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Abstract  
 

Thermal instability in a horizontal layer of Walter’s (Model B') visco-elastic nanofluid is 

investigated for more realistic boundary conditions. The flux of volume fraction of 

nanoparticles is taken to be zero on the isothermal boundaries. The model used for nanofluid 

incorporates the effect of Brownian diffusion and thermophoresis. Perturbation method, normal 

mode technique and Galerkin method are used in the solution of the eigenvalue problem. 

Oscillatory convection has been ruled out for the problem under consideration. The influences of 

the Lewis number, modified diffusivity ratio and nanoparticle Rayleigh number on the stationary 

convection are shown both analytically and graphically.  

 

Keywords:  Nanofluid; Walter’s (B') visco-elastic fluid; normal mode technique; oscillatory 

convection; Galerkin method; Rayleigh number; Lewis number 
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1. Introduction 

 

Nanofluids have novel properties that make them potentially useful in many applications in heat 

transfer, including microelectronics, fuel cells, pharmaceutical processes and   hybrid powered 

engines, domestic refrigerator, chiller, heat exchanger and nuclear reactor, in grinding, in 

machining, in space, defense and ships and in boiler flue gas temperature reduction. Nanofluid is 

a fluid colloidal mixture of nano sized particles in base fluid. Nanoparticle materials may be 
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taken as oxide ceramics (Al2O3, CuO), metal carbides (SiC), nitrides (AlN, SiN) or metals (Al, 

Cu) etc. and base fluids are water, ethylene or tri-ethylene- glycols and other coolants, oil  and  

other  lubricants,  bio-fluids, polymer  solutions, other common fluids. The term ‘nanofluid’ was 

coined by Choi (1995). Since Choi proposed his theory on nanofluids a continuous effort has 

ensued to look for the causes of the so-called anomalous increase in thermal conductivity of 

nanofluids. The presence of nanoparticles in the fluid significantly increases the effective 

thermal conductivity of the mixture. Xuan and Li (2003) investigated convective heat transfer 

and flow features of Cu-water nanofluid. They observed that the suspended nanoparticles 

remarkably enhance heat transfer process and the nanofluid has larger heat transfer coefficient 

than that of the original base liquid under the same Reynolds number. The characteristic 

feature of nanofluid is the thermal conductivity enhancement, a phenomena observed by Masuda 

et al. (1993). Keblinski et al. (2009), Wong and Leon (2010), Yu and Xie (2012), Philip and 

Shima (2012), Taylor et al. (2013) reported the developments and applications in the study of 

heat transfer using nanofluids.  

 

Buongiorno (2006) studied almost all aspects of the convective transport in nanofluids. Tzou 

(2008a, b) studied the thermal instability problems of nanofluid using the method of eigen- 

function expansion and observed that nanofluids are less stable than regular fluid. Thermal 

convection in a horizontal nanofluid layer of finite depth was studied by Nield and Kuznetsov 

(2010) and found that the critical Rayleigh number can be reduced or increased by a substantial 

amount, depending on whether the basic nanoparticle distribution is top-heavy or bottom-heavy, 

by the presence of nanoparticles. Thermal instability in a horizontal nanofluid layer in porous 

medium was investigated by Nield and Kuznetsov (2009) and then by Darcy model, while 

Kuznetsov and Nield (2010) studied the same by Brinkman model. Chand and Rana (2012a) 

investigated the oscillating convection in a Darcy porous medium and found that “Principle of 

Exchange of Stabilities” is not valid. Alloui et al. (2010) studied the natural convection of 

nanofluids in a shallow cavity heated from below. They observed that the presence of 

nanoparticles in a fluid is found to reduce the strength of flow field, this behavior being more 

pronounced at low Rayleigh number. Thermal instability of rotating nanofluid layer was studied 

by Yadav et al. (2011), Chand and Rana (2012b), Chand (2013a) and they observed that rotation 

has a significant effect on the onset of thermal instability. Magneto- convection in a horizontal 

layer of nanofluid was investigated by Chand (2013b) and Chand and Rana (2015a), while the 

effect of Hall current in a horizontal layer of nanofluid was investigated by Chand and Rana 

(2014a, b) and found that Hall effect destabilizes the fluid layer. 

 

 Recently Nield and Kuznetsov (2014), Chand et al. (2014), Chand and Rana (2014c, 2015a), 

studied the thermal instability of nanofluid by taking normal component of the nanoparticle flux 

zero at boundary which is more physically realistic. Zero-flux for nanoparticles means one could 

control the value of the nanoparticles fraction at the boundary in the same way as the temperature 

there could be controlled. Under the circumstances, it is desirable to investigate convective 

instability problems by utilizing these boundary conditions to get meaningful insight into the 

problems.  

 

The above study deals with nanofluid as Newtonian nanofluid. There is growing importance of 

non-Newtonian fluids in geophysical fluid dynamics, chemical technology, petroleum, biological 

and material industries. The study of non-Newtonian nanofluid is desirable. There are many 



 
AAM: Intern. J., Vol. 10, Issue 2 (December 2015)                                                                                      1029 
 
 

 
 

visco-elastic fluids which cannot be characterized by Maxwell’s constitutive relations. One 

such class of visco-elastic fluid is  Walters’ (Model B') fluids. Walters
 
(1962) reported that the 

mixture of polymethyl methacrylate and pyridine at 25
0
C containing 30.5g of polymer per liter 

with density 0.98g per liter behaves very nearly as the Walters’ (Model B') fluid. Walters’ 

(Model B') visco- elastic fluid forms the basis for the manufacture of many important polymers 

and useful products. Sharma and Kumar (1997), Sunil et al. (2000) studied the thermosolutal 

instability of Walter’s (Model B') liquids whereas Chand and Rana (2012c) studied the 

thermosolutal Rivlin-Ericksen elastico-viscous fluid in porous medium.  

 

Non-Newtonian nanofluid Bénard- convection problems were studied by Nield (2010), Sheu 

(2011), Chand and Rana (2012d, 2015b) and Rana et al. (2014), Rana and Chand (2015a, b) by 

taking different non-Newtonian fluids. In this paper paper an attempt has been made to 

revise the Chand and Rana (2015b) findings by considering physically realistic boundary 

conditions. The interest for investigations of visco-elastic nanofluids is also motivated by a wide 

range of engineering applications.  

 

2. Mathematical Formulations of the Problem 

 

Consider an infinite horizontal layer of Walter’s (Model B') elastico-viscous nanofluid of 

thickness ‘d’ bounded by planes z = 0 and z = d and heated from below. Fluid layer is acted 

upon by gravity force g(0, 0, -g) as shown in Figure 1. The normal component of the 

nanoparticles flux has to vanish at an impermeable boundary and the temperature T is taken to be 

T0 at z = 0 and T1 at z = d (T0 > T1). The reference scale for temperature and nanoparticles 

fraction is taken to be T1 and φ0 respectively.   

 

 

           

              

 

             

                                                                               

 

                                                                                Heated from below 

                                  

                Figure 1: Physical configuration of the problem 

 

2.1 Assumptions 

 

The mathematical equations describing the physical model are based upon the following 

assumptions: 

 

   g (0,0,-g) 

 z  
y

 
Fluid layer 

z = 0 

T = T0
 

z = d T = T1
 

x 
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i) thermophysical properties of fluid, except for density in the buoyancy force (Boussinesq  

Hypothesis), are constant, 

ii) the fluid phase  and nanoparticles are in thermal equilibrium state, 

iii) dilute mixture, 

iv) nanoparticles are spherical, 

v) no  chemical reactions take place in fluid layer, and 

vi) negligible viscous dissipation. 

 

2.2 Governing Equations  

 

The governing equations for Walter’s (Model B') elastico-viscous nanofluid [Chandrasekhar 

(1981), Sharma and Kumar (1997), Chand and Rana (2015b)] are    

                                                                  ,0 q                                                               (1) 

                                          
       qg

q 2

011 













t
μμTTαρφφρp

dt

d
ρ p

 ,                (2) 

 

where  



 q

tdt

d
 is stands for convection derivative, q(u, v, w) is the velocity vector,  p is the 

hydrostatic pressure, μ is viscosity, μ' kinematic visco-elasticity, α is the coefficient  of thermal 

expansion, φ is the volume fraction  of the nanoparticles, ρp density of nanoparticles and ρf  

density of base fluid and g(0, 0, -g) is acceleration due to gravity. 

 

The conservation of the nanoparticle mass [Nield and Kuznetsov (2010)] requires that 

 

                                                          

T,
T

D
φDφ

t

φ T
B

2

1

2 



q

  

                               (3) 

 

where DB is the Brownian diffusion coefficient and DT is the  thermoporetic diffusion coefficient 

of the nanoparticles. 

 

The energy equation in nanofluid [Nield and Kuznetsov (2010)] is given by 

 

                                   

  










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
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TT

T

D
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t

T
ρc T

Bp

1

2
q ,                (4) 

 

where ρc is heat capacity of fluid, (ρc)p is heat capacity of nanoparticles and k is thermal 

conductivity. 

 

We assume that the temperature is constant and nanoparticles flux is zero on the boundaries. 

Thus, boundary conditions [Chandrasekhar (1981), Nield and Kuznetsov (2014)] are 
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Introducing non-dimensional variables as  
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where 
ρc

k
κ   is  thermal diffusivity of the fluid.

  

 

Equations (1)- (5) in non-dimensional form can be written as  
 

   ,0 q                                                                                    (6) 

                    
  ,ˆRnφˆRaTˆ-RmnFp

tPr
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q
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[The dashes (') have been dropped for simplicity]. Here, non-dimensional parameters are given 

as 

ρκ

μ
Pr   

is the Prandtl number,

  

BD

κ
Le   

is the Lewis number,  

 
μκ

TTρgαd
Ra 10

3 
  

is the thermal Rayleigh number,  

   3
10 0ρ φ ρ - φ gdp

Rm
μκ


  
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is the basic-density Rayleigh number, 

  
 

μκ

gd-φφρρ
Rn

p

3

01
  

is  nanoparticle Rayleigh number,  

 

01

10

φTD

-TTD
N

B

T
A   

is the modified diffusivity ratio,  

 

 
  

ρc

φρc
 N

f

p

B

0
  

 is the modified particle-density increment,  

2ρd

μ
 F


  

is the kinematic visco-elasticity parameter. 

 

The dimensionless boundary conditions are 

 

0 1 0 0A

T
w ,    T ,   N    at    z

z z

 
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   
and 0 0 0 1A

T
w ,    T ,   N   at    z .

z z

 
    

 
      (10) 

 

2.3. Basic Solutions 

 

The basic state of the nanofluid is assumed to be time independent and is described by  

 

       .zφφ,    zTT,  zpp,  bb  0wv,u,q
 

 

Equations (6) – (9) using boundary conditions (10) give solution as 

 

                                                        zTb 1 , zNφ A0b  ,                             (11) 

 
where φ0 is reference value for nanoparticles volume fraction. These basic solutions are identical 

with solutions obtained by Nield and Kuznetsov (2014). 

 

2.4. Perturbation Solutions 

 

To study the stability of the system, we superimposed infinitesimal perturbations on the basic 

state, which are written in following forms   

 

                
z.Nz-z,  φ  T  ppp, φφφ, TTT,  Abbbb   b  1with0 qq

         
(12)

  

[Hereafter, the dashes ( '' )  are suppressed for convenience].
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Using Equation (12) in Equations (6) – (9) and linearizing the resulting equations by neglecting 

the product of the prime quantities, we obtain the following equations  
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The boundary conditions are given by 
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z
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
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         (17) 

 

It will be noted that the parameter Rm is not involved in these and subsequent equations. It is just 

a measure of the basic static pressure gradient and not appear in the subsequent equations [Nield 

and Kuznetsov(2010)]. 

 

The six unknown’s u, v, w, p, T and φ can be reduced to three unknowns by operating 

Equation (14) with curl, .curlez
we get 

 

                                 
  φ,RnTRawnF1w

tPr

1 2

H

2

H
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where  

2

2

2

2
2

H
yx 







  

 

is the two-dimensional Laplacian operator on the horizontal plane.

          

3. Normal Modes Analysis 
 

We analyze the disturbances into the normal modes and assume that the perturbed quantities are 

of the form  

 

                                 
          ntyikxikexpzΦ,z,ΘzWw,θ, yx  ,                                        (19) 

 

where kx and  ky  are wave numbers in x and y directions respectively, while n (complex constant) 

is the growth rate of disturbances. 
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Using Equation (19), Equations (18), (15) and (16) become 
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        (22) 

where  

d
D

dz
  

and  

22

yx kka   

 

is the dimensionless resultant wave number. 

The boundary conditions of the problem in view of normal mode analysis are written as 
 

                                 DΘN,  DΦ,  ΘW,  DW A 0000 2   at  z = 0, 1.                           (23) 

  

 

4.  Method of Solution 
 

The Galerkin weighted residuals method is used to obtain an approximate solution to the system 

of Equations (20) – (22) with the corresponding boundary conditions (23). In this method, the 

test functions are the same as the base (trial) functions.  Accordingly W, Θ and Φ are taken as 

 

        

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111

,                                               (24) 

 

where Ap, Bp and Cp are unknown coefficients, p = 1, 2, 3, ..., N and the base functions Wp, Θp 

and Φp are assumed in the following form  

 

                     
1pp

pp zzΘW  ,  zzNΦ A  2

1  and 
1 2

, 2, 3, 4,...,
2

N z  p   Np A   .        (25) 

 

such that Wp, Θp and Φp satisfy  the corresponding boundary conditions. Using expression for W, 

Θ and Φ in Equations (20) – (22) and multiplying first equation by Wp second equation by Θp 

and third by Φp and integrating in the limits from zero to unity, we obtain a set of 3N linear 

homogeneous equations in 3N unknown Ap, Bp and Cp; p = 1, 2, 3, …, N. For the existence of a 
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non-trivial solution, the vanishing of the determinant of coefficients produces the characteristics 

equation of the system in term of Rayleigh number Ra. 

 

 

5.  Linear Stability Analysis 
 

We confine ourselves to the one- term Galerkin approximation. The eigenvalue equation of the 

problem is given as 
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     (26) 

 

For neutral stability, the real part of n is zero. Hence, on putting n = iω, (where ω is real and 

dimensionless frequency of oscillation) in Equation (26), we get  
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Since Ra is a physical quantity, it must be real. Hence, it follows from Equation (26) that either

 

ω = 0 (exchange of stability, steady state) or Δ2 = 0 ( 0ω  over-stability or oscillatory onset). 

  

5.1.  Stationary Convection
  

 

When the stability sets as stationary convection, the marginal state will be characterized by         

n = 0 (ω = 0), and then Equation (26) gives the stationary Rayleigh number as
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We find that for the stationary convection, the kinematic visco-elasticity parameter F vanishes 

with n and hence, elastico-viscous fluid behaves like an ordinary Newtonian fluid. 
 

It is also clear from Equation (30) that stationary Rayleigh number, Ra, depends upon 

dimensionless wave number ‘a’, Lewis number, modified diffusivity ratio NA and nanoparticles 

Rayleigh number Rn, but independent of modified particle-density increment NB, Prandtl number 

Pr and density Rayleigh number Rm. 

 

The interweaving behaviors of Brownian motion and thermophoresis of nanoparticles evidently 

do not change the critical size of the Bénard cell at the onset of instability.  As such, the critical 

size is not a function of any thermophysical properties of nanofluid.  

 

The minimum value of the first term of RHS of Equation (30) is attained at wave number 

,a 10  so that the critical Rayleigh number for stationary number is given by 

 

       RnLeNRa Ac  40 .        
                                       

            (31) 

 
This is the same result which was obtained by Nield and Kuznetsov (2014). 

 

In the absence of nanoparticles (Rn = Le = NA = 0) i.e. for ordinary fluid, the Rayleigh number 

Ra for steady onset is given by 

  40cRa . 

 

This is the same result which was obtained by Nield and Kuznetsov (2014) and is approximately 

equal to well-known result of Chandrasekhar (1981) for regular fluid that the critical Rayleigh 

number is  

Rac = 4π
2
. 

 

In order to investigate the effects of Lewis number Le, modified diffusivity ratio NA and 

nanoparticles Rayleigh number Rn on the stationary convection, we examine the behavior of  

 

R R
,  and 

A

Ra a a

Le N Rn

  

  
 

 

analytically. From Equation (30), we have 

  

0
Ra

Le






,  0
N

aR

A





, and 0

Ra

Rn






. 

 

It implies that for stationary convection Lewis number, modified diffusivity ratio and 

nanoparticle Rayleigh number have destabilizing effect on the fluid layer. These results are 

equivalent to the results obtained by Nield and Kuznetsov (2014), Chand and Rana (2014b, 

2015a). 
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5.2. Oscillatory Convection 
  

Here, we considered the possibility of oscillatory convection. For oscillatory convection ( 0ω ), 

we must have Δ2 = 0, which gives  
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1
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


































                            (32) 

 

Equation (32) gives the frequency of oscillatory mode. For the value of parameters considered in 

the range of 52 1010  Ra (thermal Rayleigh number),

 

0Rn

 

(nanoparticles Rayleigh 

number), 62 1010  Le (Lewis number) [Nield and Kuznetsov (2014)], we get the negative 

value of 2. Thus,
 
oscillatory convection is not possible. Oscillatory convection is ruled out 

because of the absence of the two opposing buoyancy forces.  

 

6. Results and Discussion 
 

Thermal instability in a horizontal layer of Walters (Model B') visco-elastic nanofluid for more 

physically realistic boundary conditions is investigated. The numerical computations are carried 

out for different values of Lewis number Le, modified diffusivity ratio NA and nanoparticles 

Rayleigh number Rn. The parameters considered are in the range of 52 1010  Ra (thermal 

Rayleigh number), 0Rn

 

(nanoparticles Rayleigh number), 52 1010  Le  (Lewis number).The 

convection curves for Lewis number Le, modified diffusivity ratio NA and concentration 

nanoparticles  Rn in the (Ra, a) plane are shown in Figures 2-4.  

 

Figure 2 represents the variation of stationary Rayleigh number with wave number for different 

value of Lewis number Le and it is found that stationary Rayleigh number decreases with an 

increase in the value of Lewis number; thus, Lewis number has destabilizing effect on the 

stationary convection. This is in agreement with the result obtained by Chand and Rana (2014b, 

2015a). 

 

Figure 3 represents the variation of stationary Rayleigh number with wave number for different 

value of concentration Rayleigh number Rn and it is found that stationary Rayleigh number 

decreases with an increase in the value of concentration Rayleigh number Rn, which imply that 

concentration Rayleigh number destabilizes the stationary convection. This is in agreement with 

the result obtained by Chand and Rana (2014b, 2015a). 

 

Figure 4 represents the variation of stationary Rayleigh number with wave number for the 

different values of modified diffusivity ratio NA and it is noted that stationary Rayleigh number 

decreases with an increase in the value modified diffusivity ratio NA. Thus, the modified 

diffusivity ratio NA has a destabilizing effect on the stationary convection. This is in agreement 

with the result obtained by Chand and Rana (2014b, 2015a). 
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Figure 2.  Variation of stationary Rayleigh number Ra with wave number a for different 

values of Lewis number Le 

 

 

Figure 3. Variation of stationary Rayleigh number Ra with wave number a for 

different values concentration Rayleigh number Rn 
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Figure 4. Variation of stationary Rayleigh number Ra with wave number a for different 

values of modified diffusivity ratio NA 

 

7.  Conclusions 

 

Thermal instability in a horizontal layer of Walter’s (Model B') elastico-viscous nanofluid layer 

is investigated for more realistic boundary conditions. The effect of various parameters such 

as Lewis number, modified diffusivity ratio and concentration Rayleigh number has been 

investigated analytically and graphically. Main conclusions from the analysis of this paper are as 

follows: 
 
(i) The critical cell size is not a function of any thermophysical properties of nanofluid. 

 

(ii) Instability is purely phenomenon due to buoyancy coupled with the conservation of 

nanoparticles. 

 

(iii) For the stationary convection, the visco-elastic fluid behaves like an ordinary Newtonian 

fluid. 

 

(iv) Oscillatory convection is ruled out because of the absence of the two opposing buoyancy 

forces. 

 

(v) Lewis number, modified diffusivity ratio and concentration Rayleigh number have 

destabilizing effect on the stationary convection.  
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