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Abstract 
 
We consider the Duffin-Kemmer-Petiau ሺܲܭܦሻ	equation in the presence of a spatially one-
dimensional Woods-Saxon ሺܹܵሻ potential and we show by graphics how the zero-reflection 
condition on the Klein interval depends on the shape of the potential. 
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1. Introduction 
 
The ܲܭܦ equation Petiau (1936), Duffin (1938), Kemmer (1939) and Géhéniau (1938) is similar 
in structure to the Dirac equation. Over the succeeding years, a great number of papers dealing 
with this equation were published. However, after the early 1950's until approximately 1970, 
physical interest in it waned because it was ultimately believed that the Klein-Gordon ሺܩܭሻ and 
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the ܲܭܦ  equations are equivalent, since for many classes of processes such as the quantum 
electrodynamics of spin-0  mesons, calculations based on the ܲܭܦ  and ܩܭ  equations yield 
identical results including one-loop corrections. Afterwards, with the discovery of the parity 
violation and with the creation of the unified theory of electroweak interaction (the Weinberg-
Salam theory of standard model), it was concluded that the ܲܭܦ formalism in some cases yields 
different results from a second-order formalism, and this renewed the interest in the ܲܭܦ 
equation and its corresponding algebra. 

The ܩܭ equation in the ܹܵ potential well was solved in Rojas and Villalba (2005), Villalba and 
Rojas (2006) and it was shown that there is a critical value for the potential where the bound 
antiparticle mode appears. Also, transmission resonances for the ܩܭ particle in the ܹܵ potential 
barrier have been computed in Rojas and Villalba (2005), and it has been shown that the 
transmission coefficient as a function of the energy and the potential amplitude shows a behavior 
that resembles the one obtained for the Dirac particle. 

Let us briefly recall that the ܲܭܦ equation is a natural manner to extend the covariant Dirac 
formalism to the case of scalar (spin0) and vectorial (spin1) particles when interacting with an 
electromagnetic field, and will be written as ሺ԰ ൌ ܿ ൌ 1ሻ:  
 

ஜൣ൫߲ஜߚ݅ ൅ ஜ൯ܣ݁݅ െ ݉൧ߖሺખ, ሻݐ ൌ 0,																																																																																																		ሺ1ሻ 
 
the matrices ߚஜ verifying the ܲܭܦ algebra: 
 

ఒߚఔߚஜߚ ൅ ஜߚఔߚఒߚ ൌ ੗ஜఔߚఒ ൅ ੗ఔఒߚஜ.																																																																																																									ሺ2ሻ 
 
The convention for the metric tensor is ੗µఔ ൌ ݀݅ܽ݃ሺ1, െ1,െ1, െ1ሻ.  The algebra ሺ2ሻ  has three 
irreductible representations whose degrees are 1, 5 and	10. The first one is trivial, having no 
physical content, the second and the third ones correspond respectively to the scalar and vectorial 
representations. For the spin	0, the	ߚµ are given by 
 

଴ߚ ൌ ቀࣂ ૙
૙ ૙

ቁ , ௜ߚ ൌ ቆ
૙ ௜ߩ

െ்ߩ
௜ ૙

ቇ , ݅ ൌ 1,2,3,																																																																																		ሺ3ሻ 

  
where 
 

ଵߩ ൌ ቀെ1 0 0
0 0 0

ቁ , ଶߩ	 ൌ ቀ0 െ1 0
0 0 0

ቁ,																																						 

 

ଷߩ ൌ ቀ0 0 െ1
0 0 0

ቁ , ࣂ ൌ ቀ0 1
1 0

ቁ.																																																																																																				ሺ4ሻ 

 
The ்ߩ denoting the transposed matrix of ρ , and ૙ denoting the zero matrix. For the spin 1, the 
 µ are given byߚ	
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଴ߚ ൌ ൮

0 0ത
0ത் ૙

0ത 0ത
૚ ૙

0ത் ૚
0ത் ૙

૙ ૙
૙ ૙

൲,	 

 

௜ߚ	 ൌ

ۉ

ۈ
ۇ

0 0ത
0ത் ૙

݁௜ 0ത
૙ െ݅ݏ௜

െ݁௜
் ૙

0ത் െ݅ݏ௜

૙ ૙
૙ ૙ ی

ۋ
ۊ
, ݅ ൌ 1,2,3,																																																																																		ሺ5ሻ 

with 
 

	݁ଵ ൌ ሺ1,0,0ሻ, ݁ଶ ൌ ሺ0,1, 0ሻ, ݁ଷ ൌ ሺ0,0,1ሻ, 0ത ൌ ሺ0,0,0ሻ.																																																															ሺ6ሻ 
 
The ݏ௜  being the standard nonrelativistic ሺ3 ൈ 3ሻ  spin 1  matrices, and ૙  and ૚  denoting 
respectively the zero matrix and the unity matrix. 
 
We consider the case when the particle is interacting with the scalar and independent of time, 
potential of  ܹܵ given by 
 

	ܸሺݖሻ ൌ ଴ܸ

1 ൅ ݌ݔ݁ ൬
|ݖ| െ ܽ
ݎ ൰

,																																																																																																																														ሺ7ሻ 

 

ܽ		.potential	scalar	ܹܵ		The		૚.	܍ܚܝ܏۴ܑ ൌ 2, ݎ ൌ ሺ1 3		⁄ ሻ 
																																								for	solid	lined	and	ܽ ൌ 2, ݎ ൌ ሺ1 100⁄ ሻ	for	dotted	lined. 

 
଴ܸ  is real and positive. The parameters of shape ݎ	 , and of width 	ܽ , are real, positive and 

adjustable. For this potential, the equation ሺ1ሻ will be written as 
 

൤݅ߚ଴ ൬
߲
ݐ߲
൅ ܸ݅݁൰ ൅ ଷߚ݅

݀
ݖ݀

െ ݉൨ߖሺݖ, ሻݐ ൌ 0.																																																																																															ሺ8ሻ 

 
The stationary states ߖሺݖ,  ሻ having the formݐ
 

,ݖሺߖ ሻݐ ൌ ݁ି௜ா௧߶ሺݖሻ෫,																																																																																																																																										ሺ9ሻ 
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so 
  

൤ߚ଴ሺܧ െ ܸ݁ሻ ൅ ଷߚ݅
݀
ݖ݀

െ݉൨߶ሺݖሻ෫ ൌ 0.																																																																																																							ሺ10ሻ 

 
By taking the limit	ݎ → 0ା, the potential ሺ7ሻ becomes of a square barrier form 
 

ܸሺݖሻ ൌ ଴ܸߠሺܽ െ  ሺ11ሻ																																																																																																																																							ሻ,|ݖ|
 
that leads to the following eigenvalue equation 
 

൤ߚ଴ሺܧ െ ܸ݁ሻ ൅ ଷߚ݅
݀
ݖ݀

െ݉൨ ሻݖሺߢ ൌ 0,																																																																																																							ሺ12ሻ 

 
where ߢሺݖሻ் ൌ ሺ߮, ,ܣ ,ܤ ሻ	ܥ ,ܣ , ܥ	݀݊ܽ	ܤ  being respectively vectors of components 
,௜ܣ ;௜ܥ	݀݊ܽ	௜ܤ ݅ ൌ 1,2,3.  The square barrier potential is one among the simple models of 
potentials realizing the concrete physical situation of the pair-creation phenomena Sugg et al. 
(1993), Calogeracos and Dombey (1999), Dombey and Calogeracos (1999), which is intimately 
related to the tunnel phenomena. This last is one of important and strange effects predicted by 
the quantum mechanics. Although it can be explained using the wave mechanics, it doesn’t yet 
delivered its secret. 
 
According to the equations they satisfy, one gathers the components of ߢሺݖሻ this way Boutabia-
Chéraitia and Boudjedaa (2005)	 
 

்ߖ ൌ ሺܣଵ, ,ଶܣ	 ,ଷሻܤ	 ்ߔ ൌ ሺܤଵ, ,ଶܤ	  																																														,ଷሻܣ	
்߆ ൌ ሺܥଶ, െܥଵ, ߮ሻ	ܽ݊݀	ܥଷ ൌ 0,																																																																																																																					ሺ13ሻ 

 
with 
 

ࢸ ൌ 0, ቀߔ
߆
ቁ ൌ ൮

ܧ െ ܸ݁
݉
݅
݉

݀
ݖ݀

൲⊗ߖ.																																																																																																																				ሺ14ሻ 

 

௄ீߍ ൌ
ௗమ

ௗ௭మ
൅ ሾሺܧ െ ܸ݁ሻଶ െ ݉ଶሿ  being the ܩܭ  operator. One will then designate by ߶ሺݖሻ் ൌ

ሺߖ,ф,  .ሺ12ሻ	ሻ the solution of	߆
 
2. The ࡼࡷࡰ Scattering States 
 
When a wave representing a particle is incident on a potential, it is partially transmitted and 
partially reflected. The asymptotic forms of diverging waves can be determined at time very long 
after the interaction. The vectorial ܲܭܦ particle we consider is subjected to the barrier potential 
ሺ11ሻ. As |ݖ| → ∞, ܸሺݖሻ → 0 sufficiently fast so that ߶ሺݖሻ solution of equation ሺ8ሻ becomes that 



AAM: Intern. J., Vol. 8, Issue 2 (December 2013)                                                                                                    737                               
          

   

of a free particle. By what follows, we will try to examine the transmission-reflection problem in 
which the particle is incident, say, from the left ሺെ∞ሻ, or from the right	ሺ൅∞ሻ. The asymptotic 
form for the wave function	߶ሺݖሻ is given in Boutabia-Chéraitia and Boudjedaa (2005) by 
 

߶ሺݖሻ
௭→ିஶ
ሱۛ ۛۛሮ ௜௞ሺ௭ା௔ሻି݁ܣ

ۉ

ۈ
ۇ

1
ܧ
݉
െ݅μ
ی݉ݎ

ۋ
ۊ
൅ࢂ⊗ ௜௞ሺ௭ା௔ሻ݁ܤ

ۉ

ۈ
ۇ

1
ܧ
݉
݅μ
ی݉ݎ

ۋ
ۊ
⊗  ሺ15ሻ																																																													,ࢂ

and 

߶ሺݖሻ
௭→ାஶ
ሱۛ ۛۛሮ ௜௞ሺ௭ି௔ሻ݁ܥ

ۉ

ۈ
ۇ

1
ܧ
݉
݅μ
ی݉ݎ

ۋ
ۊ
൅ࢂ⊗ ௜௞ሺ௭ି௔ሻି݁ܦ

ۉ

ۈۈ
ۇ

1
ܧ
݉
െ
െ݅μ
ی݉ݎ

ۋۋ
ۊ
 ሺ16ሻ																																																													,ࢂ⊗

 

where μଶ ൌ ଶሺ݉ଶݎ െ ,ଶሻܧ μ ൌ ݇ݎ݅  with ݇	 real ሺ|ܧ| ൐ ݉ሻ  and ࢂ  is a constant vector of 
dimension ሺ3 ൈ 1ሻ which components are related to the three directions of spin 1. ܤ and  ܦ are, 
respectively, the coefficients of the incoming waves from െ∞ → 0 and from ൅∞ →  ܥ and ܣ .0
are, respectively, the coefficients of the reflected and transmitted wave. The reflection and 
transmission coefficients (respectively, ࡾ and	ࢀ) along each direction i of the spin are given in 
Boutabia-Chéraitia and Boudjedaa (2005) by 
 

ࡾ ൌ
൬
݇ଶ െ ଶ݌

݇݌2 ൰
ଶ

ܽ݌ଶ2݊݅ݏ

1 ൅ ൬
݇ଶ െ ଶ݌
݇݌2 ൰

ଶ

ܽ݌ଶ2݊݅ݏ
,																																																																																																																						ሺ17ሻ 

 

ࢀ ൌ
1

1 ൅ ൬
݇ଶ െ ଶ݌
݇݌2 ൰

ଶ

ܽ݌ଶ2݊݅ݏ
,																																																																																																																						ሺ18ሻ 

 

which verify the equality 
 
ࡾ ൅ ࢀ ൌ 1.																																																																																																																																																										ሺ19ሻ 

 
We propose to resolve numerically the equation ሺ18ሻ then we get the following graphics. When 
varying the energy ܧ we obtain 
 



738                                                                                                        B. Boutabia-Chéraitia and Abdenacer Makhlouf                            
 

 

 	varying	for	ܶ	illustrates	plot	The		૛.	܍ܚܝ܏۴ܑ
																										energy	ܧ	with	ܽ ൌ 2, ݁ ଴ܸ ൌ 4,݉ ൌ 1 

 

 

 varying	for	ܶ	illustrates	plot	The		૜.	܍ܚܝ܏۴ܑ
																														energy	ܧ	with	ܽ ൌ 4, ݁ ଴ܸ ൌ 4,݉ ൌ 1 

 
and when varying the barrier height ݁ ଴ܸ we obtain 

 

 barrier	varying	for	ܶ	illustrates	plot	The		૝.	܍ܚܝ܏۴ܑ
																	heighݐ	݁ ଴ܸ	with	ܽ ൌ 2, ܧ ൌ 2݉,݉ ൌ 1 
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 barrier	varying	for	ܶ	illustrates	plot	The		૞.	܍ܚܝ܏۴ܑ
																	height	݁ ଴ܸ	with	ܽ ൌ 4, ܧ ൌ 2݉,݉ ൌ 1 

 

From figures 2 and 3, one can see that analogous to the Dirac particle Sugg et al. (1993), 
Calogeracos and Dombey (1999), Dombey and Calogeracos (1999) and to the ܩܭ particle Rojas 
and Villalba (2005), the ܲܭܦ  particle exhibits transmission resonances in the Klein interval 
ሺ݉ ൏ ܧ ൏ ݁ ଴ܸ െ ݉ሻ. 

Also, figures 4 and 5 show that analogous to the Dirac and ܩܭ cases, transmission resonances 
appear for ݁ ଴ܸ ൐ ܧ ൅݉ (thus ܧ ൏ 	݁ ଴ܸ െ ݉ሻ. The zero-transmission happening for values of 
potential strength ܧ െ݉ ൏ ݁ ଴ܸ ൏ ܧ ൅݉ (thus݁ ଴ܸ െ ݉ ൏ ܧ ൏ 	݁ ଴ܸ ൅ ݉ሻ. 

One can also mention for the four figures, that the occurrence of the transmission resonances 
increases with the width ܽ of the square barrier. 

 
3. Conclusions 

We have showed a similarity in behavior between	ܩܭ ,ܲܭܦ and Dirac particles when interacting 
with a one-dimensional scalar potential. For the ܲܭܦ and ܩܭ particles this can be interpreted as 
a demonstration of the equivalence between ܲܭܦ and ܩܭ theories. For ܲܭܦ and Dirac particles, 
it gives us the hope of establishing in the future, some similarities in their behavior in the case of 
the potential well. This work is in pending. 
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