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Abstract 
 
In this paper we study Kaluza-Klein type cosmological model of the universe filled with an ideal 

fluid obeying an inhomogeneous equation of state depending on time. It is shown that there 

appears a quasi-periodic universe, which repeats the cycles of phantom type space acceleration. 

 

Keywords:  Cosmology; Kaluza-Klein theory; time dependent EOS 

 

MSC 2000 No.: 83F05, 83E15, 83D05 

 

 

1. Introduction 
 

Kaluza-Klein (KK) theories have shown how gravity and electromagnetism can be unified from 

Einstein's field equations generalized to five dimensions. The idea has been later extended to 

include other types of interaction in 4 + 𝑑  dimensional models where the isometrics of the 

spontaneously compactified 𝑑 space-like dimensions account for the gauge symmetries of the 

effective four dimensional 4𝐷 theory [Wetterich (1982); Salam and Strathdee (1982)]. It is 

generally known that in KK theories with spontaneous dimensional reduction, a very large 

cosmological constant in four dimensions almost always arises, whereas from observational data 

we note that its value at present is too small 𝛬~10−56𝑐𝑚−2. However, for non-compact internal 

space one can envision dynamical mechanisms leading to a vanishing 4𝐷  cosmological constant 

[Wetterich (1985)]. It is interesting to point out that geometrically such solutions do not 

correspond to the topology of direct product of 4𝐷  and extra dimensional spaces.   

 

There is a lot of interest in the study of the nature of dark energy (for a review, see [Copeland et 

al. (2006); Padmanabhan (2003)]), responsible for the acceleration of the cosmic expansion, 

http://pvamu.edu/aam
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which was initiated not far in the past and which is expected to continue to later times. Among 

the different possible models that have been considered in the literature, one that has a good 

probability to react (or at least to conveniently parameterize) what may be going on there, is a 

model in which dark energy is described by some rather complicated ideal fluid with an unusual 

equation of state (EOS). Very general dark fluid models can be described by means of an 

inhomogeneous equation of state [Nojiri and Odintsov (2005, 2006)]. Some particular examples 

of such kinds of equations have been considered in Brevik et al. (2004), Nojiri and Odintsov 

(2006), Brevik and Gorbunova (2005), Brevik et al. (2007), Ren and Meng (2006), Hu and Meng 

(2006), Cardone (2006), Elizalde et al. (2005), and Capozziello et al. (2006). Also, some cases of 

observational consequences of the corresponding generalized dark fluids Capozziello et al. 

(2006) have been considered. Moreover, a dark energy fluid obeying a time-dependent equation 

of state of Nojiri and Odintsov (2006), Brevik et al. (2007), Ray et al. (2007), Ray and 

Mukhopadhyay (2007), Ray et al. (2009), Ghosh et al. (2013), and Mukhopadhyay et al. (2015) 

may also be successfully used with the purpose of mimicing the classical string landscape 

picture, which is very interesting in order to establish a connection with a different fundamental 

approach. It is known as well that a dark fluid satisfying a time dependent equation of state can 

rather naturally lead to a phantom era [McInnes (2002)], where the phantom field is able to 

mimic some features of the underlying quantum field theory, Nojiri and Odintsov (2003). 

 

In this study we consider Kaluza-Klein type cosmological model in a class of inhomogeneous 

universe. We have found the transition of the universe between a phantom and non-phantom 

phases. In a non-phantom phase, the energy density ρ decreases while in a phantom phase, it 

grows up leading to singularities with inhomogeneous time dependent equation of state. 

 

2.  Model and Field Equations 
 

We consider flat Kaluza-Klein type cosmological model of the form 

𝑑𝑠2 =  𝑑𝑡2 − 𝑅2(𝑡)[𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝛷2) + 𝑑𝜓2,                                                  (1)
 

where 𝑅(𝑡) is the scale factor. 

 

The Einstein field equations are given as 

𝐺𝑖𝑗 = 𝑅𝑖𝑗 −
1

2
𝑔𝑖𝑗𝑅 =  −8𝜋𝐺𝑇𝑖𝑗 ,                 (2)

 

the energy momentum tensor for matter source is given by 

 

𝑇𝑖𝑗 = (𝑝 +  ρ)𝜇𝑖𝜇𝑗 − 𝑝𝑔𝑖𝑗 ,               
 

where ρ and p are the energy density and pressure. 

 

Einstein field Equation (2) for the model Equation (1) are given by 

 

(
𝑅̇

𝑅
)

2

=
χ2𝜌

6
,                     (3) 
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𝑅̈

𝑅
+ (

𝑅̇

𝑅
)

2

=
χ2𝑝

3
,              

     (4)
 

   
 

where the dot (.) denotes differentiation with respect to the proper time t and χ =  8πG  is the 

gravitational constant. From Equation (3) we get 

 
6

𝜒2 𝐻2 = 𝜌,                   (5) 

 

where  𝐻 =
𝑅̇ 

𝑅
 the Hubble parameter. The energy conservation law gives 

 

𝜌̇ + 4𝐻(𝑃 + 𝜌) = 0.               (6)    

                                       

 

3. Inhomogeneous EOS for the Universe and its Solutions 
 

Let us assume that the universe is filled with an ideal fluid (dark energy) obeying an 

inhomogeneous equation of state depending on time of the form 

 

𝑝 =  𝜔(𝑡)𝜌 +  𝑓 (𝜌)  +  𝛬(𝑡),               (7)     

                                                                        

where ω (t) and Λ (t) depend on the time t and 𝑓(ρ) is an arbitrary function, in the general case. 

Using Equation (5) and Equation (7), the conservation Equation (6) becomes 

 

𝜌̇ +
4χ

√6
[(1 + 𝜔(𝑡))𝜌

3

2 +  𝑓(ρ)𝜌
1

2 + Λ(t)𝜌
1

2] = 0.                           (8) 

 

We solve the above equation for the following three cases: 

 

3.1. Case (i): 𝜔(𝑡) =  𝑎1(𝑡)  +  𝑏, 

 

3.2. Case (ii): 𝜔(𝑡) = (
𝑡𝑛

𝜏𝑛 −  1), and 

 

3.3. Case (iii): ω =  ω(t), respectively, where a1, 𝑏 and  𝜏 are constants. 

 

In all the above three cases we assume that 𝑓(ρ) =  𝐴ρ, where A is constant and in Case (i) and 

Case (ii) we assume that Λ(𝑡) ∝  𝐻2(𝑡) and in Case (iii) Λ =  Λ(t). 

 

For the case 3.1. Case (i): For 𝜔(𝑡) =  𝑎1(𝑡)  +  𝑏, we solve Equation (8) for the following three 

different cases: case (a): 𝑓(𝜌)  =  𝛬(𝑡)  =  0, case (b): Λ(𝑡) =  0 and 𝑓(𝜌)  ≠  0, case (c): 𝛬(𝑡) 

and  𝑓(𝜌) ≠ 0. 

 

3.1.1 Case (a): 𝑓(𝜌)  =  𝛬(𝑡)  =  0 

 

In this case from Equation (8), the energy density takes the form 
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𝜌(𝑡) =
6𝑎1

2

𝜒2

1

[(𝑎1𝑡+1+𝑏)2−𝑆1
2 ]2.                             (9) 

Hubble's parameter becomes 

𝐻(𝑡) =
a1

(𝑎1𝑡+1+𝑏)2−𝑆1
2 

,                (10) 

where 𝑆1 is the constant of integration. The time derivative of 𝐻(𝑡) becomes 

 

𝐻̇(𝑡) = − [
2𝑎1

2(𝑎1𝑡+1+𝑏)

([𝑎1𝑡+1+𝑏]2−𝑠1
2)2

],            (11) 

and, hence, the scale factor takes the following form 

𝑅(𝑡) =  𝑒 (
𝑎1𝑡+𝑏+1−𝑆1

𝑎1𝑡+𝑏+1+𝑆1
)

1

2𝑠1 ,            (12) 

where e is an integration constant. From Equation (11), it is observed that the time derivative of 

𝐻(𝑡)  is zero when 𝑡 = 𝑡1 =
−(𝑏+1)

𝑎1
. If 𝑎1 > 0, 𝑏 > −1  and 𝑡 < 𝑡1 , then 𝐻̇ > 0;  that is, the 

universe is accelerating or the universe is in the phantom phase and if 𝑡 > 𝑡1, one gets 𝐻̇ < 0  

and correspondingly, a decreasing universe i.e. the universe is in a non-phantom phase. There is 

a transition from phantom epoch to a non-phantom one. At the moment when the universe passes 

from a phantom to a non-phantom era, Hubble's parameter equals 

 

𝐻 =
−𝑎1

𝑠1
2 .                                        (13) 

3.1.2. Case (b): Λ(𝑡) =  0 and 𝑓(𝜌)  ≠  0 

 

In this case from Equation (8), we get 

𝜌(𝑡) =
6𝑎1

2

𝜒2

1

[(𝑎1𝑡+1+𝑏+𝐴)2−𝑆2
2]2 ,                          (14) 

where 𝑆2 is the constant of integration. Hubble's parameter becomes 

 

𝐻(𝑡) =
a1

(𝑎1𝑡+1+𝑏+𝐴)2−𝑆2
2 

.             (15) 

The time derivative of 𝐻(𝑡) becomes 

𝐻̇(𝑡) = − [
2𝑎1

2(𝑎1𝑡+1+𝑏+𝐴)

([𝑎1𝑡+1+𝑏+𝐴]2−𝑠2
2)2].                        (16) 

From Equation (15), after integration the scale factor takes the following form 



AAM: Intern. J., Vol. 10, Issue 2 (December 2015)                                                                                                1047                                                                                                             

  

𝑅(𝑡) =  𝑒 (
𝑎1𝑡+𝑏+1+𝐴−𝑆2

𝑎1𝑡+𝑏+1+𝐴+𝑆2
)

1

2𝑆2 .                        (17) 

It is observed from Equation (16) that the time derivative of 𝐻(𝑡) is zero when 

  

𝑡 = 𝑡1 =
−(𝑏+1+𝐴)

𝑎1
. 

 

 If 

 

 𝑎1 > 0, 𝑏 > −(1 + 𝐴) and 𝑡 < 𝑡1, then 𝐻̇ > 0;   
 

that is, the universe is accelerating or the universe is in a phantom phase and if 𝑡 > 𝑡1, one gets 

𝐻̇ < 0 and correspondingly, a decreasing universe i.e. the universe is in a non-phantom phase. 

There is a transition from phantom epoch to a non-phantom one. At the moment when the 

universe passes from a phantom to a non-phantom state, again the Hubble's parameter equals 

 

𝐻 =
−𝑎1

𝑠2
2                (18) 

3.1.3. Case (c): Λ(𝑡) ≠  0 and 𝑓(𝜌)  ≠  0, 

In this case from Equation (8), the energy density takes the form 

𝜌(𝑡) =
6𝑎1

2

𝜒2

1

[(𝑎1𝑡+𝛽)2−𝑆3
2]2 ,            (19) 

where 𝛽 = 1 + 𝑏 + 𝐴 + 𝛾
𝜒2

6
 and 𝑆3 is an integrating constant. Hubble's parameter becomes 

 

𝐻(𝑡) =
a1

(𝑎1𝑡+𝛽)2−𝑆3
2 

 .                         (20) 

The time derivative of 𝐻(𝑡) gives 

𝐻̇(𝑡) = − [
2𝑎1

2(𝑎1𝑡+𝛽)

([𝑎1𝑡+𝛽]2−𝑠3
2)2].            (21) 

Again, from Equation (20) the scale factor takes the following form 

𝑅(𝑡) =  𝑒 (
𝑎1𝑡+𝛽−𝑆3

𝑎1𝑡+𝛽+𝑆3
)

1

2𝑆3 .            (22) 

From Equation (21) it is again observed that the time derivative of 𝐻(𝑡) is zero when 

 

 𝑡 = 𝑡1 =
−𝛽

𝑎1
.  
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If 

𝑎1 > 0, 𝑏 > −(1 + 𝐴 + 𝛾
𝜒2

6
) and 𝑡 < 𝑡1,  

 

then 𝐻̇ > 0. that is, the universe is accelerating or the universe is in a phantom phase and if 

𝑡 > 𝑡1, one gets 𝐻̇ < 0 and, correspondingly a decreasing universe i.e. the universe is in a non-

phantom phase. There is a transition from phantom epoch to a non-phantom one. 

 

At the moment when the universe passes from a phantom to a non-phantom state, Hubble's 

parameter equals 

 

𝐻 =
−𝑎1

𝑠3
2                           (23) 

For the 3.2. Case (ii): 𝜔(𝑡) = (
𝑡𝑛

𝜏𝑛 −  1), again we assume the above three cases: case (a), case 

(b) and case (c). 

 

3.2.1. Case (a): Λ(𝑡) =  0 and 𝑓(𝜌) =  0, 

For case (a), and from Equation (8) the energy density takes the form 

𝜌(𝑡) = (
3(𝑛+1)2𝜏2𝑛

2𝜒2 ) (
1

(𝜏𝑛+1+𝑆4)2).           (24) 

where 𝑆4 is an integrating constant. Hubble's parameter becomes 

 

𝐻(𝑡) = (
(𝑛+1)𝜏𝑛

2
) (

1

𝜏𝑛+1+𝑆4
).             (25) 

The time derivative of 𝐻(𝑡) gives 

 

𝐻̇(𝑡) = − (
𝜏𝑛(𝑛+1)2𝑡𝑛

(𝜏𝑛+1+𝑆4)2 ),                         (26) 

 

and the scale factor from Equation (25) takes the following form 

 

𝑅(𝑡) = 𝑒𝑥𝑝 (
(𝑛+1)𝜏𝑛

2
𝐼),                        (27) 

 

where 

 

 𝐼 =
𝑡

𝑆4
 hypergeometric 2𝐹1 [

1

1+𝑛
, 1, 1 +

1

1+𝑛
,

−𝑡1+𝑛

𝑆4
]. 

 

From Equation (26) it is observed that the time derivative of 𝐻(𝑡) is zero when 𝑡 = 𝑡1 = 0. If 
𝜏 > 0 , n is an odd number and 𝑡 < 𝑡1 , then 𝐻̇ > 0. The universe is in phantom phase and 

if 𝑡 < 𝑡1, one gets 𝐻̇ > 0.  That is, the universe is in a non-phantom phase. 
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At the moment when the universe passes from a phantom to a non-phantom phase, Hubble 

parameter equals 

 

𝐻 =  [
(𝑛+1)𝜏𝑛

2𝑆4
].               (28)                          

 

3.2.2. Case (b): Λ(𝑡) =  0 and 𝑓(𝜌) ≠  0 

 

In this case the energy density takes the form 

 

𝜌(𝑡) = [
3(𝑛+1)2𝜏2𝑛

2𝜒2 ] [
1

(𝜏𝑛+1+𝐵𝑡+𝑆5)2],             (29)      

 

where 𝑆5 is an integrating constant and 𝐵 = 𝐴(𝑛 + 1)𝜏𝑛. Hubble's parameter becomes 

 

𝐻(𝑡) = (
(𝑛+1)𝜏𝑛

2
) (

1

𝜏𝑛+1+𝐵𝑡+𝑆5
).                                 (30) 

 

The time derivative of 𝐻(𝑡) gives 

 

𝐻̇(𝑡) = − (
𝜏𝑛(𝑛+1)((𝑛+1)𝑡𝑛+𝐵)

2(𝑡𝑛+1+𝐵𝑡+𝑆5)2 ),             (31) 

 

and by integrating Equation (30), the scale factor 𝑅(𝑡) takes the following form 

 

𝑅(𝑡) = 𝑒𝑥𝑝 (
[𝑛+1]𝜏𝑛

2
𝐼),                          (32) 

 

where 

 

 𝐼 =
𝑡

𝐵𝑡+𝑆5
 hypergeometric 2𝐹1 [1,

1

𝑛
, 1 +

1

𝑛
,

−𝑡𝑛

𝐵𝑡+𝑆5
].  

 

The time derivative of 𝐻(𝑡) is zero when 𝑡 = 𝑡1 = (
−𝐵

𝑛+1
)

1

𝑛 . If 𝜏 > 0, 𝐵 > 0 and 𝑡 < 𝑡1 , then 

𝐻̇ > 0; that is, the universe is accelerating and if 𝑡 > 𝑡1 one gets 𝐻̇ < 0 and a corresponding  

decreasing universe. There is a transition from phantom epoch to a non-phantom one. 

 

At the moment when the universe passes from a phantom to a non-phantom state, Hubbles 

parameter equals 

 

𝐻(𝑡) = [
(𝑛+1)𝜏𝑛

2
] [

1

(
−𝐵

𝑛+1
)

𝑛+1
𝑛 +𝐵(

−𝐵

𝑛+1
)

1
𝑛+𝑆5

] .          (33) 

 

3.1.3. Case (c): Λ(𝑡) ≠  0 and 𝑓(𝜌)  ≠  0, 

In this case the energy density takes the form 
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𝜌(𝑡) = [
3(𝑛+1)2𝜏2𝑛

2𝜒2
] [

1

(𝜏𝑛+1+𝐷𝑡+𝑆6)2
],             (34) 

where 𝑆6 is an integrating constant and 𝐷 = (𝐴 + 𝛾
𝜒2

6
)(𝑛 + 1)𝜏𝑛. Hubble's parameter becomes 

 

𝐻(𝑡) = (
(𝑛+1)𝜏𝑛

2
) (

1

𝜏𝑛+1+𝐷𝑡+𝑆6
),             (35) 

 

The time derivative of 𝐻(𝑡) becomes 

𝐻̇(𝑡) = − [
𝜏𝑛(𝑛+1)((𝑛+1)𝑡𝑛+D)

2(𝑡𝑛+1+Dt+𝑆6)2
],                        (36) 

and the scale factor takes the following form 

𝑅(𝑡) = 𝑒𝑥𝑝 (
[𝑛+1]𝜏𝑛

2
𝐼),                           (37) 

where 

 

 𝐼 =
𝑡

𝐷𝑡+𝑆6
 hypergeometric 2𝐹1 [1,

1

𝑛
, 1 +

1

𝑛
,

−𝑡𝑛

𝐷𝑡+𝑆6
]. 

 

The time derivative of 𝐻(𝑡) is zero when 𝑡 = 𝑡1 = (
−𝐷

𝑛+1
)

1

𝑛. If 𝜏 > 0, 𝐷 > 0 and 𝑡 < 𝑡1, then 

 

 𝐻̇ > 0 and if 𝑡 > 𝑡1, one gets 𝐻̇ < 0;  

 

that is, a transition from phantom epoch to a non-phantom one. 

 

At the moment when the universe passes from a phantom to a non-phantom state, Hubbles 

parameter equals 

 

𝐻 = [
(𝑛+1)𝜏𝑛

2(
−𝐷

𝑛+1
)

𝑛+1
𝑛 +𝐷(

−𝐷

𝑛+1
)

1
𝑛+𝑆6

].            (38) 

 

3.3. Case (iii): 𝝎 =  ω(𝑡) and 𝛬 =  Λ(t) 

From the field equations, Equation (3), Equation (4) and with the help of inhomogeneous 

equation of state Equation (7), we get 

 

𝑅𝑅̈ + [1 + 2𝐴 + 2𝜔(𝑡)]𝑅̇2 +
𝜒2

3
 𝛬(𝑡)𝑅2 = 0.                     (39) 

Now to solve Equation (39), we introduce the new variable 𝑆(𝑡) as 
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𝑅 = 𝑅0𝑒
∫

1

2(1+𝐴+𝜔(𝑡))

𝑆̇

𝑆
𝑑𝑡

.                        (40) 

Inserting Equation (40) into Equation (39) we get 

𝑆̈ − [
ω̇

(A+1+ω)
] 𝑆̇ + [

2(A+1+ω)χ2

3
] 𝛬(𝑡)𝑆 =  0.           (41) 

This equation can be identified with 

𝑆̈ + 𝑆𝑛𝑆̇ + [
1

(n+2)2] 𝑆2𝑛+1 = 0     (for  𝑛 ≠ −2),          (42) 

which is reduced to a linear differential equation by making the substitution [Chimento (1997)] 

 

S𝑛 = (
𝑛+2

𝑛
)

ν𝑛(t)

∫ ν𝑛(t)dt
 ,              (43) 

obtaining 

𝜈 ̈ (𝑡) = 0 ⇒  𝜈(𝑡) =  𝑐1 + 𝑐2𝑡,                      (44) 

where 𝑐1 and 𝑐2 are arbitrary integration constants. 

 

Without loss of generality we choose 𝑐1 = −𝑡0, where 𝑡0 is some initial time and 𝑐2 =  1. With 

the help of Equation (44) in Equation (43), the general solution of the nonlinear equation 

(Equation (42)) is found to be 

 

𝑆(𝑡) = [
(n+1)(n+2)(t−t0)n

n[𝐶+(t−t0)n+1]
]

1

𝑛
,              (45) 

where C is an arbitrary integration constant. Equation (41) and Equation (42) are the same if we 

define 

 

[
−ω̇

(A+1+ω)
] =  𝑆𝑛                         (46) 

and 

[
2(A+1+ω)χ2

3
] 𝛬(𝑡) =  

1

(n+2)2 𝑆2𝑛.             (47) 

By using the value of 𝑆(𝑡) from Equation (45) in Equation (46), after integration we get 

𝜔(𝑡) = 𝛾0 [1 +
(t−t0)n+1

c
]

−(𝑛+2)

𝑛
− (1 + 𝐴),          (48) 

where  𝛾0  is an arbitrary integration constant. 
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Again, by using the value of 𝑆(𝑡) from Equation (45) and with the help Equation (48) from 

Equation (47) we get 

 

𝛬(𝑡) =
3(n+1)2

2χ2n2C2𝛾0
(t − t0)2n [1 +

(t−t0)n+1

C
]

2−𝑛

𝑛
 .          (49) 

By using the above value of 𝑆(𝑡) and 𝜔(𝑡), the scale factor 𝑅(𝑡) from Equation (40) is given by 

 

𝑅(𝑡) = 𝑅0𝑒𝑥𝑝 {
1

2𝛾0
∫

dt

(t−t0)[1+
(t−t0)n+1

C
]

−(2+𝑛)
𝑛

 

− E ∫
(t−t0)ndt

[1+
(t−t0)n+1

C
]

−2
𝑛

 

},                   (50) 

where 𝐸 =
n+1

2𝑛𝐶𝛾0
. 

Now, taking into account that at late time, 𝑡 > > 𝑡0, we must have 𝜔(𝑡) → 𝛾0 − (1 + 𝐴) for the 

restriction 𝑛 < −1 readily follows as can be seen from Equation (48). In addition, 𝛬(𝑡) vanishes 

in the same limit. Now, using this approximation we evaluate 𝑅(𝑡) in Equation (40), finding 

𝑅(𝑡) ≈ 𝑅0 [
(n+1)(n+2)

n
(t − t0)]

1

2𝛾0,           (51) 

This solution has a singularity at 𝑡 = 𝑡0. By using Equation  (51), Hubble's parameter becomes 

 

𝐻(𝑡) ≈
1

2𝛾0(t−t0)
 .             (52) 

At 𝑡 = 𝑡1 → ∞, one has 𝐻(𝑡)̇ = 0. 

 

4.  Conclusions 
 

In this paper we have studied a Kaluza-Klein type flat model of the universe with 

inhomogeneous equation of state for different values of parameter 𝜔(𝑡). We have also studied 

the transition of the universe between a phantom and non-phantom phases. We focus our 

attention to the variable cosmological constant which has been introduced in the EOS, which 

becomes inhomogeneous. Then, we solve the equation of motion which lead to the explicit 

expression of the energy density and consequently to that of the Hubble parameter. The first 

derivative of the Hubble parameter played a crucial role in this analysis since it allowed us to 

know which time interval corresponds to a phantom or non-phantom universe. The 

inhomogeneous form in equation of state helps to realize such a transition in a more natural way. 

 

For the value of 𝜔(𝑡) =  𝑎1𝑡 +  𝑏, in all three cases i.e. Case (a), Case (b) and Case (c) there 

occur a passage from a non-phantom era of the universe to a phantom era, resulting in an 

expansion and a possible appearance of singularities. When the universe passes from a phantom 
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to a non-phantom era, Hubbles parameter obtained in the Equation (13), Equation (18) and 

Equation (23) respectively. 

 

For the Case (ii): 𝜔(𝑡) =  
𝑡𝑛

𝜏𝑛 −  1, when the universe passes from a phantom to a non-phantom 

era, again obtained Hubbles parameter in the equations Equation (28), Equation (33) and 

Equation (38) respectively. 

 

In Case (i) and Case (ii) it is also observed that, in a phantom phase 𝜌̇ > 0, the energy density 

grows and the universe is expanding in a non-phantom phase, 𝜌̇ < 0 , the energy density 

decreases. However, if the derivative of the scale factor 𝑅̇ > 0, the universe expands. Note that 

in a phantom phase the entropy may become negative. If 𝑡 → +∞, then 𝐻(𝑡) → 0 and 𝜌(𝑡) → 0 

so that a phantom energy decreases in both the cases. It is also shown that the universe is located 

in phantom (non-phantom) phase corresponding to 𝐻̇ > 0(𝐻̇ < 0). We note that 𝐻̇ > 0 that is 

universe accelerating and  (𝐻̇ < 0), corresponds to decelerating universe. 

 

For Case (iii) 𝜔 = 𝜔(𝑡) and 𝛬 = 𝛬(𝑡), we observed from the scale factor Equation (51) that it 

has singularity at 𝑡 = 𝑡0  i.e. big bang singularity. At the late time 𝑡 > > 𝑡0 , we must have  

𝜔(𝑡) → 𝛾0 − (1 + 𝐴) for the restriction 𝑛 < −1 radially follows the Equation (48). From the 

Equation (49) it is observed that at 𝑡 → 𝑡0, 𝛬 → 0. 

 

Thus, the universe filled with an inhomogeneous time dependent equation of state ideal fluid 

may currently in the acceleration epoch of quintessence or phantom type. 
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