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Abstract 
 
The infinite series method is an efficient method for obtaining exact solutions of some nonlinear 
partial differential equations. This method can be applied to nonintegrable equations as well as to 
integrable ones. In this paper, the direct algebraic method is used to construct new exact 
solutions of generalized- Zakharov equation. 
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1.   Introduction 
 
Investigation of the travelling wave solutions of nonlinear partial differential equations plays an 
important role in the study of nonlinear physical phenomena. Nonlinear phenomena appear in a 
wide variety of scientific applications such as plasma physics, solid state physics, fluid 
dynamics. 
 
In order to better understand these nonlinear phenomena, many mathematicians and physical 
scientists search for more solutions. In the process several powerful methods have been proposed 
to obtain exact solutions of nonlinear evolution equations.  These include the tanh-sech method  
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[Malfliet(1992), Khater et al. (2002) and Wazwaz (2006)],  the extended tanh method  [El-Wakil 
and Abdou (2007), Fan (2000) and Wazwaz (2005)],  the hyperbolic function method [Xia et al. 
(2001)],  the sine-cosine method  [Wazwaz (2004), Yusufoglu and Bekir (2006)],  the Jacobi 
elliptic function expansion method  [Inc and Ergut  (2005)],  the F-expansion method  [Sheng 
(2006)], and the direct algebraic method [Hereman et al. (1986)]. 
 
The technique we used in this paper is due to Hereman et al. [(1986)]. Here the solutions are 
developed as series in real exponential functions which physically corresponds to mixing of 
elementary solutions of the linear part due to nonlinearity. The method of Hereman et al. 
[(1986)] falls into the category of direct solution methods for nonlinear partial differential 
equations. This method is currently restricted to traveling wave solutions. In addition, depending 
on the number of nonlinear terms in the partial differential equation with arbitrary numerical 
coefficients, it is sometimes necessary to specialize to particular values of the velocity in order to 
find closed form solutions. On the other hand, the Hereman et al. series method does give a 
systematic means of developing recursion relations.  Hereman et al. direct series method can be 
used to solve both dissipative and non dissipative equations [Hereman et al. (1986)]. They take 
solutions of the linear equation to be of the form 
 

 exp[ ( )( )],k c x ct   

 
where  ( )k c  is a function of the velocity .c  The velocity though  assumed constant is in general 

related to the wave amplitude.  It is from the solutions of the linear part that the solution of the 
full nonlinear partial differential equation is synthesized. With wave number ,k  the dispersion 

relation  ( )w k c   gives the angular frequency.  Li et al. [(2008)] applied the Exp-function 

method to obtain exact solutions of generalized Zakharov equation.  In this paper we apply the 
infinite series method for solving the generalized- Zakharov equation. 
  
 
2.   The Infinite Series Method 
 
 
Consider the nonlinear partial differential equation: 

 
( , , , ,...) 0,t x xxF u u u u                                                                                                       (1) 

 
where  ( , )u u x t  is the solution of the Eq.  (1). We use transformations 

 
( , ) ( ),u x t f            ,x t                                                                                              (2) 

 
where   is constant. Based on this, we obtain 
 

(.) (.),
t




 


 
      (.) (.),

x 
 


 

     
2 2

2 2(.) (.),
x 
 


 

   ...                                    (3) 
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We use (3) to change the nonlinear partial differential equation (1) to nonlinear ordinary 
differential equation 
 

2

2

( ) ( )
( ( ), , ,...) 0.

f f
G f

 
 

 


 
                                                                                    (4) 

 
Next, we apply the approach of Hereman et al. [(1986)]. We solve the linear terms and then 
suppose the solution in the form 
 

1

( ) ( ),n
n

n

f a g 




                                                                                                            (5) 

 
where ( )g   is a solution of linear terms and the expansion coefficients ( 1,2,...)na n   are to 

be determined. To deal with the nonlinear terms, we need to apply the extension of Cauchy’s 
product rule for multiple series. 
 
Lemma 1.  (Extension of Cauchy’s product rule). If 
 

1

1

( ) ( )

1

,
I

i i
n

n

F a


                             1,..., ,i I                                                                       (6) 

 
represents I  infinite convergent series then 
 

1 1 1
( ) (1) (2) ( )

1 1 2 11

... ... .
I n k m

i I
l m l n r

n r I m li

F a a a
   

 
    

                                                                          (7) 

 
 
Proof:   
 
See [Hereman et al. (1986)]. 
 
Substituting (5) into (4) yields recursion relation which gives the values of the coefficients. 
 
 
3.   Generalized-Zakharov Equation 
 
Let us consider the generalized-Zakharov equation [Li et al. (2008), Borhanifar et al. (2009) and 
Zhou et al. (2004)]: 
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22 | | 2 0,t xxiu u a u u uv                                                                                          (8) 

 
2(| | ) 0.tt xx xxv v u                                                                                                        (9) 

 
We introduce the transformations 
 

( , ) ( ),iu x t e U        ( , ) ( ),v x t V   

 
,x t         2 ,x t                                                                                           (10) 

 
where  and   are real constants. Hence, 
 

( )
( ( ) 2 ) ,i

t

U
u i U e   




 


                                                                                    (11) 
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2
2

( ) ( )
( ( ) 2 ) ,i

xx

U U
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                                                          (12) 

 
2

2
2

( )
4 ,tt

V
v
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





            

2

2

( )
.xx

V
v





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
                                                                     (13)                         

 
Substituting (10) into Equations (8)-(9), and using (11)-(13), we have the ordinary differential 
equations (ODEs) for ( )U   and  ( )V   
 

2 3( ) ( ) ( ) 2 ( ) 2 ( ) ( ) 0,U U aU U V                                                      (14) 

 
2 2(4 1) ( ) ( ( )) 0.V U                                                                                          (15) 

 
Integrating (15) twice with respect to ,  then we have 
 

2 2 (4 1) ( ) ( ) ,V U C                                                                                           

 
where C is second integration constant and the first one is taken to zero. Rewrite this equation as 
follows 

2

2

( )
( ) .

4 1

C U
V








                                                                                                         (16) 

 
Substituting the (16) into (14) yields 
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2 3
2 2

2 1
 ( ) ( ) ( ) 2( ) ( ) 0.

4 1 4 1

C
U U a U    

 
     

 
                             (17)      

   
The linear equation from (17) has the solution in the form                    
 

2 2

2

( )(4 1) 2
( ) exp( ).

4 1

C
g

   


  



                                                                         

 
Thus, we look for the solution of (17) in the form 
 

2 2

2
1

( )(4 1) 2
( ) exp( ).

4 1n
n

C
U a n

   






  


                                                      (18) 

 
Substituting (18) into (17) and by using Lemma 1, we obtain the recursion relation follows 1a    

is   arbitrary, 2 0,anda   

 
2 2 1 1

2
2 2

2 1

2 ( )(4 1) 1
( 1) 2( ) ,

4 1 4 1
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m l
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Then by (19), we have 
 
                                      2 0,da   

2 2 1
1

2 1 2 2 3

2 2 (4 1)
( 1) ( ) ,

2 (4 1)( ) 2

d
d d

d d

a a
a

C


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


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       1,2,3,....d                            (20)           

 
Substituting (20) into (18) gives 
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By using (16), we get 
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In ( , )x t   variables, we have the exact soliton solution of the generalized -Zakharov equation 

in the following form 
 

( )

2 2

1 2

2 2 2 2
1

2 2 2

( , )

( )(4 1) 2
exp( ( 2 ))

4 1 ,
2 2 (4 1) ( )(4 1) 2
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In (21) and (22) if we choose 
2 2
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Since 
 

2

1 2 2
sec .

cosh 1

e
h

e e e



  
   

 
 

 
Thus, the exact solution of the generalized- Zakharov equation can be expressed as: 

2 2 2 2
( )

2 2

2 2 2 2
2

2 2 2 2

2 ( )(4 1) ( )(4 1) 2
( , ) sec ( ( 2 )),

1 (4 1) 4 1

2 ( )(4 1) ( )(4 1) 2
( , ) sec ( ( 2 )).

4 1 (1 (4 1))(4 1) 4 1

i x t C C
u x t e h x t

a

C C C
v x t h x t

a

        
 

      
   

      
  

  

     
  

    

 

 
4.   Conclusion 
 
The infinite series method has been successfully applied in solving the generalized-Zakharov 
equation. Thus, we can say that the proposed method can be extended to solve the problems of 
nonlinear partial differential equations which arising in the theory of solitons and other areas as 
well. 
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