
384 
 

 

Available at 
http://pvamu.edu/aam 

Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 6, Issue 1 (June 2011)  pp. 384 – 395  
(Previously, Vol. 6, Issue 11, pp. 2125– 2136) 

Applications and Applied 
Mathematics:  

An International Journal 
(AAM) 

 

 
Exact Soliton Solutions for Second-Order Benjamin-Ono Equation 

 
Nasir Taghizadeh, Mohammad Mirzazadeh and Foroozan Farahrooz 

Department of Mathematics 
Faculty of Mathematics 

University of Guilan 
P.O.Box 1914 Rasht, Iran 

taghizadeh@guilan.ac.ir; mirzazadehs2@guilan.ac.ir; f.farahrooz@yahoo.com 
 

Received: July 15, 2010; Accepted: February 3, 2011 
 
Abstract 
 
The homogeneous balance method is proposed for seeking the travelling wave solutions 
of the second-order Benjamin-Ono equation. Many exact traveling wave solutions of 
second-order Benjamin-Ono equation, which contain soliton like and periodic-like solutions are 
successfully obtained. This method is straightforward and concise, and it may also be applied to 
other nonlinear evolution equations.  
 
Keywords:  Homogeneous balance method; second-order Benjamin-Ono equation; Riccati                           
             equation; Soliton-like solution; Periodic-like solution. 
 
MSC 2000:  34B15; 47E05; 35G25. 
 
1.  Introduction 
 
It is well known that the nonlinear partial differential equations (NPDEs) are widely used to 
describe complex phenomena in various fields of sciences, such as physics, biology, chemistry, 
etc. Exact solutions of these equations are therefore very important and significant in the 
nonlinear sciences.  
 
In recent years, Wang [(1995), (1996)] and Khalafallah (2009) presented a useful homogeneous 
balance method for finding exact solutions of certain nonlinear partial differential equations.  Fan 
(2000) used the homogeneous balance method to search for the Backlund transformation and 
similarity reductions of nonlinear partial differential equations. 
The aim of this paper is to find exact soliton solutions of the second-order Benjamin-Ono 
Equation, using the homogeneous balance method. 
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2.   Second-Order Benjamin-Ono Equation  
 
For the second-order Benjamin-Ono equation [Hereman et al. (1986)]:       

 
2( ) 0,tt xx xxxxu u u                                                                                                         (1)        

 
where   and   are nonnegative constants,   
Let us consider the traveling wave solutions 
 

( , ) ( ),u x t u    
0

( ) ,k x lt                                                                                           (2) 

 
Where ,k l  and 

0
   are constants. Then Eq. (1) becomes 

 
2 2 22 ( ) 2 0.l u u uu k u                                                                  (3) 

 
We now seek the solutions of Eq. (3) in the form 

 

0

,
m

i
i

i

u q 


                                                          (4) 

 
where  iq  are constants to be determined later and   satisfy the following  Riccati  equation 

 
2a b c                    (5) 

 
where ,a b and  c  are constants. 
Balancing the highest order derivative term with nonlinear term in Eq. (3) gives leading order 

2.m    We may therefore choose 
 

2
0 1 2 ,u q q q                                                                          (6) 

 
where  0 1,q q  and 2q   are constants to be determined and   satisfy Eq. (5). 

Substituting (6) and (5) into Eq. (3), we have 
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2 2 2 4 2
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2 2 2 2 3 2 3
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 2 2 2 2 2 3 2
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2 2 2 2 2 2 2 2 2 4
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2 2 2 2 2 2 2 2 2
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2 2 2 4 2 2 2
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0 1

2 2 2 2 3 2 2
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2 2 2 2 2 2
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4 2 )

12 (6 120 30 ) } 2

2 (8 ) (16
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bcq q l bc k bc a k b c q c q
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l c k b c q c q q

 

    

   

 



    

    

   

 

 
Setting the coefficients  ( 0,1, 2,3, 4,5,6)i i   to zero yields the following set of algebraic 
equations: 
 

2 2 2 4
2 220 120 0,a q k a q    

 
2 2 4 2 3 2

1 2 1 2 224 24 336 36 0,a q q k a q k a bq abq        

 
2 2 2 3 2 3 2 2 2 2 2

1 1 2

2 2 2
0 2 1 2 2

6 60 (240 330 6 )

12 42 (32 16 ) 0,

a q k a bq k ca k b a l a q

a q q abq q ac b q
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2 2 3 2 2 2 2 2
1 1

2 2 2
0 1 1 2

2 2 2 3
2 0 2
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                                                        (7) 
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2 2 2 2 2 3 2

1 0 1 1

2 3 2 2 2 2 2 2
2 0 2

2 2 (8 )

(16 2 14 ) 4 0.

c q bcq q k ac b k b c l bc q

k c a l c k b c q c q q

   

  

   

    
 

 
For which, with the aid of Maple, we obtain the following solution of the above set of 
algebraic equations: 
 

2 2 2 2

0

8
,

2

k b k ca l
q

 


 
           

2

1

6
,

k ab
q




           
2 2

2

6
.

k a
q




                            (8)  

 
For the Riccati equation (5), we can solve it by using the homogeneous balance method as 
follows: 
 

Case: I. Let  
0

tanh .
m

i
i

i

b 


   Balancing   with 2  leads to 

 0 1 tanh .b b                                                                                                                     (9) 

 
Substituting (9) into (5), we obtain the following solution of (5): 

1
( 2 tanh ),

2
b

a
      

2

1.
4

b
ac                                                                                      (10) 

 
From (8), (10) and (6), we have the following traveling wave solution of second-order Benjamin-
Ono equation (1): 
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2 2 2 2 2
2

0

2 8 6
( , ) tanh [ ( ) ],

2

k b k ca l k
u x t k x lt

   
 

 
                                              (11) 

where   
 

2

1.
4

b
ac    

 

Similarly, let 
0

coth ,
m

i
i

i

b 


  then we obtain the following new traveling wave soliton 

solutions of second-order Benjamin-Ono equation (1): 
 

2 2 2 2 2
2

0

2 8 6
( , ) coth [ ( ) ],

2

k b k ca l k
u x t k x lt

   
 

 
                                              (12) 

 
where   
 

2

1.
4

b
ac    

 
Case: II. From (Zhao, X. Q.; Tang, D. B.; 2002), when a=1,  b=0,  the Riccati  Eq. (5)  has the 
following solutions: 
 

=- -c tanh( ),c   0,c     

 
1

,


   0,c                                                                                                                      (13) 

        

tan( ),c c    0.c   
 
From (6), (8) and (13), we have the following traveling wave solutions of second-order 
Benjamin-Ono equation (1) : 
 
When 0,c   we have 

2 2 2 2 2

0

2 2
2

0

8 6
( , ) tanh[ ( ( ) )]

2

6
tanh [ ( ( ) )].

k b k ca l k ab c
u x t c k x lt

k a c
c k x lt

   
 

 


  
     

   

                      (14) 

 
When  0,c   we have 
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2 2 2 2 2

0

2 2

2
0

8 6
( , )

2 ( ( ) )

6
.

( ( ) )

k b k ca l k ab
u x t

k x lt

k a

k x lt

  
  


 

 
  

 


 

                                                         (15) 

 
When 0,c   we have 
 

2 2 2 2 2

0

2 2
2

0

8 6
( , ) tan[ ( ( ) )]

2

6
tan [ ( ( ) )].

k b k ca l k ab c
u x t c k x lt

k a c
c k x lt

   
 

 


 
    

  

                             (16) 

 
Case: III. We suppose that the Riccati equation (5) has the following solutions of the form 

 

1
0

1

( ),
m

i i
i i

i

A A f B f g 



                                                                                                (17) 

 
with 
 

1
,

cosh
f

r



  

sinh
,

cosh
g

r







    

 
which satisfy 
 

 ( ) ( ) ( ),f f g      2( ) 1 ( ) ( ),g g rf       
               

               
2 2 2( ) 1 2 ( ) ( 1) ( ).g rf r f       

 
Balancing   with 2  leads to 
 

0 1 1 .A A f B g                                                                                                                (18) 

 
Substituting (18) into (5), collecting the coefficient of the same power 

( ) ( )( 0,1,2; 0,1)i if g i j      and setting each of the obtained coefficients to zero yield the 
following set of algebra equations 
 

2 2
0 1 0 0,aA aB bA c     

 
2

0 1 1 1 12 2 0,aA A arB rB bA     
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2 2 2 2
1 1 1( 1) ( 1) 0,aA a r B r B      

 

0 1 12 0,aA B bB   

 

1 1 12 0,aA B A   

 
which have solutions 
     

0 ,
2

b
A

a
           

2

1 2

( 1)
,

4

r
A

a


       1

1
,

2
B

a
       

2 1
.

4

b
c

a


                                          (19) 

 
From (18), (19) we obtain 
 

2sinh ( 1)1
( ).

2 cosh

r
b

a r







  



                                                                                         (20) 

 
Also from (6), (8) and (20), we obtain the new solutions of second-order Benjamin-Ono equation 
(1): 
 

2 2 2 2

22
20

0

2 8
( , )

2

sinh( ( ) ) ( 1)3
( ) .

2 cosh( ( ) )

k b k ca l
u x t

k x lt rk

k x lt r

 



 

 


  


  


                                                                         (21) 

 
Case: IV. We take    in the Riccati equation (5) being of the form 
 

1
4( ) ( ),pe z p                                                                                                               (22) 

 
where 
 

2
3,pz e p   

 
where 1,p  2p  and 3p   are constants to be determined. 

Substituting (22) into (5) we find that when  
2 2
1 ,
4

p b
c

a

 
  we have 

 
1

1

1 1

3

.
2( )

p

p

p e p b

aa e p



 
  


                                                                                                  (23) 

 
If 3 1p   in (23), we have 
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1
1

1
tanh( ) .

2 2 2

p b
p

a a
                                                                                                      (24) 

 
If 3 1p    in (23), we have 

 

1
1

1
coth( ) .

2 2 2

p b
p

a a
                                                                                                       (25) 

 
From (6), (8) and (23), we obtain the following new traveling wave solutions of second-order 
Benjamin-Ono equation (1): 
 

1 0 1 0

1 0 1 0

2 2 2 2

( ( ) ) ( ( ) )2
1 1 1 1
( ( ) ) ( ( ) )

3 3

8
( , )

2

6
( )( ).

2 2

p k x lt p k x lt

p k x lt p k x lt

k b k ca l
u x t

p e p b p e p bk

e p e p

 

 

 





   

   

 
 

 
  

 

                                       (26) 

 
When p3 = 1, we obtain the following traveling wave (soliton-like) solutions of second-order 
Benjamin-Ono equation (1): 
 

2 22 2 2 2
21 1

0

32 8
( , ) tanh [ ( ( ) )].

2 2 2

k p pk b k ca l
u x t k x lt

  
 

 
                                  (27) 

 
When 3 1,p   we have the following traveling wave (periodic-like) solutions of equal width 

wave equation (1): 
2 22 2 2 2

21 1
0

32 8
( , ) coth [ ( ( ) )].

2 2 2

k p pk b k ca l
u x t k x lt

  
 

 
                                  (28) 

 
Case: V. We suppose that the Riccati equation (5) have the following solutions of the form: 
 

1
0

1

sinh ( sinh cosh ),
m

i
i i

i

A A w B w 



                                                                            (29) 

 

where  sinh
dw

w
d

 or  cosh .
dw

w
d

  It is easy to find that 1m  by balancing   and 2 .  

So we choose 
 

0 1 1sinh cosh ,A A w B w                                                                                                (30) 

    

when sinh ,
dw

w
d

  we substitute (30)  and sinh ,
dw

w
d

  into (5) and set the coefficients of 

sinh cosh ( 0,1,2; 0,1)i iw w i j    to zero.  A set of algebraic equations is obtained as follows: 
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 2 2

0 1 0 0,aA aB bA c     

 
 0 1 12 0,aA A bA   

 
 2 2

1 1 1 0,aA aB B    

 
 0 1 12 0,aA B bB   

 
 1 1 12 0,aA B A   

 
for which, we have the following solutions: 
 

0 ,
2

b
A

a
         1 0,A                1

1
,B

a
                                                                              (31) 

 
  where      
 

2 4
,

4

b
c

a


     

 
and 
 

    0 ,
2

b
A

a
          1

1
,

2
A

a
             1

1
,

2
B

a
                                                                  (32)    

 
   where       
 

2 1
.

4

b
c

a


  

 

From   sinh ,
dw

w
d

  we have 

         
sinh csc ,w h  cosh coth .w                                                                                      (33) 

 
Also (31) − (33), give 
 

2coth
,

2

b

a

 
                                                                                                                  (34) 

 
where  
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2 4

,
4

b
c

a


     

 
and 
 

csc coth
,

2

b h

a

   
                                                                                                      (35)     

 
where      
 

2 1
.

4

b
c

a


  

 
From (6), (8), (34) and (35) we get the following traveling wave solutions of second-order 
Benjamin-Ono equation (1): 
 

2 2 2 2 2
2

0

2 8 6
( , ) coth [ ( ) ],

2

k b k ca l k
u x t k x lt

   
 

 
                                              (36) 

where   
 

2

1.
4

b
ac  

 
  

 
and 
 

2 2 2 2

2
2

0 0

2 8
( , )

2

3
(coth( ( ) ) csc ( ( ) )) ,

2

k b k ca l
u x t

k
k x lt h k x lt

 


  


 


     
                                                       (37) 

 
where      
 

2 1
.

4

b
c

a


  

 

Similarly, when   cosh ,
dw

w
d

    we obtain the following traveling wave (periodic-like) 

solutions of second-order Benjamin-Ono equation (1):  
 

2 2 2 2 2
2

0

2 8 6
( , ) cot [ ( ) ],

2

k b k ca l k
u x t k x lt

   
 

 
                                                (38) 
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where  
  

2

1.
4

b
ac  

 
  

 
and 
 

2 2 2 2

2
2

0 0

2 8
( , )

2

3
(cot( ( ) ) csc( ( ) )) ,

2

k b k ca l
u x t

k
k x lt k x lt

 


  


 


     
                                                            (39) 

 
where      
 

2 1
.

4

b
c

a


  

 
In summary we have used the homogeneous balance method to obtain many traveling wave 
solutions of second-order Benjamin-Ono equation. 
 
We now summarize the key steps as follows: 
 
Step 1: For a given nonlinear evolution equation

  
( , , , , ,...) 0,t x xt ttF u u u u u                                                                                                (40) 

 
we consider its traveling wave solutions ( , ) ( ),u x t u     0( )k x lt      then Eq. (40) is 

reduced  to an nonlinear ordinary differential equation 
 

( , , , ,...) 0,Q u u u u                                                                                                              (41) 
 

where a prime denotes  .
d

d
 

Step 2: For a given ansatz equation (for example, the ansatz equation is 2a b c      in this 
paper), the form of u  is decided and the homogeneous balance method is used on Eq. (41) to 
find the coefficients of u . 
 
Step 3:  The homogeneous balance method is used to solve the ansatz equation. 
 
Step 4:  Finally, the traveling wave solutions of Eq. (40) are obtained by combining steps 2 and 
3. 
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3. Conclusion  
 
The second-order Benjamin-Ono equation is soluble using the homogeneous balance method.  
The efficiency of this method was demonstrated.  New exact solution of the second-order 
Benjamin-Ono equation was obtained.  The solutions obtained may be significant and important 
for the explanation of some practical physical problems.  The method may also be applied to 
other nonlinear partial differential equations.   
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