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Abstract 
 
Numerical techniques based on pressure-velocity formulation have been adopted to solve 
approximately, the governing equations for viscous flows through a tube (simulating an artery) 
with a periodic constriction. The effect of the constriction as well as the rigid of the tube, on the 
flow characteristics, and its consequences for arterial disease is the focus of this investigation. 
The unsteady incompressible Navier-Stokes equations are solved by using the finite-difference 
technique in staggered grid distribution. The haemodynamic factors like wall shear stress, 
pressure and velocity are analyzed through their graphical representations. Maximum resistance 
is attained in case of rigid stenosed tube rather than the flexible one. The main result is to 
contribute that the recirculating region is larger in case of a rigid tube than that of flexible one.  
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1.  Introduction 
 
In recent past, the study of bio-fluid dynamics has become quite interesting to many researchers 
from the theoretical, experimental as well as the clinical point of view. Coronary artery disease, 
the largest single cause of mortality in developed nations occurs when the coronary arteries 
narrow down to the extent that they are unable to transport sufficient blood to the heart muscle 
for it to function efficiently. The two main causes of death from coronary artery disease are 
rupture of the plaque causing sudden occlusion of the artery and the slow build up of a stenosis 
in the artery due to atherosclerosis, a disease characterized by the hardening and thickening of 
the arterial walls due to formation of plaque. Reduction in blood flow caused by stenosis build 
up also causes debilitation. Haemodynamic is suspected to be involved in arterial lesions leading 
to the malfunction of the cardiovascular system resulting from the flow disturbances around 
bends, curvatures, tapering, and stenoses in larger arteries where plaques are frequently formed. 
Flow through arteries is complicated by the formation of atherosclerotic plaques on the arterial 
wall which impede the flow through the artery and which may substantially affect the wall shear 
stress distribution. Therefore, understanding blood flow through stenosed tube is of particular 
interest.  
 
The ability to describe the flow through stenosed vessels would provide the possibility of 
diagnosing the disease in the earlier stages, even before the stenosis become clinically relevant, 
and is the basis for surgical intervention. Numerical simulation to predict flow through 
atherosclerotic arteries augment the percipience and experience of cardiologists and assist 
understanding of the genesis and progression of stenosis development. Such techniques allow 
predicting the haemodynamic characteristics as pressure, shear stress, velocity and reduction in 
flow. Quite a good number of theoretical and experimental investigations related to blood flow in 
arteries in the presence of stenosis [see Johnston et al. (2004), Chen and Lu (2006), 
Wiwatanapataphee et al. (2006), Jhonston and Jhonston (2008), Srivastava et al. (2010), Wong et 
al. (2010)] have been carried out with various perspectives in the realm of arterial biomechanics. 
Some attempts to study experimentally steady and unsteady flows across a smooth stenosis can 
be found in Young and Tsai (1973a, b), Ahmed and Giddens (1983) etc. For a single constriction 
flow, numerous research investigations have been conducted [Deshpande et al. (1976), Mishra 
and Chakravarty (1986), Pontrelli (2001), Yakhot et al. (2005), Mandal et al. (2007), Sarifuddin 
et al. (2008), etc.]. 
 
Laminar flow in a periodically constricted tube has now become the popular model in varied 
fields such as stenosed arteries and blood oxygenators, in flow-off problems as well as in 
leaching and filtration in natural and artificial situations. For flow in a periodically constricted 
tube [Figure 1] (in our case, one generated by the surface of revolution of a cosine function about 
the axis of symmetry) several theoretical, numerical and experimental research works have been 
reported. Chow and Soda (1972) gave an asymptotic analysis for large wavelengths. Lahbabi and 
Chang (1986) investigated the flow field numerically. On the other hand, Deiber and Schowalter 
(1979), Ralph (1987), Deiber et al. (1992) and Leneweit and Auerbach (1999) performed 
experimental and numerical studies. Recently, Mukhopadhyay and Layek (2009) presented an 
analysis of flow fields in a wavy-wall tapered artery. Most of the studies regarding flow through 
a stenosed artery have been restricted to steady flow in cylindrical rigid pipes. When stenoses 
develop in human vasculature, the vessel walls in the vicinity of the stenosis are usually 
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relatively solid but when the distensibility of the vessel wall is inducted, they will no longer be 
rigid. For a flexible vessel, the stenosis cannot remain static and this feature is quite relevant to 
the unsteady flow mechanism under stenotic condition. However, there has been a lack of 
research in the area of modelling blood flows in periodically constricted flexible tube. Hence the 
flow in a flexible tube with periodic constriction certainly deserves special attention. 
 
So, the objective of this study is to explore the combined effects of sinusoidal local constriction 
and wall-flexibility on the flow characteristics of blood regarding the flowing blood as 
Newtonian. The rheology of blood can best be described by Casson’s relationship, in which the 
blood exhibits nonlinear shear stress versus rate of shear characteristics, especially at low rates of 
shear. However, at relatively high rate of shear, the viscosity coefficient asymptotically 
approaches a constant value. The assumption of Newtonian behavior of blood is acceptable for 
high shear rate flow, e.g., in case of flow through large arteries [Pedley (1980)]. 
 
For this investigation, which centers on the flow pattern in a rigid as well as flexible tube with 
periodic constriction, a stable two-stage numerical scheme is developed in axi-symmetric 
approximations. Staggered grid and finite difference discretization are employed in the scheme. 
The flow reached steady state after a sufficiently long time.  The flow characteristics like flow 
separation, pressure drop, velocity profiles and arterial wall shear stress are also discussed at 
length through their graphical representations. 
 
 
2. Equations of Motion 
 
We consider an axi-symmetric and laminar separated flow in a constricted tube, constricted at 
the specified position. The blood flow through an axi-symmetric stenosis is simulated in two-
dimensions, making use of cylindrical the co-ordinate system. Let (r*,  *, z*) be the cylindrical 
polar co-ordinates with z*-axis along the axis of symmetry of the tube. The region of interest is  

),(0 *
0

* zrr   0   z*   L* (L* being the finite length of the tube). The incompressible two-

dimensional Navier-stokes equations is used for modelling the Newtonian blood flow past 
multiple constrictions. Let *u and * be the axial and radial velocity components respectively, 

*p the fluid pressure,   the constant density and   the kinematic viscosity of the fluid. Let U be 
the maximum inflow velocity specified in the inlet section or test section of the tube. We 
introduce the non-dimensional variables 0

* / DUtt  , 0
* / Drr  , ,/ 0

* Dzz   

00
**
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2* / Upp   where 0D  is the diameter of tube in 

the unoccluded  portion. The governing equations for incompressible fluid flow representing 
conservation of mass and momentum fluxes may be expressed in dimensionless variables as 
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where Re = 0UD  /  is the Reynolds number. 

 
2.1. Boundary Conditions 
 
Along the axis of symmetry, the normal component of velocity and shear stress vanish so that 

 

,0
),,(





r

trzu
  ),,( trz =0 on 0r .                                                                                  (4) 

 
The velocity boundary conditions on the arterial wall when treated to be rigid are the usual no-
slip conditions given by      
             

0),,(),,(  trztrzu    at r = r0(z),                                                                              (5a) 
 
while those in the case of flexible wall are  
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The governing equations of our model assume that the flow regime is laminar. This model also 
assumes the flow to be fully developed at the inlet test section of the tube where the inlet section 
is considered at the position z =0. The inlet velocity conditions are assumed to have a parabolic 
profile corresponding to Hagen-Poiseuille flow through a long circular tube as  
      

),,( trzu  = 2(1-r2), ),,( trz  = 0 at z =0.                                                                               (6) 
 
The downstream length (60) is sufficiently long so that the reattachment length is independent of 
the length of calculation domain. The zero velocity gradient boundary conditions are used at the 
outlet cross-section of the tube  
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2.2. Initial Condition 
 
The initial condition is that there is no flow inside the region of the tube except the parabolic 
velocity profile at the inlet. The flow is gradually increasing as time elapses. 
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2.3. Transformation of Basic Equations 
 
We consider a co-ordinate stretching in the radial direction which transforms the constricted tube 
into a straight circular tube, given by 
 

,
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r
R   00 rr                                                                                              (8)  

 
where the function )(0 zr is defined as 
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Here )(0 zr  denotes the radius of the tube in the constricted region, )( 01 ARR  is the minimum 

radius of the tube, A  =  is the amplitude, 1R ,   is the wave length,  , are two 

dimensionless parameters.  Here 1z  is the distance from the start of the segment to the start of the 

stenosis, 2z is the distance from the start of the segment to the end of the stenosis.  
All the profiles, given by equation (9) appear to be time-independent (rigid) and their time-
dependence can easily be introduced in such a way that )().(),( 100 tazrtzr  where 

)cos(1)(1   tkta with the amplitude parameter ,k the phase angle  and the angular 
frequency . 
  
A schematic diagram of the periodically constricted tube geometry considered in this analysis is 
given in Fig.1 (a) along with all relevant quantities. The tube under consideration is taken to be 
of finite length 60 for low Reynolds number flow. But suitable length is taken for the case of 
high Reynolds numbers so that the reattachment length is independent of this downstream 
distance.   
  
 
3.  Numerical Computations 
 
The primitive variable approach that is pressure-velocity formulation is adopted to solve 
approximately the governing transformed equations along with the boundary conditions. In this 
approach, velocity components are stored staggered with respect to the pressure variable [see 
Harlow and Welch (1965)]. This type of storing arrangement is used mainly to prevent the 
decupling tendency of the pressure and known as checker-board effect in literature. The 
boundary conditions on pressure are not required when the velocities are prescribed on the 
boundary. This is not possible when non-staggered meshes are employed for discretizing the 
governing equations of fluid flow. The locations of the velocity components are at the centre of 
the cell faces to which they are normal and the pressure field at the center of the cell. If a 
uniform grid is used, the locations are exactly at the midway between the grid points. Finite-
difference discretization of the equations (6)-(8) have been carried out.  
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The discretization procedures of different terms are as follows. The time derivative terms are 
differenced according to the first order accurate two-level forward time differencing formula. 
The convective terms in the momentum equations are differenced with a hybrid formula 
consisting of central differencing and second order up winding. The diffusive terms are 
differenced using the three point central difference formula. The diffusive terms are differenced 
using the three point central difference formula. The source terms are centrally differenced 
keeping the position of the respective fluxes at the centers of the control volumes. The pressure 
derivatives are represented by forward difference formulae. Actually, the numerical algorithm 
consists of two stages. In the first stage, the pressure Poisson equation (derived from the 
momentum equations and the mass conservation equation) are solved to obtain the approximate 
value of pressure field and then updates two momentum equations using known pressure field 
and previous level velocity vector. Pressure-velocity corrections formulae are then invoked in the 
second stage of the numerical scheme. This correction scheme is also derived using momentum 
and continuity equations [Layek et al. (2005)]. This scheme is very much effective for achieving 
the desired level of accuracy in the mass conservation equation (the main constraint of 
incompressible Navier-Stokes equations) at each cell. The detailed derivation and numerical 
algorithm are given in Layek et al. (2005). 
 
The pressure equation is solved iteratively, by the SOR (successive over-relaxation) method and 
the corresponding boundary conditions have been implemented properly. After performing a few 
iteration steps with the pressure equation, the pressure-velocity corrections are invoked. The 
method is continued until it achieves a satisfactory level of divergence value (in this case, we 
fixed the divergence value at 0.00001). 
 
3.1   Stability Criteria of the Scheme 
 
The time-step ( t ) is calculated by the two criteria given below. First the fluid cannot move 
through more than one cell in one time step (Courant, Friedrichs and Lewy condition). So the 
time step must satisfy the following criteria 
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where minimum is taken in the global sense. Secondly, momentum must not diffuse more than 
one cell in one time step. This condition, which is related to the viscous effects, implies               
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Denoting the right hand side of (10) and (11) by 1t  and 2t  respectively we find that both these 
inequalities are satisfied if the time step t  satisfies 
 

 t ][ 2,1 ttMin  .                                                                                (12) 
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Hence, in our computations we take 

 
 t =  ,, 21 ttcMin                                                                       (13) 

 
where c is a constant lying between 0.2 to 0.4. A typical value of t  is 0.005 for z  = 0.05 and 

R  = 0.05.   
 
 
4.  Results and Discussions 
 
For the purpose of numerical computation of the desired quantities of major physiological 
significance, numerical values of the specific geometry of the stenosed artery considered for 
simulations and the parameters involved in this study are ranged around some typical values in 
order to obtain results of physiological interest: 
 

[for model-1 (i.e. for 
constriction-height 

0.4)] 
 
Using the above numerical algorithm, we compute the stream function ( ) and vorticity ( ) for 
different values of R of a long straight circular tube at the Reynolds number Re = 10 for the grid 
size 600   20. The values are compared with the exact values of   and   and prescribed in the 
following Table 1. 
 
 

 
Table 1 shows that the computed values of stream function and vorticity agree well with their 
exact values for the case of straight circular tube. The value of wall shear stress is found to be 
1.99 against the exact value 2 for laminar flow in a tube under constant pressure gradient. Thus, 
our numerical code has been validated by simulating the flow in a straight tube. 
 

Table 1. Results of stream function    and vorticity    for a long circular tube at Re=10. 

  Property 
 

    R0          0.25                0.50                0.75                  1 

Computed  
 
  Exact   
 
Computed  
  
 Exact   
 

      0.0         0.03027          0.10938           0.20215            0.25002 
 
      0.0         0.03027          0.10938           0.20215            0.25000 
          
      0.0         0.49996          0.99994           1.49990            1.99982 
  
      0.0          0.50000          1.00000           1.50000           2.00000 
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The present results involving the pressure drop in case of irregular stenosis for different 
Reynolds number from 10 to 1000 are compared with the experimental results of Back et al. 
(1984) and the numerical results of Andersson et al. (2000), Sarifuddin et al. (2008) in Figure 
1(b). The comparison in Figure 1 (b) shows considerable agreement with the experimental results 
of Back et al. (1984) and numerical results of Sarifuddin et al. (2008). But there is a little 
variation with the numerical results of Andersson et al. (2000). It seems that the unsteady flow 
mechanism of the present investigation is responsible for this. 
 
The computed results are obtained following the above mentioned numerical scheme [taking 

t =0.005 for z  = 0.05 and R  = 0.05] for various physical quantities of major physiological 
significance. In order to have their quantitative measures they are all exhibited through the 
Figures 2-7 and discussed at length. 
 
The arterial wall distensibility is disregarded in some cases (for rigid tube) but attention also has 
been paid on compliant wall model.  
 
Wall pressure distribution is very much important because the post-stenotic dilatation due to 
arterial damage is caused by the variation of pressure associated with the complex flow structure. 
Pressure fluctuations on the arterial wall produce acoustic signals that can be detected externally 
[Mittal et al. (2001)]. 
 
Wall pressure distribution at the surface of the periodic constriction for rigid walled tube and for 
flexible walled tube are presented in Figure 2(a) and Figure 2(b), respectively,  for constriction 
height 0R =0.4 and at Re = 700. The pressure gradient is found to vary over the cross sections in 

both cases. The pressure distribution curve (in both cases) shows a rapid fall as the flow 
approaches the indentation as well as near the second and third area reductions  but the pressure 
gradient decreases sharply near the first area reduction than that in the other two cases and 
recovers its value after first, second and third area reductions. The local minimum is attained 
corresponding to the separation point in case of rigid [Figure 2(a)] as well as in flexible tube 
[Figure 2(b)]. The two curves are of similar nature. The profile for the lowest pressure 
corresponds to the maximum mean velocity and that for the high pressure corresponds to the 
minimum mean velocity. Low pressure around the stenotic portion generates a health risk 
because the stenosed arteries may collapse due to low pressure [Tang et al. (2001)]. 
 
In presence of a narrowing i.e. a constriction, the flow exhibits a resistance and hence an increase 
of the shear stress (i.e., the wall vorticity) and a pressure drop occur. These are quantities of 
physiological relevance. 
 
The viscous effect on the pressure drop is also important, particularly in front of the throats of 
the tube. Keeping this in mind, a quantitative analysis, for instance the pressure drop as functions 
of Reynolds number and the geometric parameter - height of the constriction ( 0R ) are 

investigated.   
 
Comparison of the pressure drop curves over the rigid and flexible walled constricted tubes show 
that the flexible tube predicts higher pressure drop than the rigid one for low Reynolds number 
[Figure 3(a)] but at higher Reynolds number the pressure drop is higher in case of rigid tube than 
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that of flexible one.  The non-dimensional pressure drop in a flexible constricted tube for two 
different constriction heights ( )6.0,4.00 R is presented in Figure 3(b). This figure shows that 

flow in a severely constricted artery produces a higher pressure drop, i.e., when the height of the 
constriction increases, amount of pressure drop also increases. With increasing degree of 
stenosis, the reduction in pressure at the throat decreases significantly.  
 
Figure 4(a) exhibits the variation of center line velocity in axial direction at Re = 500 in case of 
periodically constricted rigid as well as flexible artery for constriction height 4.00 R . It is very 

clear from the figure that the maximum centre line velocity occurs slightly in the downstream of 
the constriction (for rigid as well as flexible artery) due to formation of recirculation zone near 
the wall as a result of flow separation. Flexible artery induces excess flow acceleration as 
compared to rigid artery. It is noted that the centre line velocity takes a larger distance to recover 
its initial value as Reynolds number increases. 
 
The unsteady response of the flow phenomena through distensible artery seems to have major 
significance in realistic blood flow under stenotic condition. Keeping this in mind the behavior 
of stream wise velocity component with time for Re = 700, at z = 11(where z is the distance from 
the inlet of the tube) (i.e., in the constricted region) for constriction height 6.00 R   for both 

rigid and flexible arteries is exhibited in Figure 4(b). Both the rigid and flexible arteries 
experience large distortions on stream wise velocity component at the onset of time followed by 
uniformly undulating stream wise velocity in case of rigid artery and an uniform stream wise 
velocity for the flexible one for rest of the time considered here. 
 
The velocity profiles are of some interest since they provide a detailed description of the flow 
field. The velocity profiles are plotted in Figure 5(a) [for rigid tube] and in Figure 5(b) [for 
flexible tube] for several axial positions at Re = 700 and for constriction height 4.00 R . The 

region of reversal flow is evidenced in these two Figures. In this region, the components of 
velocity undergo a change in sign. It is found that the back flow region is longer in case of a rigid 
constricted artery than that of flexible one. 
 
Wall shear stress is an important factor to be studied as it plays an important role in the creation 
and proliferation of arteriosclerosis. The principle features of the can also be determined by 
examining the wall shear stress. High wall shear stress may damage the vessel wall and is the 
cause of the intimal thickening. So wall shear stress is of physiological importance. No reliable 
method seems to be available for computing wall shear stress. In this situation, the numerical 
simulation provides some insight into the level of the wall shear stress involved.  
 
Figure 6(a) is the graphical representation of wall shear stress for several values of Reynolds 
number in a flexible artery of constriction height 0R = 0.4. From the figure it is noticed that no 

separation takes place at Re = 50. It is also seen that the location of the peak vorticity occurs just 
before the minimum constriction plane (for both rigid and flexible wall models). The magnitude 
of the wall shear stress values increase rapidly when the flow approaches to the constriction and 
reaching a peak value near the minimum constriction plane in all cases. At a location 
downstream of this, the wall shear stress decreases rapidly and reverses to negative values when 
separation begins at the wall of the tube. The places of zero vorticity are the locations of 
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stagnation points as well as the separation and reattachment points of the attached vortices. It is 
also noted that the peak value of wall shear stress decreases near the second and third area 
reductions. The peaks of the shear stresses are believed to cause severe damage to the arterial 
lumen which in turn helps in detecting the aggregation sites of platelets may have several 
consequences in circulatory system. This figure also displays that length of separation increases 
in the downstream of the constriction. 
 
Figure 6(b) exhibits the effect of increasing the severity of the stenosis on flexible artery at Re = 
250. Peak value of wall shear stress and the length of separation zone increase as the height of 
the constriction increases. Separation zones after the first and second area reductions are 
practically equal but larger separation zone is noticed after the third area reduction which clearly 
indicates the presence of a strong eddy after the last area reduction than the previous area 
reductions. Same nature of wall shear stress is observed in case of rigid tube. 
 
For both rigid and flexible arteries [Figure 7(a)], an almost similar trend is observed in the 
respective distributions of wall shear stress differing in magnitudes only. Peak value of wall 
shear stress is maximum in case of rigid tube rather than that of flexible one. Here, the point of 
reattachment is shifted further towards downstream after the first and second area reductions in 
case of flexible tube compared to that of rigid tube but after the third area reduction (i.e., after 
the end of the constriction) opposite behavior is noticed [Figure 7(b)]. 
 
  
5.   Conclusion 
 
Flow through flexible periodically constricted artery is analyzed by numerical simulation of 
viscous incompressible fluid in a 2D vessel with the approximation of axial symmetry of the 
flow. The present model would certainly give better insight into the complex flow phenomena in 
the stenotic conditions. Potential improvement is made by the incorporation of vessel wall 
distensibility. The development of the separation zones towards the diverging section of the 
constriction is believed to be the prime areas for further deposition of atherosclerotic plaques.     
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