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Abstract 
  
In this paper, we propose new variants of the two-step Adams-Bashforth and the one-step 
Adams-Moulton methods for the numerical integration of ordinary differential equations 
(ODEs). The methods are constructed geometrically from an exponentially fitted osculating 
parabola. The accuracy and stability of the proposed variants is discussed and their applicability 
to some initial value problems is also considered. Numerical experiments demonstrate that the 
exponentially fitted variants of the two-step Adams-Bashforth and the one-step Adams-Moulton 
methods outperform the existing classical two-step Adams-Bashforth and one-step Adams-
Moulton methods respectively.  
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1. Introduction 
 
For the numerical integration of the initial value problem (IVP) 

 

    ,,;, 000 nxxxyxyyxf
dx

dy
                                                                           1.1  
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the two-step Adams-Bashforth and the one-step Adams-Moulton methods are given by 
  

    ,,,3
2 111   nnnnnn yxfyxf
h

yy                                                                              2.1                         

 

    111 ,,
2   nnnnnn yxfyxf
h

yy ,                                                                           3.1       

 
respectively.   
 
We set  hnnhxxn ,...,3,2,1,0,0 step-size,  nnn yxff ,  and ny   is assumed to be a 

close approximation to the value  nxy , where  xy  is the unique solution of  1.1 . The explicit 

method  2.1  has a second order convergence and its stability interval is  0,1 . The implicit 

method  3.1  has also a second order convergence and is A -stable. Many different ways like 
discretization, the weight function approach, numerical integration etc. may be used to construct 
the single-step and multi-step methods. The theory of interpolation and collocation has been 
extensively used to construct numerical methods for ordinary differential equations. Omolehin 

 2003.alet  proposed a new class of Adams-Bashforth schemes for the numerical solution of  

 1.1  by using collocation approach. Arevalo  2002.alet   have given a collocation formulation 

of multi-step methods for variable step-size extensions. Odejide and Adeniran  2012   proposed 
a five-step ninth order hybrid linear multi-step method for the solution of first order initial value 
problems via the interpolation and collocation procedure. 
 
In this paper, we propose geometrically constructed new classes of the two-step Adams-
Bashforth and the one-step Adams-Moulton methods by using the concept of osculating curves, 
from which the classical two-step Adams-Bashforth and one-step Adams-Moulton methods can 
be obtained as special cases. 
 
This paper is organized as follows: In Section 2, we recall basic definitions. The constructions of 
new variants of the two-step Adams-Bashforth and the one-step Adams-Moulton methods are 
carried out in Section 3. Error analysis of the variants is carried out in Section 4. The stability 
analysis of the variants is presented in Section 5, and finally the numerical results are discussed 
in Section 6. 
 
 
2. Basic Definitions 
 
 
Definition 2.1.  (Consistency) 
 
A linear multi-step method is said to be consistent if it has an order of convergence, say .1p  
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Definition 2.2. (Root Condition) 
 
A linear multi-step method is said to satisfy the root condition if the roots of the corresponding 
characteristic equation,   ,0p lie inside the unit circle in the complex plane, and are simple if 
they lie on the unit circle. 
 
Definition 2.3. ( A -stability)  
 
A one-step method is A -stable if it may be applied to the test equation  

 
,' yy   

 
where  is a complex number with   0Re  , it yields  nn yzQy )(1  , where hz   such that 

.1)( zQ  
 
Definition 2.4. (Osculating curves) 
 
Two curves  xf  and )(xg  are said to be osculating at a point 0xx   to degree n  if 

 
               000000 ,...,'', xgxfxgxfxgxf nn  . 

 
 
3. Construction of New Families of Methods 
 
Consider the initial value problem  1.1 . We are interested in finding the approximate solution of 

(1.1) at hxx nn 1 . 

 
Let  
 

 ,xy                                                                                                                               1.3                         
 
be the actual solution curve of   1.1  in the xy -plane. 
 
Now, consider an exponentially fitted parabola in the following form 
 

       .2 cxxbxxaey nn
xxp n                                                                                   2.3   

  
where ba, and c are arbitrary constants to be determined by using some tangency conditions at 

nxx  . Here, the quantity p  will play a very important role.  If we consider  2.3  as an 

osculating parabola to the solution curve  xy   at nxx  , then we have 

 
           .'''','', nnnnnn xxyxxyxxy                                                              3.3  
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Using these conditions, we obtain 
 

      .,,,
2

,2,' 2

nnnn
nnnnn ycpyyxfb

yxpfypyxf
a 


                                   4.3  

Therefore, at 1 nxx Equation  2.3 gives 

 

       .,
2

,2,' 2
2

1 















 
 nnnn

nnnnnph
n yhpyyxfh

yxpfypyxf
ey                        5.3  

 
Now, we shall discuss the role of the quantity p  and derive various methods. 
 
3.1. Taylor Series Method 
 
Consider  
 

       .,
2

,2,' 2
2

1



















 
 nnnn

nnnnnhp
n yhpyyxfh

yxpfypyxf
ey               6.3  

 

If we let 
dx

d
Dp  be a differential operator and assume that all higher order derivatives of 

ny exist, then from Equation  6.3 , we obtain, on expanding hpe in Taylor expansion, 

  

,...
!2

1
22

1 nn y
Dh

hDy 







                                                                                            7.3  

 
which is the well-known Taylor series method. 
 
3.2. Family of The Two-Step Adams-Bashforth Method 
 
Let p  such that 1ph . Using Taylor expansion for phe , we obtain the following expression 

 

 33
22

2
1 hpO

hp
phe ph  .     

 
Using this expression in  5.3 , yields on simplification, 
 

     nnnnnnnn yxf
h

pyxf
h

yxhfyy ,'
2

,'
2

,
32

1     

                                                                         .,
2

4
32

hOyxf
hp

nn                                8.3  
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 In order to avoid computation of the second order derivative of ny  in  8.3 , we approximate it 

with a backward difference at nxx  , 

 

     
h

yxfyxf
yxf nnnn

nn
11 ,,

,' 
 . 

 
Using this approximate value of  nn yxf ,'  in  8.3 , 

 

         11

2

111 ,,
2

,,3
2   nnnnnnnnnn yxfyxf

h
pyxfyxf

h
yy  

               -    .,
2

4
32

hOyxf
hp

nn                                                                                     9.3  

 
Ignoring the third and higher order terms of h  in  9.3 , the following simplified expression for 

1ny  is 

         .,,
2

,,3
2 11

2

111   nnnnnnnnnn yxfyxf
h

pyxfyxf
h

yy                  10.3                         

 
These are the new variants of the two-step Adams-Bashforth method, which will be proved to 
have the same order of convergence as the classical two-step Adams-Bashforth method. We also 
call formula  10.3  a one-parameter family of the two-step Adams-Bashforth method. For 0p , 

one can obtain the well-known two-step Adams-Bashforth method  2.1 for the numerical 

solution of  1.1 . 
 
A method for selection of the parameter p : 
 
Rewrite  10.3  in the following form 
 

,211 pFFyy nn                                                                                                        11.3    

where 

    111 ,,3
2  nnnn yxfyxf
h

F   and     11

2

2 ,,
2  nnnn yxfyxf

h
F . 

 
From this iteration formula, we can see that at every iteration step, the value of the parameter 
p is such that 









.0,

,0,

21

21

FFifve

FFifve
p                                                                                              12.3   
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3.3. Family of the One-Step Adams-Moulton Method  

 
In order to avoid the computation of second order derivative of ny  in the formula  8.3 , we 

approximate it with a forward difference given by 
 

     
h

yxfyxf
yxf nnnn

nn

,,
,' 11 

  . 

 
Substituting this approximate value of  nn yxf ,'  into the formula  8.3 , we have 

 

         nnnnnnnnnn yxfyxf
h

pyxfyxf
h

yy ,,
2

,,
2 11

2

111    

               .,
2

4
32

hOyxf
hp

nn                                                                                      13.3                  

 
Ignoring the third and higher order terms of h  in  13.3 , the simplified expression for 1ny  is 

given by 

         .,,
2

,,
2 11

2

111 nnnnnnnnnn yxfyxf
h

pyxfyxf
h

yy                      14.3                         

 
These are the new variants of the one-step Adams-Moulton method, which will be proved to 
have the same order of convergence as the one-step Adams-Moulton method. We also call 
formula  14.3  a one-parameter family of the one-step Adams-Moulton method. For 0p , one 

can obtain the well-known one-step Adams-Moulton method for the numerical solution of  1.1 . 
 
A method for selection of the parameter p : 
 
Rewrite  14.3 in the following form 
 

 ,211 pGGyy nn                                                                                                       15.3  

 
where 
 

    111 ,,
2  nnnn yxfyxf
h

G  and     nnnn yxfyxf
h

G ,,
2 11

2

2   . 

 
From this iteration formula, we can see that at every iteration step, the parameter p is such that 
 









.0,

,0,

21

21

GGifve

GGifve
p                                                                                            16.3    
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4. Error Analysis 
 
The notion of an error is a very important criterion in the study of any numerical method. In this 
section we shall discuss the error encountered in the use of the proposed families of methods. 
 
4.1. Accuracy of the Family of the Adams-Bashforth Method 
 
Consider the family  10.3  

 

         .,,
2

,,3
2 11

2

111   nnnnnnnnnn yxfyxf
h

pyxfyxf
h

yy                     1.4  

  
Since  

  ', nnn yyxf    and    3
2

111 '''
2

'''', hOy
h

hyyyyxf nnnnnn   , 

 
we obtain the following expression 
 

  .
2

''

4

'''
''

2
' 43

2

1 hO
pyy

hy
h

hyyy nn
nnnn 






 


                                                 2.4   

 
Assuming the existence of higher order derivatives of  xy , we can expand  1nxy  about 

nxx  in the following form by Taylor expansion 

 

            .'''
6

''
2

' 4
32

1 hOxy
h

xy
h

xhyxyxy nnnnn                                            3.4         

  
After subtracting  2.4  from  3.4 , we obtain the following local truncation error 
 

 43''
2

'''
12

5
hOhy

p
yLTE nn 






  .                  

                                                         
Hence, the proposed family of the two-step Adams-Bashforth method has a second order 
convergence. We have shown that the proposed family has order of convergence 1 . Therefore, 
the proposed family  10.3  is consistent.   
   
Remark: 

By putting 0''
2

'''
12

5
 nn y

p
y , we obtain the value of

''6

'''5

n

n

y

y
p   . It is worth noting that if we 

substitute this value of p  into  10.3 and discretize second and third order derivatives of ny  by 

backward differences, then we obtain the following three-step Adams-Bashforth method 
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      .,5,16,23
12 22111   nnnnnnnn yxfyxfyxf
h

yy                                       4.4   

                             
4.2. Accuracy of the Family of the Adams-Moulton Method 
 
Consider the family  14.3  

 

         .,,
2

,,
2 11

2

111 nnnnnnnnnn yxfyxf
h

pyxfyxf
h

yy                       5.4     

 
Since  

  ', nnn yyxf   and    3
2

111 '''
2

'''', hOy
h

hyyyyxf nnnnnn   . 

 
By substituting these values in  5.4 , we obtain the following expression 
 

  .
2

''

4

'''
''

2
' 43

2

1 hO
pyy

hy
h

hyyy nn
nnnn 






                                                     6.4      

 
Assuming the existence of higher order derivatives of  xy , we can expand  1nxy  about 

nxx  in the following form by Taylor expansion 

 

            .'''
6

''
2

' 4
32

1 hOxy
h

xy
h

xhyxyxy nnnnn                                           7.4     

 
After subtracting  6.4  from  7.4 , we obtain the following local truncation error 
 

 43''
2

'''
12

1
hOhy

p
yLTE nn 






 


 . 

 
Hence, the proposed family of the one-step Adams-Moulton method  14.3  has second order 
convergence. We have shown that the proposed family has order of convergence 1 .Therefore, 
the proposed family  14.3  is consistent. 
 
5.  Stability Analysis 
 
It is well-known that a linear multi-step method is convergent if and only if the method is 
consistent and satisfies the root condition. It is not always possible to test the root condition, 
when multi-step methods involve some parameters. To test the root condition of two-step 
methods when the corresponding characteristic equation, say 021

2
0  aaa  ,  has 
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coefficients which are functions of some parameters, we use the transformation 
z

z





1

1  which 

maps the interior of the unit circle 1 onto the left half plane 0)Re( z , and the point 1  

onto 0z . Therefore, we can obtain the transformed characteristic equation as 
 

  021
2

0  bzbzbzp . 

 
Then the criterionHurwitzRouth   (which gives the necessary and sufficient conditions for the 
roots of characteristic equation to have negative real parts) is satisfied if and only if 
 

0,0 10  bb    and .02 b                                                                                               1.5     

 
The conditions  1.5 ensure that the roots of the original polynomial 
  

021
2

0  aaa  ,  

 
from which )(zp is derived satisfy 1i .In the following theorem, we shall use the 

criterionHurwitzRouth   to check the stability of the family of the two-step Adams-Bashforth 
method. 
 
Theorem 5.1.  
 
The family of the two-step Adams-Bashforth method  10.3  has stability interval  0,2 . 
 
Proof:   
 
Since the proposed family  10.3  has a parameter p , therefore we will use the 

criterionHurwitzRouth   to check its stability. 
 
Consider the test equation  
 

yy ' , where  .0                                                                                                        2.5     
 
When the family of the two-step Adams-Bashforth method  10.3  is applied to the test 

equation  2.5 , we obtain 
 

0
2222

3
1 11 

















  nnn y

hphh
y

hphh
y , where .0 hh                                 3.5    

 
Its characteristic equation given by 
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.0
2222

3
12 



















hphhhphh                                                                          4.5    

 

Let
z

z





1

1 , then from  4.5  we get the transformed characteristic equation given by 

 
     .01222 2  hzphhzhphh                                                                     5.5    

 
Let     phhkhphhk  12,22 21   and hk 3 , 

 
Then,   5.5  can be written as 
 

.032
2

1  kzkzk                                                                                                              6.5    

 
The criterionHurwitzRouth   is satisfied if 
 

0,0 21  kk  and 03 k . 

 

Since 0,0 32  kk , but 1k will be positive if 
ph

h




2

2
. 

 
Hence, for 1ph , the stability interval of the proposed family  10.3  is  0,2 . 

 
Theorem 5.2.  
 
The family of the one-step Adams-Moulton method  14.3 is A -stable for 0p . 
 
Proof:  
 
Consider the test equation 
 

,' yy                                                                                                                                 7.5                         
 
where   is a complex number with   0Re  . 
 
When the family of the one-step Adams-Moulton method  14.3  is applied to the test 

equation  7.5 , we obtain 
 

,
2222

1 11  





 






  nnn y

kzz
y

kzz
y                                                                               8.5                         
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where  
 

hz   and phk  with 1ph . 

 
Equation  8.5 can be rewritten as 
 

 
  ).(
12

121 zQ
zk

zk

y

y

n

n 



                                                                                                 9.5     

 
Now, consider 
 

 
  .
12

12
)( 1

zk

zk

y

y
zQ

n

n




                                                                                             10.5        

 
Let iyxz  , where 0x , then from Equation  10.5  we obtain 
 

       
     

.
112

112
22

22

ykxk

ykxk
zQ




                                                                             11.5  

 
Again, let   011  kk  and   012  kk , then Equation (5.11) can be written as 
 

     
   

,
2

2
2

2
2

2

2
1

2
1

ykxk

ykxk
zQ




                                                                                         12.5   

    

  ,
44

44
22

22
22

2

22
11

22
1

ykxkxk

ykxkxk
zQ




                                                                            13.5  

 

 
2 2 2 2

1 1

2 2 2 2
2 2 2

4
,

4 4

k x k y
Q z

k x k x k y

 
 

  
                                                                          14.5    

 

 since 22
22

22
2

22
1

22
1 444 ykxkxkykxk  , for 0p . 

 
Thus, for 0p , we have   1zQ where   0Re z . Hence, the family of the one-step Adams-

Moulton method  14.3  is A -stable for 0p . 
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6.  Numerical Results  
 
In this section, we check the usefulness and efficiencies of the newly proposed methods. In first 
two problems, we employ the classical two-step Adams-Bashforth method    2.1CAB  and the 

two new proposed methods obtained from  10.3 , namely  NABp 2 ,  NABp 1  

respectively. We also discuss results obtained by using the classical one-step Adams-Moulton 
method    3.1CAM  and a new proposed Adams-Moulton method obtained from  14.3 , namely 

 NAMp
32

1
  in the third problem. A comparative study of absolute error  AE  and relative 

error  RE  among the classical methods and the new proposed methods shows that the proposed 
methods outperform the existing classical methods. The fourth problem has been taken from 
Lambert  1991   in which restriction of the stability interval is discussed for new proposed two-

step Adams-Bashforth method, namely  NABp
4

1
 . All the computational work has been done 

using ‘Matlab’ version 7.9.0.529(R2009b). 
 
Example 1.  
 
Consider the IVP:  1,0,' 2  xyy  with 10 y and,  2.08400.01  hy  and 

 05.09525.01  hy . The values of 1y  are obtained by using the second order Taylor series 

method. The exact solution of the problem is  
x

xy



1

1
. The results are listed in Table 1. 

 
Table 1. Numerical results of Problem 1 using  CAB  and  NAB at 2p  

   For 2.0h  For 05.0h  

x  Exact 
solution 

CABAE  NABAE
 

CABRE  NABRE  CABAE  NABAE  CABRE  NABRE  

0.4 0.7143 0.0140 0.0022 0.0196 0.0031 0.0009 0.0001 0.0013 0.0001 

0.6 0.6250 0.0147 0.0004 0.0235 0.0006 0.0009 0.0000 0.0014 0.0000 

0.8 0.5556 0.0144 0.0011 0.0259 0.0020 0.0008 0.0001 0.0014 0.0001 

1.0 0.5000 0.0135 0.0020 0.0270 0.0040 0.0008 0.0001 0.0016 0.0002 

 

Example 2.   

Consider the IVP:      5.0,0;sin49cos5150'  xxxyy  with 10 y and, 

 1.00950.11  hy  and  05.00488.11  hy . The values of 1y are obtained by using the 
second order Taylor series method. For the given problem, the values of the step-sizes are taken 
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outside the stability interval  04.0,0  of the proposed method. The exact solution of the problem 

is      xxxy cossin  . The results are listed in Table 2. 

 

Table 2. Numerical results of Problem 2 using  CAB  and  NAB  at 1p  

   For 1.0h  For 05.0h  

x  Exact 
solution 

CABAE  NABAE  CABRE  NABRE
 

CABAE  NABAE  CABRE  NABRE
 

0.2 1.1787 0.0006 0.0001 0.0005 0.0000 0.0016 0.0010 0.0014 0.0008 

0.3 1.2509 0.0051 0.0019 0.0041 0.0015 0.0160 0.0105 0.0128 0.0084 

0.4 1.3105 0.0349 0.0117 0.0266 0.0089 0.1587 0.1092 0.1211 0.0833 

0.5 1.3570 0.2397 0.0841 0.1766 0.0620 1.5715 1.1320 1.1581 0.8342 

 

Example 3.  

Consider the IVP:    1,0;tan2' 1   xxy  with   .00 y  The exact solution of the problem 

is      21 1logtan2 xxxxy   . With different step-sizes 2.0h and 1.0h , the results are 
listed in Table 3. 

Table 3. Numerical results of Problem 3 using  CAM  and   NAM  at 
32

1
p  

   For 2.0h  For 1.0h  

x  Exact 
solution 

CAMAE
 

NAMAE

 

CAMRE
 

NAMRE
 

CAMAE
 

NAMAE
 

CAMRE
 

NAMRE
 

0.2 0.0397 0.0002 0.0000 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000 

0.4 0.1560 0.0009 0.0005 0.0058 0.0032 0.0002 0.0001 0.0013 0.0006 

0.6 0.3410 0.0018 0.0011 0.0053 0.0032 0.0004 0.0003 0.0012 0.0008 

0.8 0.5849 0.0026 0.0018 0.0044 0.0031 0.0007 0.0005 0.0012 0.0008 

1.0 0.8776 0.0033 0.0023 0.0038 0.0026 0.0008 0.0005 0.0009 0.0005 
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6.1. Significance of the Stability Interval 
 
In this subsection, we shall discuss how the family of the two-step Adams-Bashforth method 
performs when restriction of the stability interval is relaxed. 
 
Example 4.  
 
Consider the IVP:    1,0;20,'  xyyxfy  with 10 y and,  01.08200.01  hy  

and  2.051  hy . The values of 1y  are obtained by using the second order Taylor series 

method. The exact solution of the problem is   xexy 20 . The stability interval of the proposed 

variants of the two-step Adams-Bashforth method (3.10) is    0,2.,.,0,2  hei . Therefore, 

we have 02.,.,02  heih  . In this problem, the value of 20




y

f . For this value 

of  , we have 1.00  h . In Table 4, results are shown for  1.0,0,01.0  hh  and for 

 1.0,02.0 h . 

Table 4. Numerical results of Problem 4 using (CAB) at 
4

1
p  

x  Exact solution Approximate solution for 
01.0h  

Approximate solution for 
2.0h  

0.4 0.00033546262790 0.000386145450765 -23.39999999999999 

0.6 0.00000614421235 0.000007594637663 129.84000000000000 

0.8 0.00000011253517 0.000000149369936 -711.3240000000001 

1.0 0.00000000206115 0.000000002937780 3900.416400000001 

 

From the above Table 4, we observe that for  1.0,0,01.0  hh , the approximate solution 

obtained by the new proposed two-step Adams-Bashforth method for 
4

1
p is very accurate to 

the exact solution at nodal points. The approximate solution for  1.0,02.0 h  obtained by the 
same method is very absurd as compare to the exact solution at nodal points. Therefore, selection 
of the suitable step-size is very important to implement these methods for accurate results. 
Hence, the proposed family of the two-step Adams-Bashforth method is unstable for  0,2h . 

 

7.  Conclusions  
 
We have proposed new geometrically constructed variants of the two-step Adams-Bashforth and 
the one-step Adams-Moulton methods for the approximate solution of the initial value Example 
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 1.1 . The methods were derived from an exponentially fitted parabola. The accuracy and 
stability of the proposed methods were considered and their applicability to some initial value 
problems was discussed. Numerical results presented in Section 6 overwhelmingly support that 
the exponentially fitted variants of the proposed methods outperform the existing classical 
methods. This work may be extended to variants of higher order multi-step methods of Adams-
Bashforth and Adams-Moulton types by considering exponentially fitted osculating polynomials 
of any degree. 
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