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Abstract

Vandermonde matrices have important role in many branches of applied mathematics such as
combinatorics, coding theory and cryptography. Some authors discuss the Vandermonde
rhotrices in the literature for its mathematical enrichment. Here, we introduce a special type of
Vandermonde rhotrix and obtain its LR factorization namely left and right triangular
factorization, which is further used to obtain the inverse of the rhotrix.
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1. Introduction

Vandermonde matrix V is an | xm matrix with terms of a geometric progression in each row that
is

B 2 m-17]
al al 1
2 m-1
aZ aZ aZ
— 2 m-1
V=1 a a a;” | (1.1)
1 o o a'’
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Due to a wide range of applications of the Vandermonde matrices in different areas of
mathematical sciences as well as other sciences, they have attained much importance, see Lacan
and Fimes (2004), Lin and Costello (2004) and Sharma and Rehan (2014). The solutions of the
linear system of equations Vx =b have been studied by Bjorck and Pereyra (1970) and Tang and
Golub (1981). The solutions of the equation x =V b leads to the factorizations of v, such as
Lower and Upper factorizations and 1-banded factorizations. Oruc and Phillips (2000) obtained
the formula for the Lu factorization of v and expressed the matrices L and U as a product of
1-banded matrices. Yang (2004, 2005) modified the results of Oruc and obtained a simpler
formula. In the recent literature, special generalized Vandermonde matrices have attracted a great
amount of attention. Demmel and Koev (2005) studied totally positive generalized Vandermonde
matrices and gave a formula for the entries of the bidiagonal factorization and the LDU
factorization. Yang and Holtti (2004) discussed various types of the generalized Vandermonde
matrices. Li and Tan (2008) discussed the Lu factorization of the special class of the generalised
Vandermonde matrices which was introduced by Liu (1968). This matrix arrises while solving
the equation

a,=Ca , +Ca ,+...+Ca

m—p !

m=p,(p fixed) (1.2)

where c,,c,,...,Cc, are constants and c, = 0. If the equation (1.2) has distinct real roots

p

q
RVANIRYA with multiplicities u,,u,,...,u, respectively and iZ:l:ui =M, then the corresponding

q
generalised Vandermonde matrix has the following form:

1 0 0 w1 0 0
v, A v, oV v, v,
{q;ul,uz ,--,Uq} - . - . . - - . . -
v m=Dvt oL (m=Detvt o v (m=Dvt L (m=)e
(1.3)
A special class of generalized Vandermonde matrices vé{z;l’mfl} is defined by Li and Tan (2008)
as follows: For u, =1,u,=m-1,9=2,V,,, . ,, is the transpose of Vi, and given as
i Vl V12 ) 1mi:l |
v, V. . A
VRI{Z:lym—l} =0 Vz 2V22 ' (m _1)V:71 . (1-4)

0 v, 2™v; . (mM=1)""v]"
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The study of rhotrices is introduced in the literature of mathematics by Ajibade (2003). Rhotrix

is a mathematical object, which is in some way between 2 x 2 dimensional and 3x3 dimensional
matrices. The dimension of a rhotrix is the number of entries in the horizontal or vertical
diagonal of the rhotrix and is always an odd number. A rhotrix of dimension 3 is defined as

a
RQ@)=(ay a, a,) (1.5)

3y

where a,,a,,,a,,a,,8,, are real numbers. Sani (2007) extended the dimension of a rhotrix to any
odd number n > 3 and gave the row-column multiplication & inverse of a rhotrix as follows:

Let
by
21 b12 '

32

QM) =( by,

o T

Then

ayby; +ap,by
R(3)0Q(3) = a0y + ag,b a0y, a0y, + a0,

a31b12 + a32b32

Also,

a3,

_ 1 8y 1899 —aq1 &
RE) ' =——( a, 2B ),
183 — 38 21

8y,

provided a,, (a,,8;, —aya,,) #0. The algebra and analysis of rhotrices are discussed in the

literature by Ajibade (2003), Sani (2004), Sani (2007), Aminu (2010), Tudunkaya and
Makanjuola (2010), Absalom et al. (2011), Sharma and Kanwar (2011), Sharma and Kanwar
(2012a, 2012b, 2012c), Kanwar (2013), Sharma and Kanwar (2013), Sharma and Kumar (2013),
Sharma et al. (2013a, 2013b), Sharma and Kumar (2014a, 2014b, 2014c) and Sharma et al.
(2014). Sharma et al. (2013b) have introduced VVandermonde rhotrix which is defined as
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In the present paper, we have introduce special type of generalised Vandermonde rhotrices and
factored it into | and R, rhotrices namely left and right triangular rhotrices. Further, we factor

the rhotrices | and R, as product of left and right triangular rhotrices. As an application, we
obtain the inverse of the rhotrix considered with the help of the said factorization.

2. Notations and Symbols

The following notations are used in the present paper:

m: a positive integer
n: an odd number
] - generalized Vandermonde matrix
Vegimg special Vandermonde matrix
R(3),Q(3) : 3-dimensional rhotrices
V. n-dimensional Vandermonde rhotrix
Veging - n-dimensional special Vandermonde rhotrix

L, L%, L : n-dimensional left triangular rhotrix
R ,R®,R®: n-dimensional right triangular rhotrix

a, ! entries in the rhotrix

3. Left and right triangular factorization

In this section, we introduce a special type of Vandermonde rhotrix. We factor v

R{2:1,4}

and v

R{2;1,2}



AAM: Intern. J., Vol. 10, Issue 1 (June 2015) 425

in terms of left and right triangular rhotrices in Theorem 3.1 and Theorem 3.2. Further
factorization of left and right triangular rhotrices is given in Theorem 3.3.

Definition:

Let v,,v, are two numbers such that v, has multiplicity (n—1), then the rhotrix

1
1 1 v,
00 v, v, v/
0 v, v, 2V
n-1
VR{z;LH}: 00 v,?
VZ V2
2n72v22
n-1,, “ (31)
(7)"vy?
2
is defined as special generalised Vandermonde rhotrix.
Theorem 3.1.
Let Ve be a 5-dimensional special Vandermonde rhotrix, then Vo g €8N be factored as
Veeia = LsRs, where L is a left triangular rhotrix and R, is a right triangular rhotrix and the

entries of  are
aij:O,isj,i,j;tl;
aij:O,i>j,j:1,i¢2,3;
a; =1i>j,i=234;j=12
a, =0;

a =" j=2i=j+3

ij
Vo —Vp

a,=-Li=2+j,j=3

and of R,are

a; =0,i>]},i=3,4,5;j=12;
a; =0,j=2,i=j+3;
a; =V,,i=2,4;j=2;
a; =Vv,,i =1 j=i+]
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a; =V’ i=1j=2+i

a; =V, —V, j=2,i=j+1
a =2v,2 -V i=j,i=3;
0 Ve (2v,2 -v,%)

! Vo —Vy

—-8v,%i=2+j,j=3.

Proof:

Lety be 5-dimensional special Vandermonde rhotrix defined as

R{2;1,4}

1 v (3.2)
Vepag=( 0 0 v, v, v )
v

, Voo 2

2
8v,

then (3.2) can be factored in the product of two rhotrices as

1

VR{2;1,4} =

Vv, (2V22 - V12)

-8v,’
Vo=V

~LR,, (33)

where the rhotrix L, is a left triangular rhotrix and R, is a right triangular rhotrix.

Theorem 3.2.

Let v be a 3-dimensional special Vandermonde rhotrix, then v can be factored as
R{2;1,2} R{2;1,2}

Ve = LR, where L, is a left triangular rhotrix and R, is a right triangular rhotrix. The entries

of L, are
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a; =1i=123 j=1,

a, =0;

a; =V, -V, j=2i=j+]
and of R,are

a;=1i=123j=12

a; =v,i=1j=i+1

aijzo,i:j+2,j:1.

Proof:
Let Ve be a 3-dimensional special Vandermonde rhotrix defined as
1
VR{2;1,2}= 11 v ) (3'4)
V2
then
1 1
Veprn=l1 1 0)[0 1y (35)
v, =V, 1
Using (3.4) in (3.5), we get
1 1
1 1 v )=(1 0)(0 1 v (3.6)
v, v, -V, 1
From row-column multiplication of rhotrices, we get
1 1
1 1 vi)=(1 1 v )
VZ V2
which verifies the result.
Theorem 3.3.
Let Vegin be a 5-dimensional special Vandermonde rhotrix, then Ve CN be factored as

_ LOR®| @R i M
Vo = L RPLPREP, where the entries of L are
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a; =0,i<j,i,j=1

a; =0,i>],j=Li+2,3

&; =11>j,i=2,34,)=12;
v

_%

2o o2

2

i
a; =0,j=Li=j+3;
a; =-11=2+],]=3

the entries of R® are

a; =0,i<j,i,J#L

a; =0,i>j, j=1i=34,5;

a; =1i>j,i=24,5j=123,
__V
_VZ_Vl

a;, =0,

i=j+lj=2

ij

the entries of |2 are

a; =0,i<ji,j=L

a; =0,i>1i=34,5;j=1

a; =0,i>1i=3,j=i

a; =1i>j,i=234;j=12
a, =85, =0;

a, =1

) :V2(2V22_V12)
! Vo=V

and the entries of R are
a, =Lli=j,i=1
a; =v,i< j;
a; =Vv,°,i<
a; =0,i>j, j=1i=34,5;
adp =ay =V,
a,;=1j=3i=j+2;
aij:O,i>1,i:3,4,5;j:1,2;

a; = (2V22 _V12)ai =j,j=3
Proof:

Let v

R{2;1,4}

_8V22,i =2+ j; J :3!

P. L. Sharma et al.

be a special type of Vandermonde rhotrix as defined in (3.2). From (3.3), we have
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! 0
1 1 0 Vi 2
0 o0 0 0 0 0 v, -V, v, A
Vegaa = 0 Vv 2v.2 —v?
V2 1 0 2 2 1
Vo=V V2(2V22_V12)_8 2
-1 v, -V, 2
= LR,.
Now, we further factor L and R,
1 0
0 0 0 0
Ls = Vv
2 1 0
VZ_Vl
-1
1
1 0 0 1 0
_ 3.7
(o0 Y2 o000 Y2 00} 3.7
Vv, V, =V
1 1 0 0 1 0
-1

which are left and right triangular rhotrices. Therefore,

—|OR®
L, =LYR®.
Similarly,
1
0 1 A
00 v, -V, v, v’
Rs = 2 2
0 v, 2v," =V,
v, (2v,° —v,?) gy
2
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1 1
0 1 0 0 1 v, (3.8)
_ 00 1 0 0 O 0 Vz _Vl V2 V12 , '
0 1 0
., 0 v, 2v -V
v, (2v, _Vl)—8v2 1
Vo=V ’

which are left and right triangular rhotrices. Therefore,

_1@p®
R, = LYR®.
Hence,

— | ORO@ARE®
Vepaag = L'ReLTR:™.

4. Application of factorization of special vandermonde rhotrix

In this section, we apply the factorization of special, the Vandermonde rhotrix to find the inverse
of the rhotrix. The inverse of Vegaa in terms of the inverses of | R, is given in Theorem 4.1.

We also obtain the inverse of (VS in Theorem 4.2. We find the inverse of (VN in terms of

LY, RY, 1P RPin Theorem 4.3.

Theorem 4.1.

Let v

R{2;1,4}

entries of R, are

be a 5-dimensional special Vandermonde rhotrix, then VilR{2;1,4} =R, 'L, ", where the

j=-Li=],j=2
\% .
”_v—lv i=Lj=2
1 2
27
aij:—%,izl,j:i+2;
V" =8V, + 6V,
T .. .
a”:_v Y d=j+1j=2;
1 2

1 . . .
a;=—,]=2/i=2+];
VZ
v’ —2v,° S
& =—3 - 22 7 1=3i=1];
V,°V, —8v,V," + 6V,

vV, =V, 3,j=3,i=j+2;

a =—=
TV -8y’ +6v,
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and |_5‘1 has entries

Proof:
LetVR{2;1,4}
of Ve g 19
) 1
vt o=
e V2 —8vy, +6v,’
Now,

and

a; =li<j,ij=1

a;=0i<j,j=23i=12
a;=lizji=j+1j>2;

a, =0;

a=—2 j=li=j+4
Vo =V

aij:_ Va ,j:2,i:j+3;
Vo=V,

a,=-1i=2+]j,j=3

6v,’

v —8vv, +6V,’

2
_8v2—8vv +6v,’ .
1 172 2
0 8v,
V.2 8wy, +6v,’
. 1
v —8vv, +6V,’ v,
_ l (V1 _Vz)
v, v’ =8V, +6v,"
-1
V.
. 2 0 1
L={ vV,
Y2 g
Vi—V,

2
v, =8y,
V2 —8V,V, + 6V,

-1

vl -2v)}

1
v v2 3
v, V" =8y, +6v,

431

be a 5-dimensional special Vandermonde rhotrix as defined in (3.2), then the inverse

2
v -2y,
2, 3
V'V, = 8wy, +6v,

(4.1)

(4.2)
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1
v
0 1 L
Vv, —V
v , (4.3)
00 1 1 AN
_ 2 2
R'= v, -V, v,* —8v,V, + 6V,
0 1 v’ —2v,°
v, Vv, —8V,V,” + 6V,°
Vi~V
V,’V, —8v,V,” + 6V,
On multiplying (4.2) and (4.3), we get
1
-1 1 0
0 1 4 y
V-V
v , 2 0 1 00
00 1 1 v -2wy, dovi=V, ,
RL'= v, -V, V2 =8V, +6v,” v
2 2 2 1 O
0 1 I A Vv, -V,
v, vV, — 8V, + 6V, 1
Vi =Y,
vV, —8v,v,” + 6V,
6v,”
v =8, +6V,’
g v, 1 v -8V,
v, -8V, +6v,” v — 8V, +6v,’
_ 1 0 8v, 1 v -2wy,
2 2 2 2 2 2
V" =8V, + 6V, v," =8V, +6v, v, 'V, —8v,v, + 6V,
-1 1 1 vy
V2 —8V,v, + 6V, v, v, v =8, +6v,’
_ i (V1 - Vz)
v, V.2 —8v,v, +6V,’
=V 71R{2;l‘4}'
Therefore,
-1 1y -1
\Y R{2:1,4} — Ry L
u
Theorem 4.2.
_di i H i -1 -1y -
Letv,, , bea3-dimensional special Vandermonde rhotrix, then v . =R*L", wherethe
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entries of R, are

a
a; =-V,i=Lj=i+1

and entries of “are
a;=1i=1j=1
a;=0i=1j=i+%-
a; =1li=j+1j=1

__ L isje2j-t

Vi =V,

a;

8, =——i=j+lj=2
Vi =V,

Proof:

Let v be a 3-dimensional special Vandermonde rhotrix as defined in (3.5), then

R{2;1,2}
_V2
Vi =V,
v _ 1 1 v, (4.4)
R{2:1,2} :
Vi =V, Vi =V,
-1
Vi =V,
Now,
1
4.5
Lo 1 Lo (4.5)
vV, =V,
-1
Vi =V,
and
1
R'=(0 1 —v, ). (4.6)
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On multiplying (4.5) and (4.6), we get

1 1
Ry '=(0 1 —v, 1 1 0 )
ViV,
1
-1
vi—V,
_V2
Vi =V,
_ 1 1 v,
ViV, Vi —V,
-1
ViV,
-1
=V R{2:1,2}"
Therefore,
VR{2;1,2} = Rsill-sil-
[ |
Theorem 4.3.
Let Ve be a 5-dimensional special Vandermonde rhotrix, then

Vegrg ™ =(R?)(L2) (R?) (),

where entries of (R® ),1 are

a. =0,i<j,i,j=1L

a;, =0,i>j,j=13,i=3,4,5;
a =1i>j,j=123;

entries of (|_g>)’1 are
a;=0,i<j,ij=1
a,=1i>j,i=1234

Vv, L .
L= > ],i=35,)=1,
&;; V-V, J J
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entries of (R® )’1 are

aij:l!i:jii!j:]';
a; =0,i>],j=Li=34,75;
a;=Lj=li=j+1
a;=0,j=2/i=j+3
V. ) ..
ij = 2 !|:11J:|+1;
Vi —V,
2 2
a”:M,iﬂ,j:HZ:
V=V,
-1 . .
aij:v—v'JZZI':J"'l;
17 V2

a,.:i,i:2+j,j=2;

and entries of (|_<52> )*1 are

a; =0,i< j,i, ] =1
a;=0,i>j,j=1i=34,5
a; =1i>j,j=12;
a, =1i<j, j=23
a; =0, j=2,i=j+3;
ViV, H H P .
a; = ,J=3i=]+2;
T vy, — 8wy, +6v,°
Proof:
Let Ve a be a special type of Vandermonde rhotrix as defined in (3.2) and its inverse is given in
(4.1). Now,
1
o 1 0 4.7)
(R®)*=( 0 0 2% 0 0
5 Vz
0 0
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1
Y2 1 0
v, -V, (4.8)
) [ . S —
(LS ) vV, —V, Vi —V,
v 1 0
Vi =V,
-1
1
0 1 Vi
hoY, (4.9)
(R&Y*=[ 0 0 = 1 ViV Z 20,
® B V1_V2 V1_V2
o L (W’ —2v)?)
VZ Vl v2
1
And
1
0 1 0
(4.10)
(ng) )71 _ 0 0 1 0 0
B 0 1 0
V1_V2
V2V, —8v,v,” +6Vv,°
On multiplying (4.7)-(4.10), we get
plying g
-1 -1 -1 -1
(R?) () (RY) () =
1 1
0o 1 Yy 0 1 0
V1_V2
. oy 0 0 1 00
[ 00 = 1 Y Yo = 2V, 0 1 0
V-V, V-V,
V, —V.
—(v?-2v,° 1 72
0 (W -2v) vV, —8v,v,” +6v,°
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1
\
2 1 0
0 1 0 v, -V,
v, -V, \ -V
00 2210 0 ) 2 0 2.0 0
Vs Vi—V, Vi—V,
0 1 0 -V, 1 0
1 Vi =V,
-1
2
6v,
v, — 8V, +6v,’
1 172 2
2
. v, 1 v, =8vy,
2 2 2 2
v," = 8wV, + 6V, v," —8v,v, +6v,
_ 1 0 8v, 3 =2y,
v, —8vy, +6v,’ v’ —8vy, +6v,’ v, =8V,V, +6v,’
-1 1 1ovi-2v)f
02 ooy a2 o S vZ_auy 4 fyl
V" =8V, +6v, v, v, V" =8v,v, +6v,

1 v, -V,

2 2
v, V" = 8wV, + 6V,

=V

R{2;1,4}

Hence,
Vatsa =(RY) (L) (RO)(10)"

5. Conclusion

We have discussed a special type of generalized VVandermonde rhotrix and given its left and right
triangular factorization. We further factored the rhotrices | and R, as the product of the left and

right triangular rhotrices. Also, we have applied the above said factorization to find the inverse
of the rhotrix under consideration.
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