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Abstract 

 

In this paper, we introduce a modified variational iteration method for second order initial value 

problems by transforming the integral of iteration process. The main advantages of this 

modification are that it can overcome the restriction of the form of nonlinearity term in 

differential equations and improve the iterative speed of conventional variational iteration 

method. The method is applied to some nonlinear second order initial value problems and the 

numerical results reveal that the modified method is accurate and efficient for second order 

initial value problems. 
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1. Introduction 

 

In this paper, we consider the following second order initial value problem: 
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( ) ( , , ) 0, 0 1,

(0) , (0) ,

u t f t u u t

u u 

    


 
 (1) 

 

where  f  is continuous.  

 

Ordinary differential equations are important tools in solving real-world problems. A wide 

variety of natural phenomena are modeled by second order ordinary differential equations. They 

have been applied to many problems, in physics, engineering, biology and so on. Many 

nonlinear problems are difficult to be solved analytically. 

 

The VIM was proposed originally by He (1999, 2000, 2006, 2007, 2008). This method is based 

on the use of Lagrange multipliers for identification of optimal values of parameters in a 

functional. This method gives rapidly convergent successive approximations of the exact 

solution if such a solution exists. Furthermore, VIM does not require discretization of the 

problem. Thus the variational iteration method is suitable for finding the approximation of the 

solution without discretization of the problem. It was successfully applied to various linear and 

nonlinear problems Mohyud-Din (2009), Noor (2007, 2008). 

 

In this paper, we modify VIM for second order initial value problems by transforming the 

integral of iteration process. The main advantage of this method is that the method does not 

share the drawbacks of the conventional VIM, namely, the restriction of the form of the 

nonlinearity term. Furthermore, the modified VIM can improve the iteration speed of 

conventional VIM. 

 

The rest of the paper is organized as follows. In the next Section, the VIM is introduced. The 

modified VIM is introduced in Section 3. The numerical examples are presented in Section 4. 

Section 5 ends this paper with a brief conclusion. 

 

2. Analysis of He's variational iteration method 

 

Consider the differential equation 

 

( )Lu Nu g x  , (2) 

 

where L  and N  are linear and nonlinear operators, respectively, and ( )g x  is the source 

inhomogeneous term. The VIM was introduced by He where a correct functional for (2) can be 

written as 

 

1

0

( ) ( ) [ ( ) ( ) ( )]

x

n n n nu x u x Lu t Nu t g t dt     , (3) 
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where   is a general Lagrangian multiplier He (1999, 2000), which can be identified optimally 

via variational theory, and 
nu  is a restricted variation which means 0nu  . By this method, it 

is firstly required to determine the Lagrangian multiplier   that will be identified optimally. 

The successive approximations 
1( )nu x

, 0n  , of the solution ( )u x  will be readily obtained 

upon using the determined Lagrangian multiplier and any selective function 
0 ( )u x . 

Consequently, the solution is given by 

 

( ) lim ( )n
n

u x u x


 . 

 

For variational iteration method, the key is the identification of the Lagrangian multiplier. For 

linear problems, their exact solutions can be obtained by only one iteration step due to the fact 

that the Lagrangian multiplier can be identified exactly. For nonlinear problems, the Lagrangian 

multiplier is difficult to be identified exactly. To overcome the difficulty, we apply restricted 

variations to nonlinear terms. Due to the approximate identification of the Lagrangian multiplier, 

the approximate solutions converge to their exact solutions relatively slowly. It should be 

specially pointed out that the more accurate the identification of the multiplier, the faster the 

approximations converge to their exact solutions. 

 

 

3. Modified VIM for (1) 

 

For (1), according to VIM, He (2007), we have the following iteration formula: 

 

1 0

0

( ) ( ) ( ) ( , ( ), ( ))

t

nu t u t s t f s u s u s ds
   . (4) 

 

However, it may be difficult to perform the integral that appear in (4) analytically, except for 

simple ( , ( ), ( ))f s u s u s . Therefore, it is difficult to perform iteration many times and obtain 

higher-order approximation. To overcome the difficulty, we shall modify iteration formula (4) by 

performing integral in (4) using reproducing kernel method. Put 

 

0

( ) ( ) ( , ( ), ( )) .

t

nw t s t f s u s u s ds   (5) 

 

Differentiation of both sides of (5) yields 
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0

( ) ( , ( ), ( )) .

t

nw t f s u s u s ds    (6) 

 

And it is easy to see that (0) 0nw  . 

 

Differentiation of both sides of (6) gives 

 

( ) ( , ( ), ( ))nw t f s u s u s   . (7) 

 

Clearly, (0) 0nw  . 

 

Naturally, one obtains 

 

( ) ( , , ), 0 1,

(0) 0, (0) 0.

n n n

n n

w t f t u u t

w w

    


 
 (8) 

 

Now we solve (8) using reproducing kernel method (RKM). In order to solve (8) using RKM, 

we first construct a reproducing kernel space 3

2 [0,1]W  in which every function satisfies the 

initial conditions of (8). 

 

Reproducing kernel Hilbert space 3

2 [0,1]W  is defined as 3

2 [0,1] { ( ) ( ), ( ), ( )W u x u x u x u x  are 

absolutely continuous real value functions, 2( ) [0,1], (0) (0) 0}u x L u u    . The inner product 

and norm in 3

2 [0,1]W  are given, respectively, by 

 

3
2

1

0

( ( ), ( )) (0) (0) (0) (0) (1) (1)
W

u y v y u v u v u v u v dy         

 

and 

 

3 3
2 2

3

2( , ) , , [0,1].
W W

u u v u v W   

 

By Geng and Cui (2007), it is easy to obtain its reproducing kernel (RK) 
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1

1

( , ), ,
( , )

( , ), ,

k x y y x
k x y

k y x y x


 


 

 

where 

 

2 2 2 3 2 2 3

1

( ( ( 126 10 5 )) 5( 1) ( 1) )
( , )

120

y x x x x x xy x y
k x y

        
 . 

 

In (8), put ( ) ( )n nLw t w t , it is clear that 3 1

2 2: [0,1] [0,1]L W W is a bounded linear operator. Put 

( ) ( , )i it k t t   and ( ) ( )i it L t   where ( , )k s t  is the RK of 1

2 [0,1]W , L  is the adjoint 

operator of L . The orthonormal system  
1

( )i
i

t



of 3

2 [0,1]W can be derived from 

Gram-Schmidt orthogonalization process of  
1

( )i i
t




, 

 

1

( ) ( ), ( 0, 1,2, ).
i

i ik k ii

k

t t i   


    

 

By RKM presented in Geng and Cui (2007), we have the following theorem. 

 

Theorem 1. For (8), if  
1i i

t



is dense on [0,1] , then  

1
( )i i
t




 is the complete system of 

3

2 [0,1]W  and ( ) ( , ) .
i

i s s t
t L k t s


  

 

Theorem 2. If  
1i i

t



is dense on [0,1] , and the solution of (8) is unique, then the solution of (8) 

is 

 

1 1

( ) ( , ( ), ( )) ( ).
i

in ik k n k n k

i k

w t f t u t u t t 


 

   (9) 

 

Now, the approximate solution ( )N

nw t  can be obtained by taking N terms in the series 

representation of ( )nw t and 

1 1

( ) ( , ( ), ( )) ( ).
N i

N

in ik k n k n k

i k

w t f t u t u t t 
 

   (10) 



78                                                                                 Geng 

 

Therefore, we obtain the following modified iteration formula of (4): 

 

1 0 0

1 1

( ) ( ) ( ) ( ) ( , ( ), ( )) ( )
i

in n ik k n k n k

i k

u t u t w t u t f t u t u t t 




 

     (11) 

 

and  

 

1 0 0

1 1

( ) ( ) ( ) ( ) ( , ( ), ( )) ( )
N i

N

in n ik k n k n k

i k

u t u t w t u t f t u t u t t 

 

     (12) 

 

Beginning with 
0( )u t t   , according to (12), one can obtain the n th iteration 

approximation ( )N

nu t . 

 

Remark. Since 
0 0(0) , (0)u u   , also, (0) 0, ( ) (0) 0N N

n nu u   , hence, in the process of 

iteration, we can guarantee that the n th iteration approximation ( )N

nu t  obtained from (11) 

satisfies the initial conditions of (1). 

 

 

4.  Numerical examples 

 

In this section, the present method is applied to some second order initial value problems. 

Obtained results show that the present method is remarkably effective. In the following 

examples, we take 
1

, 1,2, , .
1

i

i
t i N

N


 


 

 

Example 4.1.  Consider the following initial value problem: 

 

3 3( ) sin ( ) (1 ) ( ) ( ), 0 1,

(0) 1, (0) 0,

tu t e tu t t t u t f t t

u u

       


 
 

 

where ( )f t is given such that the exact solution is ( ) cos( )u t t . 

 

Solution: Beginning with 
0( ) 1u t  , according to (12), one can obtain the approximation ( )N

nu t . 
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When we take 3,5, 51n N  , the numerical results are shown in Figures 1, 2. 

 

 

Figure 1: Absolute error 51

3( ) ( )u t u t            Figure 2: Absolute error 51

3( ) ( )u t u t  

 

Example 4.2.  Consider the following initial value problem: 

 

3( )
( ) sin ( ), 0 1,

5

(0) 5, (0) 0,

u t
u t u f t t

u u


     


  

 

 

where ( )f t is given such that the exact solution is ( ) 5cos(2 )u t t . 

 

Solution: Beginning with 
0( ) 5u t  , according to (12), one can obtain the approximation ( )N

nu t . 

Taking 5, 51,101,n N   the numerical results are shown in Figures 3, 4. 

 

 

Figure 3: Absolute error 51

5( ) ( )u t u t            Figure 4: Absolute error 101

5( ) ( )u t u t  
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5. Conclusion 

 

In this paper, based on RKM, a modification of variational iteration method is presented for 

second order initial value problems. The modification can overcome the restriction of 

conventional VIM and improve the iteration speed of conventional VIM. For some second order 

initial value problems, when the form of nonlinear terms is complex, the higher-order 

approximation can not be obtained using conventional VIM while the higher-order 

approximation can be obtained by using the modified VIM. 
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