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Abstract  
 
Models developed by mathematicians/statisticians based on criterion such as goodness of fit 
often leads to a “best” model only for the data utilized. Moreover the parameters in such models 
often do not have physical interpretations and as such their validity cannot be checked by other 
means. This article makes argument against modeling processes that do not incorporate 
information from discipline related to the origin of data and presents an example to demonstrate 
benefits of doing so. 
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1.   Introduction 
 
Is there any right way to do mathematical modeling? After forty years in academia this is my 
partial answer to this question. First, I have noticed models that mathematicians develop do not 
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always earn the appreciation of the practitioners mainly because practitioners consider a model 
good if: (a) is general, (b) incorporates rules of their field of application, and (c) is 
understandable to them in their own jargon. For example, for more than two decades I followed 
the progress made in modeling seismic records of earthquakes and even personally tried to 
construct few myself.  I even tried to learn some geophysics and seismology to help the matter. 
During that period, many well-known earth scientists I talked to expressed their concern about 
models mathematicians have developed. They generally believed that in many of the models 
developed by mathematicians, the emphasis has been mathematics and often little or no attempt 
was made to tie together the mathematical concepts with geophysical facts.  They viewed this 
approach of modeling essentially a mathematical exercise with a bit of geological or geophysical 
justification. To make a distinction, we may call this geo-mathematics. In contrast they expressed 
desire to see a geological problem being investigated with mathematical tools, where 
mathematics is of purely secondary interest.  In other words, the objective is to derive models 
with physical significance (e.g. models whose parameters have physical interpretation), not to 
produce elegant mathematics, though that may indeed occur. We may refer to this as 
mathematical geology. I learned that constructing models following their advice may lead to 
more appropriate models whose validity may be verified with methods other than goodness of 
fit. Additionally such models may include fewer unknown parameters. Going through this 
process I also learned that there are generally two major attitudes towards mathematical 
modeling applied to the disciplines such as seismology.  In one, modeling is carried out solely 
based on goodness of fit.   
 
Regression and time series modeling are examples of the tools people often use for this 
approach.  In the second approach, the deterministic models developed by experts in the field are 
either analyzed further or extension is made to them by considering, for example, time-
dependent solutions, spatial patterns or by adding random variation to account for 
nondeterministic factors or those not being completely understood.  From the present literature it 
seems that the latter has gained a great popularity in recent decades. In this approach the critical 
problem is to incorporate random variation into an established deterministic formulation in a way 
that is physically meaningful and mathematically tractable.  
 
The following describes an application of this approach for developing a model for seismic 
records from earthquakes. For detailed information regarding the deterministic forms used see 
Noubary (1999). 
 
 
2.  An Example 
 
Suppose that the seismogram is written in its usual forms as 
 

,                                  (1) 
 
where  is the signal (here the source time function),  is the vector of unknown 
parameters and  is the noise.  Let  denote the Fourier transform of  . For 
earthquakes what is usually given is the functional form of , without phase information.  
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For displacement measurements, common forms proposed by seismologists, include the 
following well-known -square (j =1) and -cube (j =2) models; 
 

 ,              .                        (2) 

 
Here  denotes the frequency, k is known as corner frequency (1/k is proportional to the duration 
of earthquake) and h is a dimensionless constant with a certain physical meaning. A time domain 
version for (2) is  
 

 ,                                               (3) 
 
These are deterministic models. To derive stochastic model, I followed the approach that 
suggests including a random variation to model (3). For this, in each case I regarded the 
displacement (in this case the radial displacement function) as the complementary solution to a 
stochastic difference equation.  In other words, I constructed a stochastic difference equation 
whose complementary solution had the same form as the source time function (3). For -squared 
and -cubed models, the resulting stochastic difference equation take the form 
 

,  ,            (4) 
 
where B represents the backwards shift operator.  
 
Note that in this model the characteristic polynomial has j equal roots with j = 2 for -squared 
and j =3 for -cubed models, respectively.  The difference equation (4) represents a special class 
of jth order autoregressive processes with coefficients determined by the single parameter k.  
  
Tj stheim (1975a,b) has found empirical evidence for unconstrained third-order autoregressive 
models as an appropriate model for a majority of observed P-wave records for earthquakes and 
used the coefficients of the fitted models for discriminating earthquakes from underground 
nuclear explosions, a  problem that was of great concern during the Cold War. In fact, he 
checked autoregressive models of different orders and selected an arbitrary third-order 
autoregressive models of the form  

 
                                                           (5) 

 
He, then, picked the “best” model based on a statistical goodness of fit. It is interesting to 
compare his findings with the one-parameter model (4). This helps to see some of the 
shortcomings of the models obtained solely based on goodness of fit.  Tj stheim has fitted (5) to 
large numbers of records from the NORSAR array, producing summary coefficients by 
averaging.  For instance, for short-period seismic noise, he has found [from Tables 4 and 5, in 
Tj stheim (1975a)] that 
 

(a) -1.69, +0.97, -0.18 (from 34 samples) and 
 (b) -1.80, +1.09, -0.22 (from 29 samples). 
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The coefficients of the model (4) fitted to the records sampled at the rate of 10 observations per 
second are, respectively: 
 

-3exp(-k/10), 3exp(-2k/10), -exp(-3k/10). 
 

For the above data, these coefficients are, respectively: 
 

(a) -1.69, 0.96, -0.18    for k = 5.716, and 
(b) -1.81, 1.09, -0.22    for k = 5.047. 

 
This suggests that the model (4) with only one parameter would also fit the same data.  
Additionally the validity of model (4) can be verified by comparing the estimated values of k 
with direct measurements obtained by seismologists.   
 
Tj stheim (1975a) also found that the most pronounced difference in autoregressive structure 
between earthquakes and underground nuclear explosions was that, on average, the 
autoregressive coefficients for explosions had a lower absolute value than the corresponding 
coefficients for earthquakes.  This can be directly inferred from model (4), by using the fact that 
k is a time constant and earthquakes usually have a longer duration than underground nuclear 
explosions.  Also Bungum and Tj stheim (1976) have found that just the first coefficient of 
Tj stheim’s autoregressive models is needed in discrimination between earthquakes and 
underground nuclear explosions.  This is again predictable from model (4). In short, these 
observations confirm the superiority of the one-parameter model (4) over models obtained using 
goodness of fit. 
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