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Abstract 

 
 In this paper we present efficient computational algorithms for solving finite volume 

discretized tri-diagonal linear systems. The implementation of the algorithm for steady state 

finite volume structured grids linear system using MS Excel is presented.  An example is 

given in order to illustrate the algorithms. 
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1. Introduction 

Tri-diagonal matrices play a central role in the solution of linear systems of equations in the 

different disciplines of science and engineering. We study algorithm for most commonly 

occurring problem in scientific computing, the solution of linear systems having a backward 

tri-diagonal coefficient matrices. This kind of linear system occurs in many field of numerical 

computation; see EI-Mikkawy (2004, 2005) and Karawia (2007). 

 

Linear solution methods can broadly be classified into two categories: direct, and iterative. 

Examples of direct methods are Gauss elimination, LU decomposition, Cramer’s rule, and 

matrix inversion. For more details, see Allen and Isaacson (1997). On the other hand, 

iterative methods can easily be formulated to take advantage of the matrix sparsity. Since 

these methods successively improve the solution by the application of a fixed number of 

operations, we can stop the process when the solution at any given iteration has been obtained 

to a sufficient level of accuracy. 

http://pvamu.edu/aam
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The remainder of the paper is organized as follows. Section 2 contains the theoretical 

justification of the iterative algorithm for a special tri-diagonal matrix, and Section 3 contains 

the formulation of one and two dimensional finite volume discretized equations of linear 

systems, while Section 4 contains computational algorithms for tri-diagonal finite volume 

discretized linear system. An illustrative example and the implementation of algorithm using 

MS excel are presented in Section 5. Finally, Section 6 concludes the paper. 

 

2. Tri-Diagonal Matrix Algorithm 

The finite volume discretized system of linear equations is of the form 

 

𝐀𝐱 = 𝐛 

 

Here, A is an 𝑁 × 𝑁 matrix and x is a vector of the unknowns. The efficient solution of such 

systems is an important component of computational fluid dynamics (CFD) analysis. One 

important characteristic of our linear systems is that they contain large number of zeroes in 

the matrix A and the discrete equation at a cell has non-zero coefficients for only the 

neighbouring cells. The system of equations resulting from a one-dimensional grid, for 

example, has non-zero entries only on the diagonal and two adjacent “lines” on either side. 

For a mesh of 5 cells, the matrix has the form 

 

𝐴 =

[
 
 
 
 
𝑥 𝑥 0 0 0
𝑥 𝑥 𝑥 0 0
0
0
0

𝑥
0
0

𝑥
𝑥
0

𝑥 0
𝑥 𝑥
𝑥 𝑥

  

]
 
 
 
 

. 

 

Here, x denotes the non-zero entries. The linear systems involving such matrices are known 

as tri-diagonal matrices. The solution of such matrices can be attributed to Thomas (1949) 

who developed a technique for rapidly solving tri-diagonal systems which is known as the 

Thomas algorithm or the tri-diagonal matrix algorithm (TDMA). The tri-diagonal linear 

system plays a very important role in solving finite volume discretized equations, see 

Versteeg and Malalasekera (1995). The TDMA is actually a direct method for one 

dimensional situation, but it can be applied iteratively in a line-by-line fashion, to solve 

multidimensional problems and is frequently used in CFD problems. 

 

The tri-diagonal matrix algorithm (TDMA) is a simplified form of Gaussian elimination that 

can be used to solve tri-diagonal system of equations.  A tri-diagonal system for n unknowns 

may be written as 

 

    𝑢1                                                                                  =  𝑑1 

−𝑎2𝑢1 + 𝑏2𝑢2 − 𝑐2𝑢3                                                  =  𝑑2 

             −𝑎3𝑢2 + 𝑏3𝑢3 − 𝑐3𝑢4                                     =  𝑑3 

                                    .                                                                                           .                            (1) 

    .                                                                                           . 
    .                                                                                           . 

                −𝑎𝑛−1𝑢𝑛−2 + 𝑏𝑛−1𝑢𝑛−1 − 𝑐𝑛−1𝑢𝑛                = 𝑑𝑛−1 

                                     − 𝑎𝑛𝑢𝑛−1 + 𝑏𝑛𝑢𝑛 − 𝑐𝑛𝑢𝑛+1  = 𝑑𝑛 

                                                                                                              𝑢𝑛+1 = 𝑑𝑛+1. 
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In the above set of equations 𝑢1 and 𝑢𝑛+1 are known boundary values. The general form of 

any single equation is  

 

−𝑎𝑖𝑢𝑖−1 + 𝑏𝑖𝑢𝑖 − 𝑐𝑖𝑢𝑖+1 = 𝑑𝑖.                            (2) 
 

The equations of the system Equation (1) can be rewritten as  

𝑢2 =
𝑐2

𝑏2
𝑢3 +

𝑎2

𝑏2
𝑢1 +

𝑑2 

𝑏2
                                                              (3) 

𝑢3 =
𝑐3

𝑏3
𝑢4 +

𝑎

𝑏3
𝑢2 +

𝑑3

𝑏3
                                                               (4) 

                                                   .                                        . 
                                                   .                                        . 
                                                   .                                        . 

                                              

𝑢𝑛 =
𝑐𝑛

𝑏𝑛
𝑢𝑛+1 +

𝑎𝑛

𝑏𝑛
𝑢𝑛−1 +

𝑑𝑛

𝑏𝑛
 .                                                    (5) 

 

The TDMA is based on the Gaussian elimination procedure and consists of two parts - a 

forward elimination phase and a backward substitution phase. The forward elimination 

process starts by removing 𝑢2 from Equation (4) by substitution from Equation (3) to get 

 

𝑢3 = (
𝑐3

𝑏3 − 𝑎3
𝐶2

𝑏2

)𝑢4 + (
𝑎3 (

𝑎2

𝑏2
𝑢1 +

𝑑2

𝑏2
) + 𝑑3

𝑏3 − 𝑎3
𝐶2

𝑏2

).                 (6) 

If we let 

𝐴2 =
𝑐2

𝑏2
                                            

𝐵2 =
𝑎2

𝑏2
𝑢1 +

𝑑2

𝑏2
 ,                           

 

then Equation (6) can be written as  

 

𝑢3 = (
𝑐3

𝑏3 − 𝑎3𝐴2
) 𝑢4 + (

𝑎3𝐵2 + 𝑑3

𝑏3 − 𝑎3𝐴2
).                                      (7) 

If we let 

 𝐴3 =
𝑐3

𝑏3 − 𝑎3𝐴2
                                

 

and 

𝐵3 =
𝑎3𝐵2 + 𝑑3

𝑏3 − 𝑎3𝐴2
 ,                             

  

then Equation (7) can be rewritten as 

 

𝑢3 = 𝐴3𝑢4 + 𝐵3.                                                                              (8) 

 

From the system (1), we obtain 
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                                                         𝐴𝑖 =
𝑐1

𝑏1
,                                 if 𝑖 = 1,   

                                                               =
𝑐𝑖

𝑏𝑖 − 𝑎𝑖𝐴𝑖−1

,                  if  𝑖 = 2, 3, … , (𝑛 − 1), 

 

                                                         𝐵𝑖 =
𝑑1

𝑏1
,                                 if 𝑖 = 1,   

                                                               =
𝑎𝑖𝐵𝑖−1 + 𝑑𝑖

𝑏𝑖 − 𝑎𝑖𝐴𝑖−1

,                  if  𝑖 = 2, 3, … , 𝑛. 

 

Equation (8) can be used to eliminate 𝑢3 and the procedure can be repeated up to the last 

equation of the system. This constitutes the forward elimination process. For the back 

substitution, we use the general form of Equation (8). 

 

                                                           𝑢𝑖 = 𝐴𝑖𝑢𝑖+1 + 𝐵𝑖,               if 𝑖 = 𝑛 − 1, 𝑛 − 2,… ,1.  
 

Note that the conditions of diagonal dominance for the system (1) that are sufficient for 

stability of the tri-diagonal elimination can actually be relaxed. In fact, one can only require 

that the coefficients of system (1) satisfy the inequalities: 

 

                                                   |𝑏1| ≥ |𝑐1|,        
                                                   |𝑏𝑖| ≥ |𝑎𝑖| + |𝑐𝑖|,               if 𝑖 = 2, 3, … , (𝑛 − 1), 
                                                   |𝑏𝑛| ≥ |𝑐𝑛|.  
 

3. Problem Formulation 

 
Problem I 

 

The TDMA can be applied to solve a system of equations for one dimensional structured grid 

problem. For more details see Prasad and Patil (2014). Consider the grid in Figure 1 and for 

west-east (w-e) line the finite volume discretized equation is re-arranged in the form 

 

     −𝑎𝑊𝑢𝑊 + 𝑎𝑃𝑢𝑃−𝑎𝐸𝑢𝐸 = 𝑆𝑢.                                                                                (9) 

 
Figure1. Finite volume one dimensional grids 

Problem II 

 

The TDMA can be applied iteratively to solve a system of equations for two dimensional 

structured grid problems. See Prasad and Patil (2014). Consider the grid in Figure 2 and a 

general two dimensional finite volume discretized equation of the form 

 

                                                  𝑎𝑃𝑢𝑃 = 𝑎𝑊𝑢𝑊 + 𝑎𝐸𝑢𝐸 + 𝑎𝑆𝑢𝑆 + 𝑎𝑁𝑢𝑁 + 𝑆𝑢. 
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To solve the system, TDMA is applied along north-south (n-s) lines. The finite volume 

discretized equation is rearranged in the form 

 

−𝑎𝑆𝑢𝑆 + 𝑎𝑃𝑢𝑃−𝑎𝑁𝑢𝑁 = 𝑎𝑊𝑢𝑊 + 𝑎𝐸𝑢𝐸 + 𝑆𝑢 .                                               (10) 

 

 

Figure 2. Finite volume two dimensional grids 

 

 

4. Computational Algorithms 

 
Algorithm 4.1 To solve the one dimensional general backward tri-diagonal linear systems 

Equation (9), we may proceed as follows: 

 

Step 1: Set the given vectors     

                                                   𝑎𝑤 = 𝑎, 
                                                    𝑎𝑝 =  𝑏, 

                                                    𝑎𝐸 = 𝑐,   
                                                    𝑆𝑢 = 𝑑.         
Step 2: For 𝑖 = 1, set 

                                                    𝐴0 = 0,  
                                                    𝐵0 = 0,   
             and compute 

                                                           𝐴1 =
𝑐1

𝑏1 − 𝑎1𝐴0
 

and 

                                                           𝐵1 =
𝑎1𝐵0+𝑑1

𝑏1−𝑎1𝐴0
. 

Step 3: For 𝑖 = 2,… , 𝑛  and compute    

                                                           𝐴𝑖 =
𝑐𝑖

𝑏𝑖 − 𝑎𝑖𝐴𝑖−1
     

and 

                                                           𝐵𝑖 =
𝑎𝑖𝐵𝑖−1+𝑑𝑖

𝑏𝑖−𝑎𝑖𝐴𝑖−1
. 

 

Step 4: For 𝑖 = 𝑛,… ,1. Set   𝑢𝑛+1 = 0, and compute 
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                                                           𝑢𝑖 = 𝐴𝑖𝑢𝑖+1 + 𝐵𝑖. 
 

Algorithm 4.2 To solve the two dimensional general backward tri-diagonal linear systems 

Equation (10) along the north-south line-by-line fashion, we may proceed as 

follows: 

 

Iteration 1 

 

Step 1: Set the given vectors   

                                         𝑎𝑁 = 𝑎, 
                                                   𝑎𝑝 =  𝑏, 

                                                          𝑎𝑆 = 𝑐, 
                                                         𝑢𝑤 =  zero vector, 

                                                          𝑢𝐸 =  zero vector,  

                                                         𝑎𝑤𝑢𝑤 + 𝑎𝐸𝑢𝐸 + 𝑆𝑢 = 𝑑. 
 

Step 2: For 𝑖 = 1, set 

                                                    𝐴0 = 0,  
                                                    𝐵0 = 0,   
             and compute 

                                                           𝐴1 =
𝑐1

𝑏1 − 𝑎1𝐴0
 

and 

                                                           𝐵1 =
𝑎1𝐵0+𝑑1

𝑏1−𝑎1𝐴0
. 

 

Step 3: For 𝑖 = 2,… , 𝑛  and compute    

                                                           𝐴𝑖 =
𝑐𝑖

𝑏𝑖 − 𝑎𝑖𝐴𝑖−1
     

and 

                                                           𝐵𝑖 =
𝑎𝑖𝐵𝑖−1 + 𝑑𝑖

𝑏𝑖 − 𝑎𝑖𝐴𝑖−1
. 

 

Step 4: For 𝑖 = 𝑛,… ,1. Set   𝑢𝑛+1 = 0, and compute 

      

                                                           𝑢𝑖 = 𝐴𝑖𝑢𝑖+1 + 𝐵𝑖. 
            (The End of the First Line) 

 

Step 5:  Set the given vectors 

                                                          𝑎𝑁 = 𝑎,   

                                                           𝑎𝑝 = 𝑏,   

                                                           𝑎𝑆 = 𝑐,  

                                                           𝑢𝐸 = zero vector,  

                                                          𝑢𝑊 = 𝑢  (Result of First Line), 

                                                          𝑎𝑤𝑢𝑤 + 𝑎𝐸𝑢𝐸 + 𝑆𝑢 = 𝑑.        

 

 

Step 6: Repeated Steps 2, 3, and 4, then we get the result of second line.  

              (The End of the Second Line) 
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Step 7: Set the given vectors 

                                                           𝑎𝑁 = 𝑎,   

                                                            𝑎𝑝 = 𝑏,   

                                                            𝑎𝑆 = 𝑐,  

                                                            𝑢𝐸 = zero vector,  

                                                           𝑢𝑊 = 𝑢  (Result of Second Line), 

                                                          𝑎𝑤𝑢𝑤 + 𝑎𝐸𝑢𝐸 + 𝑆𝑢 = 𝑑.                      
 

Step 8:  Repeated Steps 2, 3, and 4, then we get the result of third line.  

              (The End of the Third Line) 

 

Step 9: Set the given vectors 

                                                           𝑎𝑁 = 𝑎,   

                                                            𝑎𝑝 = 𝑏,   

                                                            𝑎𝑆 = 𝑐,  

                                                            𝑢𝐸 = zero vector,  

                                                           𝑢𝑊 = 𝑢  (Result of Third Line), 

                                                           𝑎𝑤𝑢𝑤 + 𝑎𝐸𝑢𝐸 + 𝑆𝑢 = 𝑑. 

 

Step 10: Repeated Steps 2, 3, and 4, then we get the result of fourth line.  

               (The End of the Fourth Line) 

 

 

Iteration 2 

 

Step 1: Set the given vectors   

                                         𝑎𝑁 = 𝑎, 
                                                   𝑎𝑝 =  𝑏, 

                                                          𝑎𝑆 = 𝑐, 
                                                         𝑢𝑤 = zero vector,  

                                                          𝑢𝐸 = 𝑢 (Result of Second Line-Iteration 1), 

                                                         𝑎𝑤𝑢𝑤 + 𝑎𝐸𝑢𝐸 + 𝑆𝑢 = 𝑑. 
 

Step 2: For 𝑖 = 1, set 

                                                   𝐴0 = 0,  
                                                   𝐵0 = 0,   
             and compute 

                                                          𝐴1 =
𝑐1

𝑏1 − 𝑎1𝐴0
 

and 

                                                          𝐵1 =
𝑎1𝐵0+𝑑1

𝑏1−𝑎1𝐴0
. 

 

Step 3: For 𝑖 = 2,… , 𝑛  and compute    

                                                          𝐴𝑖 =
𝑐𝑖

𝑏𝑖 − 𝑎𝑖𝐴𝑖−1
     

and 
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                                                          𝐵𝑖 =
𝑎𝑖𝐵𝑖−1+𝑑𝑖

𝑏𝑖−𝑎𝑖𝐴𝑖−1
. 

 

Step 4: For 𝑖 = 𝑛,… ,1. Set   𝑢𝑛+1 = 0, and compute 

      

                                                           𝑢𝑖 = 𝐴𝑖𝑢𝑖+1 + 𝐵𝑖. 
           (The End of the First Line) 

 

Step 5:  Set the given vectors 

                                                           𝑎𝑁 = 𝑎,   

                                                            𝑎𝑝 = 𝑏,   

                                                            𝑎𝑆 = 𝑐,  

                                                            𝑢𝐸 = 𝑢 (Result of Third Line-Iteration 1),  

                                                           𝑢𝑊 = 𝑢 (Result of First Line), 

                                                           𝑎𝑤𝑢𝑤 + 𝑎𝐸𝑢𝐸 + 𝑆𝑢 = 𝑑.        

 

Step 6: Repeated Steps 2, 3, and 4, then we get the result of second line.  

              (The End of the Second Line) 

 

Step 7: Set the given vectors 

                                                           𝑎𝑁 = 𝑎,   

                                                            𝑎𝑝 = 𝑏,   

                                                            𝑎𝑆 = 𝑐,  

                                                            𝑢𝐸 = 𝑢 (Result of Fourth Line-Iteration 1),  

                                                           𝑢𝑊 = 𝑢 (Result of Second Line), 

                                                          𝑎𝑤𝑢𝑤 + 𝑎𝐸𝑢𝐸 + 𝑆𝑢 = 𝑑.                      
 

Step 8:  Repeated Steps 2, 3, and 4, then we get the result of third line.  

              (The End of the Third Line) 

 

Step 9: Set the given vectors 

                                                           𝑎𝑁 = 𝑎,   

                                                            𝑎𝑝 = 𝑏,   

                                                            𝑎𝑆 = 𝑐,  

                                                            𝑢𝐸 = Zero vector,  

                                                           𝑢𝑊 = 𝑢  (Result of Third Line), 

                                                           𝑎𝑤𝑢𝑤 + 𝑎𝐸𝑢𝐸 + 𝑆𝑢 = 𝑑. 

 

Step 10: Repeated Steps 2, 3, and 4, then we get the result of fourth line.  

               (The End of the Fourth Line) 

 

The entire iteration 2 procedure is repeated until a converged solution is obtained. 
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5. An Illustrative Examples 

 
In this section we are going to give illustrative examples. 

 

Example 5.1  
To solve the one dimensional general backward tri-diagonal linear systems Equation (9) of 

size 5 given below, by using the algorithm 4.1 and MS Excel. 

 

[
 
 
 
 
20 5 0 0 0
5 15 5 0 0
0
0
0

5
0
0

15
5
0

5 0
15 5
5 10

  

]
 
 
 
 

 

[
 
 
 
 
𝑢1

𝑢2
𝑢3

𝑢4

𝑢5]
 
 
 
 

=

[
 
 
 
 
1100
100
100
100
100 ]

 
 
 
 

  .  

 

Table 1. The Algorithm 4.1 for one dimensional grid 

 

Node a b c d 𝑨𝒊 𝑩𝒊 𝒖𝒊 

          0 0   

1 0 20 5 1100 0.25 55 64.2276 

2 5 15 5 100 0.3636 27.2727 36.9106 

3 5 15 5 100 0.3793 17.9310 26.5041 

4 5 15 5 100 0.3816 14.4737 22.6016 

5 5 10 0 100 0 21.3008 21.3008 

              0 
 

Example 5.2.  

 

To solve the two dimensional general backward tri-diagonal linear systems Equation (10) of 

size 4 along the north-south line-by-line fashion given below, by using the algorithm 4.2 and 

MS Excel. 

 

For First Line:                                                        For Second Line: 

      [

1000 250     0     0
 250 1250 250 0
 0 250 1250   250
0   0 250 1000

] [

𝑢1

𝑢2
𝑢3

𝑢4

] = [

624.87
875
1125

1375.12

]        [

750 250     0     0
 250 1000 250 0

      0 250 1000   250
       0   0   250 750

] [

𝑢5

𝑢6
𝑢7

𝑢8

] = [

−0.125
0
0

0.125

] 

 

 

 

For Third Line:                                                              For Fourth Line: 

[

750 250     0     0
 250 1000 250 0
 0 250 1000   250

   0   0     250     750

] [

𝑢9

𝑢10
𝑢11

𝑢12

] = [

−0.125
0
0

0.125

]           [ 

1000 250     0     0
 250 1250 250 0
 0 250 1250   250
  0   0      250 1000

] [

𝑢13

𝑢14
𝑢15

𝑢16

] = [

1124.87
1375
1625

1875.12

] 
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Table 2. The Algorithm 4.2 for two dimensional grid after first iteration using MS excel 

Lines Node a b c 𝑺𝒖 𝒂𝒘 𝒂𝑬 𝑻𝒘 𝑻𝑬 d 𝑨𝒊 𝑩𝒊 𝒖𝒊 

           
0 0 

 

1 

1 0 1000 250 624.87 0 250 0 0 624.87 0.25 0.6249 0.9202 

2 250 1250 250 875 0 250 0 0 875 0.2105 0.8684 1.1811 

3 250 1250 250 1125 0 250 0 0 1125 0.2088 1.1209 1.4855 

4 250 1000 0 1375.12 0 250 0 0 1375.12 0 1.7465 1.7465 

2 

5 0 750 250 -0.125 250 250 Result of 

First      

Line 

Iteration 

1  

0 229.91 0.3333 0.3066 0.5081 

6 250 1000 250 0 250 250 0 295.28 0.2727 0.4057 0.6045 

7 250 1000 250 0 250 250 0 371.38 0.2683 0.5074 0.7288 

8 250 750 0 0.125 250 250 0 436.75 0 0.8253 0.8253 

3 

9 0 750 250 -0.125 250 250 Result of 

Second 

Line 

Iteration 

1 

0 126.89 0.3333 0.1692 0.2721 

10 250 1000 250 0 250 250 0 151.13 0.2727 0.211 0.3086 

11 250 1000 250 0 250 250 0 182.21 0.2683 0.2522 0.358 

12 250 750 0 0.125 250 250 0 206.44 0 0.3946 0.3946 

4 

13 0 1000 250 1124.87 250 0 Result of 

Third     

Line 

Iteration 

1 

0 1192.89 0.25 1.1929 1.6809 

14 250 1250 250 1375 250 0 0 1452.16 0.2105 1.474 1.952 

15 250 1250 250 1625 250 0 0 1714.5 0.2088 1.7397 2.2703 

16 250 1000 0 1875.13 250 0 0 1973.77 0 2.5413 2.5413 

 

Table 3. The Algorithm 4.2 for two dimensional grid after second iteration using MS excel 

Lines Node a b c 𝑺𝒖 𝒂𝒘 𝒂𝑬 𝑻𝒘 𝑻𝑬 d 𝑨𝒊 𝑩𝒊 𝒖𝒊 

  
          

0 0 
 

1 

1 0 1000 250 624.87 0 250 0 Result 

of 

Second 

Line 

Iteration 

1 

751.88 0.25 0.7519 1.0983 

2 250 1250 250 875 0 250 0 1026.13 0.2105 1.0224 1.3857 

3 250 1250 250 1125 0 250 0 1307.21 0.2088 1.3052 1.7255 

4 250 1000 0 1375.12 0 250 0 1581.44 0 2.0128 2.0128 

2 

5 0 750 250 -0.125 250 250 
Result 

of First      

Line 

Iteration 

2 

Result 

of Third     

Line 

Iteration 

1 

342.47 0.3333 0.4566 0.7452 

6 250 1000 250 0 250 250 423.57 0.2727 0.5866 0.8657 

7 250 1000 250 0 250 250 520.87 0.2683 0.7164 1.0232 

8 250 750 0 0.125 250 250 601.98 0 1.1437 1.1437 

3 

9 0 750 250 -0.125 250 250 Result 

of 

Second 

Line 

Iteration 

2 

Result 

of 

Fourth     

Line 

Iteration 

1 

606.39 0.3333 0.8085 1.2858 

10 250 1000 250 0 250 250 704.41 0.2727 0.9889 1.4318 

11 250 1000 250 0 250 250 823.37 0.2683 1.1489 1.6238 

12 250 750 0 0.125 250 250 921.39 0 1.7698 1.7698 

4 

13 0 1000 250 1124.87 250 0 
Result 

of Third     

Line 

Iteration 

2 

0 1446.32 0.25 1.4463 2.0288 

14 250 1250 250 1375 250 0 0 1732.95 0.2105 1.7638 2.3298 

15 250 1250 250 1625 250 0 0 2030.94 0.2088 2.0644 2.6887 

16 250 1000 0 1875.13 250 0 0 2317.57 0 2.9897 2.9897 

 

The entire iteration 2 procedure is repeated and its converged solution is obtained after 7th 

iterations as shown in Table 4.  
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Table 4 The Algorithm 4.2 for two dimensional grid after seventh iteration using MS excel 

Node/ 

Iterations 
1 2 3 4 5 6 7 

1 0.9202 1.0983 1.1796 1.3735 1.4886 1.5517 1.5857 

2 1.1811 1.3857 1.4736 1.6797 1.7992 1.8637 1.8982 

3 1.4855 1.7255 1.8227 2.0456 2.1713 2.2378 2.2730 

4 1.7465 2.0128 2.1167 2.3518 2.4818 2.5498 2.5854 

5 0.5081 0.7452 1.3147 1.6559 1.8436 1.9452 1.9997 

6 0.6045 0.8657 1.4792 1.8360 2.0289 2.1322 2.1872 

7 0.7288 1.0232 1.6967 2.0753 2.2756 2.3812 2.4371 

8 0.8253 1.1437 1.8612 2.2554 2.4608 2.5682 2.6246 

9 0.2721 1.2858 1.7586 2.0139 2.1522 2.2267 2.2666 

10 0.3086 1.4318 1.9330 2.1973 2.3386 2.4140 2.4542 

11 0.3580 1.6238 2.1642 2.4412 2.5867 2.6636 2.7042 

12 0.3946 1.7698 2.3386 2.6246 2.7731 2.8509 2.8919 

13 1.6809 2.0288 2.1890 2.2749 2.3213 2.3462 2.3596 

14 1.9520 2.3298 2.4980 2.5864 2.6336 2.6588 2.6722 

15 2.2703 2.6887 2.8678 2.9598 3.0082 3.0337 3.0473 

16 2.5413 2.9897 3.1767 3.2712 3.3204 3.3463 3.3599 

 

 

 

6. Conclusion 

 
The technique described here is very effective and easy to implement as compared to costly 

software such as MAPLE, MATHMATICA and MATLAB for solving a backward tri-

diagonal finite volume structured grid linear systems which appear in many applications. 
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