
609 

 

 

Available at 

http://pvamu.edu/aam 
Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 10, Issue 1 (June 2015),  pp. 609 - 619 

Applications and Applied 

Mathematics:  

An International Journal 

(AAM) 

 

 

Sensitivity Analysis in Correlated Bivariate Continuous and 

Binary Responses 
 

 
Zh. Thmasebinejad

1
 and E. Tabrizi

2 

 

1
Institute for Endocrine Sciences 

Shahid Beheshti University of Medical 

Tehran, Iran 

Email: jtahmasebinejad@yahoo.com 

 
2
Department of Statistics 

Shahid Beheshti University 

Tehran, Iran 

 

Received: April 26, 2013;    Accepted: Mach 24, 2015 
 

 

Abstract 
 

Factorization models for correlated binary and continuous responses are proposed. Full likelihood-

based approach that yields maximum likelihood estimates of the model parameters is used. A 

common way to investigate if perturbations of model components influence key results of the analysis 

is to compare the results derived from the original and perturbed models using an influence graph. So 

small perturbation influence of the correlation parameters of the models on likelihood displacement 

and a general index of sensitivity (ISNI) are also studied. The model is illustrated using data from 

arthritis and body mass index data. The effect of systolic blood pressure, gender and age on arthritis 

and body mass index are investigated. 

 

Keywords: Factorization models; Likelihood Displacement; Continuous and binary 

Outcomes; Medical Data 
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1. Introduction 
 

Some biomedical and health sciences data include both categorical (ordinal or nominal) and 

continuous outcomes. The analysis of biomedical data set with variables Arthritis and BMI as 

response variables and systolic blood pressure (SBP), gender and age as explanatory 

variables for 61 diabetic patients is a good example for such studies. Notice that body mass 

index (BMI) and arthritis are continuous and nominal variables, respectively (section 4). In 
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this example, separate analyses cannot assess the effect of SBP, age and gender on body mass 

index and Arthritis. Furthermore, separate analyses give biased estimates for the parameters 

and misleading inference. Consequently, we need to consider a method in which the 

mentioned variables can be modelled jointly. 

 

For mixed correlated outcomes, one method is to use the general location model of Olkin and 

Tate (1961), where the joint distribution of the continuous and nominal variables is 

decomposed into a marginal multinomial distribution for the nominal variables and a 

conditional multivariate normal distribution for the continuous variables given the categorical 

variables. A second method for mixed correlated outcomes is to decompose the joint 

distribution as a multivariate marginal distribution for the continuous outcomes and a 

conditional distribution for nominal variables given the continuous variables. Heckman 

(1978) presented simultaneous models to analyze two mixed correlated outcomes. Catalano 

and Ryan (1992) extended the mentioned models for data sets of a clustered structure 

contained discrete and continuous outcomes. Consequently, the interested case effects cannot 

be characterized by a single outcome, but instead of multiple outcomes need to be measured 

on each individual under study. Cox and Wermuth (1992) discussed two possible 

factorizations for modeling a continuous and a binary outcome as functions of covariates.  

 

Some researchers have investigated and proposed the mixed correlated outcomes, for 

example, Lin et al.(2000) proposed a scaled linear mixed model for multiple outcomes, 

Gueorguieva and Agresti (2001) and Gueorguieva and Sancora (2006) investigated correlated 

probit Model for joint modeling of clustered binary and continuous response and repeatedly 

observed continuous and ordinal measures of disease Severity , McClluch (2007), Deleon and 

Carrier (2007), Bahrami Samani et al. (2008), Bahrami samani et al. (2010), Deleon and Wu 

(2011) and Bahrami Samani and Ganjali (2011) proposed joint modelling of mixed outcome 

type using latent variables. 

 

Some authors have investigated sensitivity analysis for example Cook (1977), Belsey et al. 

(1980), Cook and Weisberg (1982), and Chatterjee and Hadi (1988), among others. In this 

paper, we used sensitivity analysis in correlated bivariate continuous and binary responses. 

The main idea of the factorization method is to write the likelihood as the pro duct of the 

marginal distribution of one outcome and the conditional distribution of the second outcome 

given the previous outcome. 

 

In the next Section, the model and the likelihood are presented and then in the subsequent 

Section, the used methodology will be applied on the data from the medical study medical. 

As a sensitivity analysis for these data, small perturbation influence of the correlation 

parameters of the model on likelihood displacement will also be investigated. Finally, 

concluding remarks are given. 

 

2. Models and Likelihoods 

 

Suppose two responses,  as a binary response and  as a continuous response are measured 

on the  individual. Fitzmaurice and Laird (1992) proposed a model for a correlated binary 

and a continuous outcome based on the factorization of the joint distribution of the outcomes. 

The factorization Model is assumed to take the form: 

 

 
( ( | ( )) ( ) ,

i i i ib b b b bprobit E Y X probit X                                                              (2.1)
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( | , , ) ( )
i i i i i i i ic b b c c c b b cY Y X X X Y        

 
 

where 2~ (0, ),
ic cN   is the parameter for the regression of cY  on bY . bX and cX are 

vectors of explanatory variables which may be different because some variables have effect 

on bY , but not on cY and vice versa. The correlation that results from this model is 
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The vector of parameters b  and c  and the scale parameters , c  and  should be 

estimated. The log-likelihood function under the factorization model (2.1) is 

 

1 1
( , ) log ( , | , ) log ( | , , ) ( | )

i i i i i i i i i i

n n

b c b c b c c b b c b b
i i
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    

   
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 
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  

 

                                  
1

log( ) (1 ) log(1 ) .
i i i i

n

b b b b
i

y y 


      
 

where ( )
i ib b bX   and (0) represents the cdf of the standard normal distribution. The 

factorization of the joint distribution of 
iby  and 

icy  can also be considered in the reverse 

order:  

 

( , ) ( | ) ( )b c b c cf Y Y f Y Y f Y .  

 

The vector of parameters b  and c  and the scale parameters , c   and    should be 

estimated. The model for the two outcomes is written as 

 

   ( | , ) ( ) ,
i i i i i i ib c b b b b c c cprobit E Y Y X probit X Y X                                         

        | ,
i i i ic c c c cY X X   

 
 

where 2~ (0, ),
ic cN    is the parameter for the regression of bY on cY . The correlation that 

results from this model is 
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The log-likelihood function under factorization model (2.2) is 
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where  

 

 ( )
i i i ib b b c c cX Y X         .  

 

This likelihood can be maximized by function “nlminb” in R software. The function 

“nlminb” uses a sequential quadratic programming (SQP) method to minimize the requested 

function. The details of this method can be found in Fletcher (2000). The observed Hessian 

matrix may be obtained by “nlminb” function or may be provided by “fdHess” function. 

Standard deviations are obtained by square-root of the inverse of the diagonal elements of the 

observed Hessian matrix. All parameters are found to be identifiable in this section. 

 

3. Sensitivity Analysis 
 

Sensitivity analysis methods may be broadly classified as statistical methods. Sensitivity 

analysis in statistical models, under normality assumptions has 

been studied by Co ok (1977), Co ok and Weisberg (1982), Co ok (1986) and 

Chatterjee and Hadi (1988). Frey and Patil (2002) used statistical methods for 

sensitivity analysis including linear regression analysis, analysis of variance, 

response surface method, Fourier Amplitude Sensitivity Test, and Mutual 

Information Index. Based on a correlated bivariate continuous and binary 

model (model (2.1)), we used Likelihood displacement and derivation of ISNI. 

 

3.1.   Likelihood Displacement 
 

Likelihood displacement is a useful measure of influence. We would like to have a complete 

influence graph of the likelihood displacement. Cook (1896) presented some general methods 

for assessing the local influence of minor perturbations of a statistical model. 
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Generally, one introduce perturbations into the model through the 1q  vector  which is 

restricted to some open subset  of qR . Let ( | )L   denote the log- likelihood function 

corresponding to the perturbed model for a given   in  . For a given set of observed data, 

where  is a 1p  vector of unknown parameters, we assume that there is an 0  in   such 

that 0( ) ( | )L L   for all . Finally, Let ̂  and ˆ  denote the maximum likelihood 

estimators under ( )L  and ( | )L    respectively. To assess the influence of varying   

throughout  , we consider the Likelihood displacement defined as: 

 

ˆ ˆ( ) 2[ ( ) ( )].LD L L      

 

A graph of ( )LD  versus   contains essential information on the influence of the 

perturbation scheme in questions. It is useful to view this graph as the geometric surface 

formed by the values of the ( 1) 1q   vector 1 2( ) ( , ) ( , ( ))LD         as   varies 

thought . When 1q  , the curvature of such plane curves at 0 is 

 

 1 2 2 1
2 2 3/2
1 2

,
( )

C
   

 





                                                    (3.1) 

 

where the first and second derivations i and i  are evaluated at 0 . Since 1 1   and 

2 1 0 , C   reduces to  

 

2 ( 0).C LD    

 

When 1q  , an influence graph is a surface in 1qR  . The normal curvature 

lC  of the lifted line in the direction l can now be obtained by applying (3.1) 

to the plan curve ( , ( ( )))LD   , where 0( ) ,l R       , and l  is a fixed 

nonzero vector of unit length in qR . Cook (1986) proposed to look at local 

influences, i.e., he proposed to look at the normal curvature lC of ( )   in 0 , 

in the direction of some q-dimensional vector l  of unit length. Let i  be the 

p-dimensional vector defined by 

 
2

ˆ , 0
( | )

i

i i
i

i

L
  

 

 
 


 

 
 

and define   as the p n  matrix with i  as its 
thi  column. Further, let L  denote the p p  

matrix of second derivatives of 0( | )L   with respect to , also evaluated at ˆ  . 

 

Cook (1986) has then shown that lC can be easily calculated by 

 
12 ( ) .T T

lC l L l  
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Obviously, lC can be calculated for any direction l . One evident choice is the vector 

il containing one in the 
thi  position and zero elsewhere, corresponding to the perturbation of 

the 
thi  weight only. The corresponding local influence measure, denoted by iC , then becomes 

 

 12 .T
i i iC L  

 
 

Another important direction is the direction 
max

l of maximal normal curvature maxC . 

 
3.2.  Derived ISNI 
 

The index of sensitivity to the correlation parameters of the model (ISNI) measures the extent 

to which the maximum likelihood estimation (MLE) of  for a given vector 1  of the 

correlation parameters (denoted as 1
ˆ ( )   depends on 1 ). Specifically, it measures the 

sensitivity of 1
ˆ ( )   to small departures of from its the correlated binary and continuous 

responses vector of zero. Troxel et al. (1998) defined ISNI as the derivative of ̂  with 

respect to 1  at 1 0  , i.e., 

 

1
1 0

1

ˆ ( )
.

T
ISNI  

 



 

 

One obtains 1
ˆ ( )   from a Taylor- series expansion of the log likelihood around 0

ˆ  (the 

MLE of   assuming the correlated binary and continuous responses). A large ISNI implies 

substantial sensitivity. The difference 1
ˆ ˆ( ) (0)   is a sensible measure of the sensitivity 

when 1  is perturbed around the correlated binary and continuous responses. Having a vector 

of the correlation parameters between binary and continuous responses 1( ) , we need to 

adjust ISNI proposed by Troxel et al. (1998): 

 
1

2 2

ˆ1 0 (0)
1 1

ˆ ( 1)ˆ( ) .
T T T

L L
ISNI



  

    
     

    

                                  (4.1) 

 

These index vectors measure sensitivity of the MLEs to perturbations in the individual the 

correlation parameters between binary and continuous responses. Also we can approximate 

the MLE of a smooth scalar function f(.) of Θ using the first order Taylor series expansion 

around Γ1 = 0 as follows: 

 

    ˆ 1 0 1(0)
1

ˆ ( 1)ˆ ˆ( 1) (0) ,
T T

f
f f  

   
       

   

 

 

where   
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1 0
1

ˆ ( 1)
T  

 


  

 

is the sensitivity vector defined in (4.1). However, when there are no preferable direction, we 

would want to take the direction where the sensitivity is greatest among all possible 

perturbations whose norms is q . 

 

 
1/2

ˆ1 (0) , 1 0

ˆ ( 1)ˆ( )
T T

f
ISNI f q

  

  
  

 
 

To obtain  
2

T

L


,  

one can use the Hessian matrix of  under the correlated model. For calculating  

 
2

1

L


,  

 

the Monte Carlo methods of approximating integrals can be utilized to calculate 

corresponding conditional expectations. Because ISNI depends on the measurement units 

of ijY , Troxel et al. (1998) proposed a scale free measure called the sensitivity transformation 

c  defined as 

 

     

1

2 ˆvar( ) ( )
ˆ( ) ,

ˆ( )

ijY SE
c

ISNI


 


                                                                                         (4.2) 

 

Where ˆ( )SE  is the standard error (SE) of ̂  Large values of c suggest that sensitivity 

occurs only in cases of extreme the correlation parameters whereas small values suggest that 

sensitivity may be a problem even when the correlation parameters is modest. Troxel et al. 

(1998) have suggested to use 1c   as a cut off value for important sensitivity. 

 

4. Application 

 
4.1. Data 

 

The medical data set is obtained from an experimental study in the Taleghani hospital in 

Tehran. The mentioned data record the Arthritis and BMI for 61 diabetic patients. BMI is a 

statistical measure of the weight of body mass index. A person scaled height body mass index 

may be accurately calculated using any of the formulas such as  
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2
,BMI

W

H


 
 

where W is weight (kg) and H is height (cm). BMI is indicator of someone’s health status. 

BMI values between 18.5 and 24.9 are considered normal or healthy weight. BMI values 

between 25 and 29.9 are considered overweight and 30 or over are considered obese.  

 

Arthritis (AR) is a form of joint disorder that involves inflammation of one or more joints. 

There are over 100 different forms of arthritis. The most common form, osteoarthritis 

(degenerative joint disease), is a result of trauma to the joint, infection of the joint, or age. 

Other arthritis forms are rheumatoid arthritis, psoriatic arthritis, and related autoimmune 

diseases. Septic arthritis is caused by joint infection. The major complaint by individuals who 

have arthritis is joint pain. Pain is often a constant and may be localized to the joint affected. 

The pain from arthritis is due to inflammation that occurs around the joint, damage to the 

joint from disease, daily wear and tear of joint, muscle strains caused by forceful movements 

against stiff painful joints and fatigue. Arthritis is a joint disorder featuring inflammation. 

 

SBP is considered as explanatory variable for both Arthritis and BMI. the systolic blood 

pressure (SBP) is the peak pressure in the arteries which occurs near the beginning of the 

cardiac cycle. The normal rate for systolic in adult humans is near but less than 120 mmHg. 

Two other explanatory variables are age and gender. 

 
4.2.   Model 

 

For comparative purposes, two models are considered. The first model (model I) uses only 

complete cases and does not consider the correlation parameter between two responses. This 

model is 

 

0 1 2 3

0 1 2 3

[ ( 1)]

.

probit P AR Gender Age SBP

BMI Gender Age SBP

   

    

    

    
 

 

The second model (model II) uses model I and takes into account the correlation between two 

responses (τ). 

 

0 1 2 3

0 1 2 3

[ ( 1)]

( ( )) .

probit P AR Gender Age SBP

BMI Gender Age SBP AR E AR

   

     

    

      
 

 

The second model shows significant effects of gender, age and SBP on BMI. For males, the 

average of BMI is more than that for females, and the more the value of SBP the more is the 

value of BMI and significant effects of age and SBP on AR. For model correlation parameter 

τ is strongly significant and it shows a positive correlation between BMI and AR (̂ =0.503 

for model). 
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Table 1.  Estimation of the parameters for medical data (Gender, baseline: 

Female) and parameter estimates highlighted in bold are significant 

at 5 % level.) 

Parameter Es.t. S.E. 

Response: BMI   

Constant 16.21 0.436 

Gender 2.534 0.388 

Age 0.081 0.007 

SBP 0.053 0.002 

Response: AR   

Gender -0.552 0.541 

Age -0.067 0.011 

SBP -0.014 0.006 

Variance of BMI 0.154 0.021 

 0.503 0.003 

      

 
4.3. Sensitivity for Model 
 

1)  Likelihood displacement: Let see how we can use this approach for our purposes. In our 

application the continuous variable is always observed, and so the condition for 

independence of ω0 = 0. For doing sensitivity analysis, we find the likelihood 

displacement for different values of ω = τ in the interval (0:1; 0:5) and these are plotted 

in Figure 1. This curve shows a high curvature around Γ1 = 0 (the response variables are 

correlated with each other) so that the model results change with changing values of ω = 

τ. hence final results of the model is highly sensitive to ω = τ. 
 

2)  Derived ISNI: Let Γ1 = τ lead to the correlation parameter of binary and continuous 

responses. The binary and continuous responses are independent if Γ1 = 0. To search for 

sensitivity analysis we find c. This is confirmed by the curvature c = 10:351 computed 

from (4.2). This curvature indicates extreme local sensitivity. 

 
Figure 1: Likelihood displacement against values of τ 

 

5.  Conclusion 

 

In this paper, factorization models were presented for simultaneous models with binary and 

continuous correlated responses. As the binary responses are special cases of ordinal 

responses, our model can also be used for mixed binary and continuous responses. The results 
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of using the proposed model for medical data show the ability of the mentioned model to 

better recognizing the inter dependency between two mixed responses. Generalization of our 

model for nominal, ordinal and continuous responses is an ongoing research on our part. 
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