demands are equal, i.e., .,...,1, middi ==  
 
 
2.   Survivability in network systems 

Network survivability is critical component of the global telecommunication infrastructure (cf. 
T.H. Grubesic and A.T. Murray (2005)). Survivability is a key concept, but its definition can very 
depending on the context of applications. In many network design models, network survivability 
is defined as the ability of a network to maintain or restore an acceptable level of performance in 
the event of deterministic or random failures (cf. Shi, J. et al. (1995)). 
 
Network planners have define the term survivability as the percentage of the total traffic 
surviving the failure of edges or nodes. Kolar and Wu (1988) have used this definition to evaluate 
the survivability of different network architectures. In particular, they have proposed several 
network architectures for fiber optic networks. Then, they compared the investment cost and edge 
survivability for each proposed architecture. 
 
Here we define network survivability as the guaranteed level of demand satisfaction depending 
on capacity and demand vectors. 

 

3.   Evaluation of survivability of SHN 

Let jz  be the amount flow between nodes 0v  and jv . Denote by )(cZ  the set of all multiflows 
),,( 1 mzzz =  in the network with capacity vector ),...,( 1 mccc = , i.e., 

 
}0|{)( MiczzcZ ii ∈∀≤≤= .                              

For every flow distribution, we define the value 
  

,min
i

i

Mi d
z

∈
 

 
which is called the demand satisfaction level (d.s.l) given the distribution z ( cf. Malashenko 
Yu.E. , Novikova N.M (1999)). An MFN performance efficiency measure is defined as the 
maximum d.s.l. attainable in the network 
 

.minmax)(
)(00

i

i

MicZz d
z

c
∈∈

==θθ                                                 (1) 

For HN with the capacity ),...,,( 21 mcccc = , we have 
i

i
i d

cc min)(0 =θ . 
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Let 0z  be the optimal solution of (1). In that case 0z  is called competitive distribution of flows. 
In the case ,1=m  (1) is a well known problem of the flow maximization. For 1>m  it formalizes 
the concurrent flow problem. A multiflow achieves demand satisfaction if it ships an amount of 
each commodity equal to its demand from its source to its sink while obeying the capacity 
constraint. This corresponds to 10 ≥θ . Otherwise, an arbitrary concurrent flow distribution 0z  [a 
maximizer in (1)] may not be the best for certain network users. 
 
Let )1,0(∈γ  be a parameter which characterizes the strength of a failure: it indicates what part of 
the total capacity of edges may be lost. 
 
Let ),...,( 1 mccc =  be the initial capacity vector of HN.  Denote by )(cYγ , the set of possible 
values of edge capacities after the fault 
 

},...,1,,)1(|{)(
11

micycyRycY ii

m

i
i

m

i
i

m =≤−=∈= ∑∑
==

+ γγ . 

 
The function )(cg

γθ  denotes the guaranteed level of demand satisfaction depending on capacity 
vector c  and demand d  and it is defined as follows 
  

i

i

MiyZzcYycYy

g

d
z

yc
∈∈∈∈

== minmaxmin)(min)(
)()(

0)( γγ

θθγ  

 
The survivability of HN is defined by )(cg

γθ  (cf. Ahmadi (2007)). 
 
Lemma 1:  Let ),...,( 1 mccc =  be the capacity vectors of SHN. Then 
 

  
d

cc
c

m

i
iiig

+

=
∑−

=
]min[

)( 1
γ

θγ  

 

Proof:  Let  kii
cc =min . First we show that 0)( =cg

γθ , for 
∑
∈

=

Mi
i

k

c
c

γ .                                          

Let ),...,,,0,,,( 1111 mkkk cccccy ++−=  . We have 
 

 ∑∑∑∑∑
∈∈

∈≠
∈=

−=−==
Mi

i
Mi

i

Mi
i

k

ki
Mi

i

m

i
i cc

c
ccy )1()1(

1
γ .  

 
Thus, )(cYy γ∈ .  In this case there is no path from 0v  to kv . Hence, ,0=kz  and 0)( =cg

γθ . It is 

clear that 0)( =cg
γθ  for 

∑
∈

>

Mi
i

k

c
cγ .  
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Now suppose that ∑

∈

>−
Mi

ik cc 0γ . Let ),...,,,,,,( 1111 mkk
Mi

ikk cccccccy ++
∈

− ∑−= γ . We have 

 

 ∑∑ ∑∑
∈∈ ∈=

−=−=
Mi

i
Mi Mi

ii

m

i
i cccy )1(

1
γγ . Thus )(cYy γ∈ .  

 

It is clear that 
d

cc

d
zy Mi

ik
i

MiyZz

∑
∈

∈∈

−
==

γ
θ minmax)(

)(0 , and consequently 
d

cc
c Mi

ik
g

∑
∈

−
≤

γ
θγ )( . 

 

Now, suppose that 
d

cc
ycYy Mi

ik ∑
∈

−
<∈∃

γ
θγ )ˆ(:)(ˆ 0 .Thus ∑

∈

−<∈∃
Mi

ikl ccyMl γˆ: , and then  

)(ˆ)1(ˆ
1

cYycccy
Mi

i
Mi

i
Mi

i

m

i
i γγγ ∉⇒−=−< ∑∑∑∑

∈∈∈=

. 

Hence, we have 
d

cc
yc

m

i
i

i
i

g

+

=
∑−

==
]min[

)()( 1
0

γ
θθγ .■ 

 
Denote by )(cγ  the smallest value γ  that is enough for loss of connectivity of HN with initial 

capacity vector c , i.e., 

          
}.0)(:)(|)1,0(min{

}0)(|)1,0(min{)(

0 =∈∃∈=
=∈==

ycYy
cc g

def

θγ
θγγγ

γ

γ                                                     (2) 

Corollary 1:  For SHN with the capacity vector ),...,(


timesm

ddc
−

= , we have 
m

c 1)( =γ . 

Proof: According to Lemma 1, we have 

)(cγ =








=− +

=
∑ 0]min[|min

1

m

i
i

i
i cc γγ  

  { }0][|min =−= +mdd γγ  

 { }mdd γγ ≤= |min  







 ≤= γγ

m
1|min = 

m
1 .■ 
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Corollary 1 shows that SHN possesses poor properties of survivability. Extending the capacity of 
the radial edge or creating an additional radial reserve, makes it possible to raise the survivability 
of SHN.   
 
Denote by G   the SHN with additional radial reserve, i.e., ,,, 0EEEEVG =>=<  

},...,{ 00
2

0
1

0
meeeE = . 0E representing m  new radial edges each with a capacity of t . Here t  is a 

nonnegative number representing the capacity of radial reserve. 
 
From now on, we do not distinguish between G and G , assuming formally that for graph G , the 
capacity of radial reserve  is equal to zero. 
 
 
4. The Survivability of SHN with Radial Reserve 

Let ),...,( 1 mccc = , 


),...,(
timesm

T ttc
−

=  denote the initial capacity vector of radial edges and the radial 

reserve respectively, and also ).,( Tccc =  From now on, the capacity vectors of radial  edges and 
radial reserve have m  dimensions. 

 
To analyze survivability of SHN with radial reserve, we consider two cases: 
 

a. Failures happen only in radial edges and the radial reserve is failure-free. 
b. Failures happen both in radial edges and in radial reserve. 
 

Denote by )(cYγ , the set of possible values of edge capacities after the fault. In the case a 
 

},...,1,,,)1(|{)(
11

2 mitycycyRycY imii

m

i
i

m

i
i

m ==≤−=∈= +
==

+ ∑∑ γγ , 

and in the case b 

}.,...,1,,,)1(|{)(
1

2

1

2 mitycymtcyRycY imii

m

i
i

m

i
i

m =≤≤+−=∈= +
==

+ ∑∑ γγ  

Example 1.  Let )16,20,14,10(=c  and )12,12,12,12(=Tc  be the capacity vectors of radial edges 
and radial reserve respectively, and 2.0=γ . Then in the case a  
 









=≤≤==== ∑
=

4,3,2,1,0,48)60(8.0|)12,12,12,12,,,,(),(
4

1
4321 icyyyyyyyccY ii

i
iT . 

 
For instance ).,()12,12,12,12,16,20,12,0( TccY∈  In the case b  
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=≤≤=≤≤=+=== ∑
=

8,...,5,120,4,...,1,0,96)12(4)60(8.0|),...,,(),(
8

1
821 iyicyyyyyyccY iii

i
iT

 
For example, the following vectors belong to ),( TccY . 
 

)12,12,0,12,16,20,14,10(),12,12,12,12,16,20,2,10(),12,12,12,10,16,20,14,0( . 

 
First, we consider the case a. 

Lemma 2: Let ),( Tccc =  be the capacity vectors of SHN with radial reserve. Then 
 

  .
]min[

)( 1

d

tcc
c

m

i
iiig

+−
=

+

=
∑γ

θγ  

 
Proof: Let  kii

cc =min , ∑
∈

+− −==
Mi

mkikkRTR cccccccccy ),...,,,,...,(),,( 111 γ  and 0>− ∑
∈Mi

ik cc γ . 

We have  
 

∑∑ ∑∑
∈∈ ∈=

−=−=
Mi

i
Mi Mi

ii

m

i
i cccy )1(

1
γγ .  

 
Thus, )(cYy γ∈ . 
 
It is clear that  

d

tcc

d
zy

m

i
ik

i

MiyZz

+−
==

∑
=

∈∈

)(
minmax)( 1

)(0

γ
θ ,  

 
and consequently 
  

d

tcc
c

m

i
ik

g
+−

≤
∑
=

)(
)( 1

γ
θγ . 

 
Now, suppose that  

d

tcc
ycYy

m

i
ik +−

<∈∃
∑
=

)(
)ˆ(:)(ˆ 1

0

γ
θγ

.  
Thus,  

∑
∈

−<∈∃
Mi

ikl ccyMl γˆ:
,  

and, then  
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)(ˆ)1(ˆ
1

cYycccy
Mi

i
Mi Mi

ii

m

i
i γγγ ∉⇒−=−< ∑∑ ∑∑

∈∈ ∈=

. 

Hence, in the case a , for all 
∑
∈

<

Mi
i

ii

c

cmin
γ ,  we have 

d

tcc
yc

m

i
ik

g
+−

==
∑
=

)(
)()( 1

0

γ
θθγ . 

Now, to prove the Lemma 2 it remains to show that  
d
tcg =)(γθ  for 

∑
∈

≥

Mi
i

ii

c

cmin
γ . 

For 
∑
∈

=

Mi
i

ii

c

cmin
γ , we introduce 

  
)~,...,~,0,~,...,~(~),,~(~

111 cccccccy kkRTR +−==  and ),...,( ttcT = ,  
 
where   

∑∑
∈∈

−=
Mi

i
Mi

i cc )1(~ γ .  

 
We have  
 

)(~)1(~
1

cYycy
Mi

i

m

i
i γγ ∈⇒−= ∑∑

∈=

. 

 

It is obvious that 
d
ty =)~(0θ . Thus 

d
tcg ≤)(γθ  for 

∑
∈

≥

Mi
i

ii

c

cmin
γ .  

 
On the other hand, in the case a, we may choose tzi ≥  for all Mi∈ . Then we have  

)(),1,0()(0 cYy
d
ty γγθ ∈∀∈∀≥ . 

Therefore, 
d
tcg =)(γθ  for 

∑
∈

≥

Mi
i

ii

c

cmin
γ . ■ 

Now assume that the original SHN structure is optimal: the radial edge capacity vector is equal to 
demand vector, i.e., all the demanded flows are transmitted by network and there is no excess 
capacity. In this case ),...,( ddc = . 
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Corollary 2: Let ),( Tccc =  be the capacity vectors of SHN with radial reserve. Then 









≥

<+−
=

.1

,11
)(

m
if

d
t

m
if

d
tm

cg

γ

γγ
θγ  

Proof: According to Lemma 2, we have  

d

tcc
c

m

i
iiig

+−
=

+

=
∑ ]min[

)( 1
γ

θγ  

      =
d

tmdd +− +]([ γ  

           








≤−

>−
+−

=
0

0

mddif
d
t

mddif
d

tmdd

γ

γγ

 

 








≥

<+−
=

,1

,11

m
if

d
t

m
if

d
tm

γ

γγ
 

and the proof is complete now. ■  
 

 
In particular, for SHN without radial reserve, i.e., 0=t , we have 
 









≥

<−
=−= +

.10

,11
]1[)(

m
if

m
ifm

mcg

γ

γγ
γθγ  

 
Example 2.    Let )14,14,14,14(=c  and )10,10,10,10(=Tc  be the capacity vectors of radial edges 

and radial reserve respectively, and 14=d , 2.0=γ . Then in the case a, we have 
4
12.0 <=γ , 

and 

)4(9143.0
14
10)4(2.01),(2.0 Dcc T

g =+−=θ  

.2.0)4(2.01)0,(2.0 =−=cgθ  



38                                                                                                                                        Mohammad Bagher Ahmadi  

 
For 25.0=γ , we obtain 
  

            )4(7143.0
14
10),(25.0 Dcc T

g ==θ  

          .0)0,(25.0 =cgθ  
 
In this example, it is clear that SHN without reserve is quite fragile. 
 
 
Now we consider case b. 
 
Lemma 3: Let ),( Tccc =  be the capacity vectors of SHN with radial reserve. Then, 
 

  .
]min[

)( 1

d

tcc
c

m

i
iiig

+

=
∑ +−

=
γ

θγ  

 
Proof:  Let  kii

cc =min , ),...,,,,...,(),,( 111 mkkkRTR ccccccccy +−==  and ),...,,...,( tttc kT = , where     

∑
∈

−+=+
Mi

ikkk ctctc γ , 0 ,0 ,k k kc c t t≤ ≤ ≤ ≤  
∑
∈

+
<

Mi
i

k

c
tc

γ .  

We have 
 

mtcctctmcy
Mi

i

ki
Mi Mi

iki

m

i
i +−=−++−+= ∑∑ ∑∑

∈
≠
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)1()1(
2

1
γγ . 

Thus, )(cYy γ∈ . 

It is clear that 
d

ctc

d
tcy Mi

ik
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∑
∈

−+
=

+
=

γ
θ )(0 , and consequently 

d

ctc
c Mi

ik
g

∑
∈

−+
≤

γ
θγ )( . 

 

Now, suppose that 
d

ctc
ycYccy Mi

ik

TR

∑
∈

−+
<∈=∃

γ
θγ )ˆ(:)()ˆ,ˆ(ˆ 0 . Thus, 

 
  ∑

∈

−+<+∈∃
Mi

ikTR ctcccMl
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and then, 
  

)(ˆ)1()1(ˆ
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1
cYymtcctctmcy

Mi
i

Mi
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i
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i
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Hence, for all 
∑
∈
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=
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),...,,0,,...,(~),~,~(~
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In this case there is no path from 0v  to kv . Thus, ,0=kz  and 0)( =cg

γθ . 

It is obvious that 0)( =cg
γθ , for 

∑
∈

+
≥

Mi
i

ii

c

tcmin
γ . ■ 

Corollary 3: For SHN with capacity vector ),( TR ccc = , ),...,(),,...,( ttcddc TR == we have     

md
t

m
c

def

b +==
1)(γγ . 

 
Proof: According to Lemma 3, we have 

bγ = )(cγ = { }0][|min =+− +tmdd γγ  

   = { }mdtd γγ ≤+|min  

   =






 ≤+ γγ

md
t

m
1|min  

   =
md
t

m
+

1 .■ 

 
Corollary 4: Let ),( TR ccc = , ),...,( ddcR = and ),...,( ttcT =  be the capacity vectors of SHN with 
radial reserve. Then, 
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Proof: According to Lemma 3, we have 
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and the proof is complete now. ■  
 
 
Example 3.   In the case b, for SHN in the example 2, we have  
 

)4(4286.0
)14(4

10
4
1 Db =+=γ . 

 
Since bγγ <= 2.0 , we obtain 

 )4(9143.0
14
10)4(2.01),(2.0 Dcc t

g =+−=θ  

 

5. Conclusion 

Physical star structures have poor survivability characteristics. Reinforcing SHN by extending the 
capacity of the radial edge or creating an additional radial reserve is a method which makes it 
possible to raise the survivability of SHN and duplicate the messages in the event of loss of 
communication between the center and some other nodes. 
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