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Abstract

In this paper, we propose new variants of the two-step Adams-Bashforth and the one-step
Adams-Moulton methods for the numerical integration of ordinary differential equations
(ODEs). The methods are constructed geometrically from an exponentially fitted osculating
parabola. The accuracy and stability of the proposed variants is discussed and their applicability
to some initial value problems is also considered. Numerical experiments demonstrate that the
exponentially fitted variants of the two-step Adams-Bashforth and the one-step Adams-Moulton
methods outperform the existing classical two-step Adams-Bashforth and one-step Adams-
Moulton methods respectively.
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1. Introduction

For the numerical integration of the initial value problem (IVP)

d
%:f(x,y); V(X )= VYo, Xo SXZX,, (.2)
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the two-step Adams-Bashforth and the one-step Adams-Moulton methods are given by

h
Yoi1 = Ya +E[3f (Xn’ Yn )_ f (Xn—l’ yn—l)]’ (12)

h
yn+l = yn + E[f (Xn’ yn )+ f(xn+l’ yn+1 )] ! (13)

respectively.

We set x, =X, +nh, n=0123,..,h=step-size, f, = f(x,,y,) and y, is assumed to be a
close approximation to the value y(x, ), where y(x) is the unique solution of (1.1). The explicit
method (1.2) has a second order convergence and its stability interval is(—1,0). The implicit

method (1.3) has also a second order convergence and is A-stable. Many different ways like

discretization, the weight function approach, numerical integration etc. may be used to construct
the single-step and multi-step methods. The theory of interpolation and collocation has been
extensively used to construct numerical methods for ordinary differential equations. Omolehin
etal. (2003) proposed a new class of Adams-Bashforth schemes for the numerical solution of

(1.1) by using collocation approach. Arevalo etal. (2002) have given a collocation formulation
of multi-step methods for variable step-size extensions. Odejide and Adeniran (2012) proposed

a five-step ninth order hybrid linear multi-step method for the solution of first order initial value
problems via the interpolation and collocation procedure.

In this paper, we propose geometrically constructed new classes of the two-step Adams-
Bashforth and the one-step Adams-Moulton methods by using the concept of osculating curves,
from which the classical two-step Adams-Bashforth and one-step Adams-Moulton methods can
be obtained as special cases.

This paper is organized as follows: In Section 2, we recall basic definitions. The constructions of
new variants of the two-step Adams-Bashforth and the one-step Adams-Moulton methods are
carried out in Section 3. Error analysis of the variants is carried out in Section 4. The stability

analysis of the variants is presented in Section 5, and finally the numerical results are discussed
in Section 6.

2. Basic Definitions

Definition 2.1. (Consistency)

A linear multi-step method is said to be consistent if it has an order of convergence, say p >1.
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Definition 2.2. (Root Condition)

A linear multi-step method is said to satisfy the root condition if the roots of the corresponding
characteristic equation, p(f): 0, lie inside the unit circle in the complex plane, and are simple if
they lie on the unit circle.

Definition 2.3. ( A-stability)
A one-step method is A-stable if it may be applied to the test equation
y'=4y,

where Ais a complex number with Re(ﬂ,)<0, it yields vy, =Q(z)y,, where z=1h such that
Q(z)<1.

Definition 2.4. (Osculating curves)

Two curves f(x) and g(x) are said to be osculating at a point x = x, to degree n if

3. Construction of New Families of Methods

Consider the initial value problem(l.l). We are interested in finding the approximate solution of
(L.1)atx,,=x, +h.

Let

y =¢(x), (3.1)
be the actual solution curve of (1.1) in the xy -plane.
Now, consider an exponentially fitted parabola in the following form

y = ep(x‘xn)[a(x —x, ) +b(x—x )+ c] . (3.2)

where a,band care arbitrary constants to be determined by using some tangency conditions at
X=X, . Here, the quantity p will play a very important role. If we consider (3.2) as an

osculating parabola to the solution curve y = ¢(x) atx = x, , then we have

y()=g0x) ¥ (x)=4(x) ¥ (x,)=6"(x,). (33)
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Using these conditions, we obtain

1 2
£ (0, Yo)+ P Zn—zpf(xn.yn), b= f(x.,y.)=py., C=y. (34)
Equation (3.2)gives

a=

Therefore, at x = X

n+1

f'(x.,y )+ p%y —2pf(x,
yml:e"“[( () + P 32’ pf (x, y”)jhz+(f(><n,yn)— pyn)h+yn}- (3.5)

Now, we shall discuss the role of the quantity p and derive various methods.

3.1. Taylor Series Method

Consider

Vo1 =e“{[ o)+ Yo _pr(x”’y”)th +(F (%0, ¥a) = Py, + yn}- (3.6)

2

If we let p=D :dibe a differential operator and assume that all higher order derivatives of
X

y, exist, then from Equation (3.6), we obtain, on expanding e™ in Taylor expansion,

212
yr]+1:{1+hD+hzll3 +..}yn, (3.7)

which is the well-known Taylor series method.

3.2. Family of The Two-Step Adams-Bashforth Method
Let pe%®R such that|ph|<1. Using Taylor expansion fore™ , we obtain the following expression

p2h2

e =1+ ph+ +0(ph?).

Using this expression in(3.5), yields on simplification,

h? h?
Yo = Yn +hf(xn’yn)+7 fl(xn’yn)+ p? fl(xn’yn)

_ﬁ £ (x,,v,)+0fh*) (38)
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In order to avoid computation of the second order derivative of y, in(3.8), we approximate it
with a backward difference at x =x,,

fl(Xn, yn)z f(Xn’yn)_hf (Xn—li yn—l).

Using this approximate value of f'(x,,y, ) in(3.8),

h h?
Yo =Y +E[3f(xn’yn)_ f(xn—l’ yn—l)]+ p?[f(xn’yn)_ f(Xn—l’yn—l)]

ph’ £(x,.y,)+0(h*) (3.9)

Ignoring the third and higher order terms of h in(3.9), the following simplified expression for

yn+1 iS
2

h h
Yo = Ya +§[3f (Xn ' Yn )_ f(xn—ll yn—l)]+ p?[f (Xn | yn)_ f(xn—17 yn—l)]' (310)

These are the new variants of the two-step Adams-Bashforth method, which will be proved to
have the same order of convergence as the classical two-step Adams-Bashforth method. We also
call formula (3.10) a one-parameter family of the two-step Adams-Bashforth method. For p =0,

one can obtain the well-known two-step Adams-Bashforth method (1.2) for the numerical
solution of (1.1).

A method for selection of the parameter p :
Rewrite (3.10) in the following form

yn+l = yn + Fl + pFZ’ (311)

where

2

h h
Fl =E[3f(xn’yn)_ f(xn—l’yn—l)] and F2 =?[f(xn'yn)_ f(xn—l’yn—l)]'

From this iteration formula, we can see that at every iteration step, the value of the parameter
p is such that

(3.12)



746 Gurjinder Singh et al.

3.3. Family of the One-Step Adams-Moulton Method

In order to avoid the computation of second order derivative of y, in the formula(3.8), we
approximate it with a forward difference given by

fl(xnv yn)z f(Xn+l’ yn+12]_ f(Xn'yn).

Substituting this approximate value of f'(x,,y, ) into the formula(3.8), we have

2

h
yn+l = yn +§[f(xn’ yn)+ f(xn+l’ yn+l)]+ p?[f(xnﬂ’ yn+1)_ f(xn’ yn)]

~ p2h3

f(X,.y,)+0(h*). (3.13)

Ignoring the third and higher order terms of h in(3.13), the simplified expression for y, ., is
given by

2

h
Yo = Ya +E[f (Xn’ Yn )+ f(xn+l’ yn+l)]+ p?[f (Xn+1’ yn+1)_ f(Xn’ Yn )] (314)

These are the new variants of the one-step Adams-Moulton method, which will be proved to
have the same order of convergence as the one-step Adams-Moulton method. We also call
formula (3.14) a one-parameter family of the one-step Adams-Moulton method. For p=0, one

can obtain the well-known one-step Adams-Moulton method for the numerical solution of (1.1).
A method for selection of the parameter p :
Rewrite (3.14)in the following form

Yo =Yn T Gl + sz' (3'15)

where
2

h h
Gl :E[f(xn’yn)-i_ f(xn+1’ yn+l)] and GZ :7[f(xn+l’ yn+l)_ f(xn’yn )]

From this iteration formula, we can see that at every iteration step, the parameter p is such that

(3.16)

_(+ve, if GG, >0,
“l-ve, if GG,<0.
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4. Error Analysis

The notion of an error is a very important criterion in the study of any numerical method. In this
section we shall discuss the error encountered in the use of the proposed families of methods.

4.1. Accuracy of the Family of the Adams-Bashforth Method

Consider the family (3.10)

h h?2

yn+1 = yn +§[3f (Xn ) yn )_ f(xn—17 yn—l)]+ p?[f (Xn ) yn)_ f(xn—17 yn—l)]' (41)

Since
. ST | L 3

f(Xn’yn): yn and f(Xn—l’ yn—l): yn—l = yn _hyn +? yn +O(h )’

we obtain the following expression
2 _ 11 "
yn+l = yn + hyn I+h? yn”+h3[ 3;:1 + pyzn j+0(h4) (42)

Assuming the existence of higher order derivatives of y(x), we can expand y(x,,) about
X = X, in the following form by Taylor expansion

y(Xn+l): Y(Xn)"‘ hY'(Xn)—k%y"(xn).,_h_B

; y"(x,)+0(n*). (4.3)

After subtracting (4.2) from(4.3), we obtain the following local truncation error

(2 Py h o
|_TE_(12 Vo= Yo jh +o(h*).

Hence, the proposed family of the two-step Adams-Bashforth method has a second order
convergence. We have shown that the proposed family has order of convergence >1. Therefore,
the proposed family (3.10) is consistent.

Remark:

Sy—”” . It is worth noting that if we

n

w_P
2

substitute this value of p into (3.10)and discretize second and third order derivatives of y, by

backward differences, then we obtain the following three-step Adams-Bashforth method

By putting% Y, y,''=0, we obtain the value of p =
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h
Yo=Y t 5[231: (Xn ' Yn )_ 16f (Xn—11 yn—l)+ 5f (Xn—21 Yno2 )] (44)

4.2. Accuracy of the Family of the Adams-Moulton Method

Consider the family (3.14)

2

h h
Yo = Ya +E[f(xn’ yn)+ f(xn+l’ yn+1)]+ p?[f(xml’ yn+1)_ f(xn’ Yn )] (45)

Since
2

h
f(xn’ yn)= ynI and f(Xn+1’ yn+l)= yn+1I= ynl+hyn”+7 yn”'+o(h3)'

By substituting these values in (4.5), we obtain the following expression

2 "
Yo=Y, + hyn'+h? yn"+h3[y”T+%j +O(h4). (4.6)

Assuming the existence of higher order derivatives of y(x), we can expand y(x,, ) about
X = X, in the following form by Taylor expansion

2 3

V)= ¥0x, )+ Ry (6, )40y (%, )+ y (5, )+ O(n‘). (47)

After subtracting (4.6) from(4.7), we obtain the following local truncation error

_1 (RN p " 3 4
LTE =| — - h® +0(h").
Hence, the proposed family of the one-step Adams-Moulton method (3.14) has second order
convergence. We have shown that the proposed family has order of convergence >1.Therefore,
the proposed family (3.14) is consistent.

5. Stability Analysis

It is well-known that a linear multi-step method is convergent if and only if the method is
consistent and satisfies the root condition. It is not always possible to test the root condition,
when multi-step methods involve some parameters. To test the root condition of two-step

methods when the corresponding characteristic equation, say a,&”+a,&+a, =0, has
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- . . . 1+z .
coefficients which are functions of some parameters, we use the transformation & =1 which
-z

maps the interior of the unit circle || =1onto the left half plane Re(z) <0, and the point £=1
onto z=0. Therefore, we can obtain the transformed characteristic equation as

p(z)=b,z*> +b,z+b, =0.

Then the Routh — Hurwitz criterion (which gives the necessary and sufficient conditions for the
roots of characteristic equation to have negative real parts) is satisfied if and only if

b, >0, b,>0 and b, >0. (5.1)
The conditions (5.1)ensure that the roots of the original polynomial
a,&’ +a,f+a, =0,

from which p(z) is derived satisfy |§i|<1 In the following theorem, we shall use the

Routh — Hurwitz criterion to check the stability of the family of the two-step Adams-Bashforth
method.

Theorem 5.1.
The family of the two-step Adams-Bashforth method (3.10) has stability interval (- 2, 0).
Proof:

Since the proposed family (3.10) has a parameter p , therefore we will use the
Routh — Hurwitz criterion to check its stability.

Consider the test equation
y'= 4y, where 1<0, (5.2)

When the family of the two-step Adams-Bashforth method (3.10) is applied to the test
equation (5.2), we obtain

Yo — [1+ % +%ij + [% + %jyn_l =0, where h = ih <0. (5.3)

Its characteristic equation given by
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2 3h phh h  phh)
£ _(1+7+Tj§+(5+7j_0' (5.4)

Leté :?—Z, then from (5.4) we get the transformed characteristic equation given by
-2

(2+2h + phh)z2 + (2= h(1+ ph))z—h =0. (5.5)
Let k, =(2+2h + phh), k, =(2—h(L+ ph)) andk, =—h,
Then, (5.5) can be written as

k,z> +k,z+k, =0. (5.6)
The Routh — Hurwitz criterion is satisfied if

k, >0, k, >0 and k; >0.

Since k, >0, k, >0, but k, will be positive if h > .
2+ ph

Hence, for |ph| <1, the stability interval of the proposed family (3.10) is (- 2,0).
Theorem 5.2.
The family of the one-step Adams-Moulton method (3.14)is A-stable for p >0.

Proof:

Consider the test equation
y'=2, (57)
where A is a complex number with Re(1)<0.

When the family of the one-step Adams-Moulton method (3.14) is applied to the test
equation (5.7), we obtain

z kz z kz
=[1+——— —+— , 5.8
yn+1 ( +2 ijn +(2+ 2jynJrl ( )
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where
z=/7h and k = phwith |ph| <1.

Equation (5.8)can be rewritten as

yn+1 _ 2+(1_:i;§ IQ(Z). (59)

Y, 2-(1+

Now, consider

yn+l |2+(l—k)2|
= = , 5.10
R N P 610
Let z=—x—iy, where x>0, then from Equation (5.10) we obtain
2-([1-k)x)* +(@-k)y)
|Q(ZX=\/( ( ) )2 (( )y)2 . (5.11)
2+@+k)x)* +(@+k)y)
Again, let k, =(1-k)>0 andk, =(1+k)> 0, then Equation (5.11) can be written as
2 —kx)* +(kyy)’
|Q(ZX: \/( 1X)2 + 1Y)2 , (5.12)
V2 +k ) +(k;y)
4+ K2xE — Ak x+ K2y
- o] X Ak 619
\/4+k2x +4k,x+ Ky y
2,2 2,2
= [Q(z)|< JArix iy : (5.14)
A+ KA + 4k, + K2y

since\/4+kfx2 +k[y? <\/4+k22x2 +4k,x +kZy?, for p>0.

Thus, for p>0, we have |Q(z) <1where Re(z)<0. Hence, the family of the one-step Adams-
Moulton method (3.14) is A-stable for p>0.
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6. Numerical Results

In this section, we check the usefulness and efficiencies of the newly proposed methods. In first
two problems, we employ the classical two-step Adams-Bashforth method (CAB)(L.2) and the

two new proposed methods obtained from (3.10) , namely |p|=2(NAB) , |p|=1(NAB)

respectively. We also discuss results obtained by using the classical one-step Adams-Moulton
method (CAM ) (1.3) and a new proposed Adams-Moulton method obtained from (3.14), namely

|p| =3i2(NAM) in the third problem. A comparative study of absolute error (AE) and relative

error (RE) among the classical methods and the new proposed methods shows that the proposed

methods outperform the existing classical methods. The fourth problem has been taken from
Lambert (1991) in which restriction of the stability interval is discussed for new proposed two-

step Adams-Bashforth method, namely| p| = %(NAB). All the computational work has been done
using ‘Matlab’ version 7.9.0.529(R2009b).

Example 1.

Consider the IVP: y'=-y® xe[0,1] with y,=1 and, vy, =0.8400(h=0.2) and
y, =0.9525(h =0.05). The values of y, are obtained by using the second order Taylor series

method. The exact solution of the problem is y(x):li. The results are listed in Table 1.
+ X

Table 1. Numerical results of Problem 1 using (CAB) and (NAB )at |p| =2

For h=0.2 For h=0.05

X Exacj[ AECAB AENAB RECAB RENAB AECAB AENAB RECAB RENAB
solution

0.4 0.7143 0.0140 | 0.0022 | 0.0196 | 0.0031 | 0.0009 | 0.0001 | 0.0013 | 0.0001

0.6 0.6250 0.0147 | 0.0004 | 0.0235 | 0.0006 | 0.0009 | 0.0000 | 0.0014 | 0.0000

0.8 0.5556 0.0144 | 0.0011 | 0.0259 | 0.0020 | 0.0008 | 0.0001 | 0.0014 | 0.0001

1.0 0.5000 0.0135 | 0.0020 | 0.0270 | 0.0040 | 0.0008 | 0.0001 | 0.0016 | 0.0002

Example 2.

Consider the IVP: y'=-50y +51cos(x)+49sin(x), x €[0,0.5] with y,=1 and,
y, =1.0950 (h=0.1) and y, =1.0488 (h = 0.05). The values of y, are obtained by using the
second order Taylor series method. For the given problem, the values of the step-sizes are taken
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outside the stability interval (0,0.04) of the proposed method. The exact solution of the problem
is y(x)=sin(x)+ cos(x). The results are listed in Table 2.

Table 2. Numerical results of Problem 2 using (CAB) and (NAB) at p|=1

For h=0.1 For h=0.05

X | Bxact 1 AE. | AE | REcss | REgas | AEcus | AEwss | REcus | REy

solution

0.2 1.1787 0.0006 | 0.0001 0.0005 | 0.0000 | 0.0016 | 0.0010 | 0.0014 | 0.0008

0.3 1.2509 0.0051 | 0.0019 0.0041 | 0.0015 | 0.0160 | 0.0105 | 0.0128 | 0.0084

0.4 1.3105 0.0349 | 0.0117 0.0266 | 0.0089 | 0.1587 | 0.1092 | 0.1211 | 0.0833

0.5 1.3570 0.2397 | 0.0841 0.1766 | 0.0620 | 1.5715 | 1.1320 | 1.1581 | 0.8342

Example 3.

Consider the IVP: y'=2tan(x), x €[0,1] with y(0)=0. The exact solution of the problem

is y(x) = 2xtan*(x) — log{1+ x* ). With different step-sizes h=0.2andh=0.1, the results are
listed in Table 3.

Table 3. Numerical results of Problem 3 using (CAM ) and (NAM ) at |p| = %

For h=0.2 For h=0.1

X | Exact AE_ . | AEav | REcam | REnaw | AEcam | AEuam | REcam | REyam

solution

0.2 | 0.0397 | 0.0002 | 0.0000 | 0.0050 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

0.4 | 0.1560 | 0.0009 | 0.0005 | 0.0058 | 0.0032 | 0.0002 | 0.0001 | 0.0013 | 0.0006

0.6 | 0.3410 | 0.0018 | 0.0011 | 0.0053 | 0.0032 | 0.0004 | 0.0003 | 0.0012 | 0.0008

0.8 | 0.5849 | 0.0026 | 0.0018 | 0.0044 | 0.0031 | 0.0007 | 0.0005 | 0.0012 | 0.0008

1.0 | 08776 | 0.0033 | 0.0023 | 0.0038 | 0.0026 | 0.0008 | 0.0005 | 0.0009 | 0.0005
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6.1. Significance of the Stability Interval

In this subsection, we shall discuss how the family of the two-step Adams-Bashforth method
performs when restriction of the stability interval is relaxed.

Example 4.

Consider the IVP: y'=f(x,y)=-20y; xe[0,1] with y,=1 and, y, =0.8200 (h=0.01)
andy, =5 (h :0.2). The values of y, are obtained by using the second order Taylor series
method. The exact solution of the problem is y(x):e’zox. The stability interval of the proposed

variants of the two-step Adams-Bashforth method (3.10) is(-2,0), i.e., h € (~2,0). Therefore,

we have—2<h <0, i.e., —2<1h<0. In this problem, the value of 1 = % =—-20. For this value

of 1, we have 0<h<0.1. In Table 4, results are shown for h=0.01, he(0,0.1) and for
h=02¢(0,0.1).

1
Table 4. Numerical results of Problem 4 using (CAB) at | p| = 2

X Exact solution Approximate solution for | Approximate solution for
h=0.01 h=0.2

04 0.00033546262790 0.000386145450765 -23.39999999999999

0.6 0.00000614421235 0.000007594637663 129.84000000000000

0.8 0.00000011253517 0.000000149369936 -711.3240000000001

1.0 0.00000000206115 0.000000002937780 3900.416400000001

From the above Table 4, we observe that for h=0.01, he(0,0.l), the approximate solution
obtained by the new proposed two-step Adams-Bashforth method for |p| :% IS very accurate to

the exact solution at nodal points. The approximate solution for h = 0.2 ¢ (0,0.1) obtained by the

same method is very absurd as compare to the exact solution at nodal points. Therefore, selection
of the suitable step-size is very important to implement these methods for accurate results.

Hence, the proposed family of the two-step Adams-Bashforth method is unstable forh ¢ (— 2, 0).

7. Conclusions

We have proposed new geometrically constructed variants of the two-step Adams-Bashforth and
the one-step Adams-Moulton methods for the approximate solution of the initial value Example
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(1.1). The methods were derived from an exponentially fitted parabola. The accuracy and

stability of the proposed methods were considered and their applicability to some initial value
problems was discussed. Numerical results presented in Section 6 overwhelmingly support that
the exponentially fitted variants of the proposed methods outperform the existing classical
methods. This work may be extended to variants of higher order multi-step methods of Adams-
Bashforth and Adams-Moulton types by considering exponentially fitted osculating polynomials
of any degree.
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