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Abstract

A mathematical model describing the spread of spilled oil through the soil is discussed. The spread
of spilled oil in soil is controlled by the flow of water and is described by multiphase equations.
In this context, the two-phase flow characteristics of oil-water flow with varying viscosity in the
subsurface coupled to an advective-diffusion equation are examined to study the transport of oil.
The terms that model the interaction between the multiple phases are introduced at the boundary,
such as the slip condition at the porous-fluid interface, shear stress condition at the fluid-fluid
interface, and the continuity of velocity at both the interfaces. The effect of various physical
parameters such as Schmidt number, retardation factor, viscosity ratio, porous and slip parameter
on the velocity and concentration profiles are discussed in detail with the help of graphs. The
surface plots of velocity and concentration of oil against axial distance at different time are also
analyzed. The obtained results show that the velocity of oil accelerates linearly with axial length
and there is a decrease in the concentration of the spilled oil through the media. The validity
of the results obtained is verified by comparison with available experimental result, and good
agreement is found.

Keywords: Spilled oil; oil-water movement; concentration; porous media; multiple phases; axial
distance.
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1. Introduction

Oil became a source of power for transport due to the development in technology. Accidents
involving spillages of oil onto the ground surface have the potential to create serious problems
in terms of both soil and groundwater contamination. The identification processes of migration
and degradation of oil products in soil is of great importance as it poses a health risk to humans,
plants and animal lives. Most oils act as non-aqueous phase liquids (NAPLs) and their migration
in the subsurface has been the focus of numerous studies.

The complex oil spill phenomena consists of three phase fluid system with air, oil and water
existing in the soil. The three-phase system may be evaluated as a combination of two phase
systems consisting of air/oil, air/water and oil/water. Many combinations govern the behavior of
these systems in the soil. Some of them in the literature include, numerical model of multiphase
immiscible flow for evaluating non-aqueous phase liquids (NAPL) such as petroleum hydrocar-
bons and water phase flow in a two phase (water, NAPL) and three phase (air, water and NAPL)
system (Faust, 1985; Faust et al., 1989; Osborne and Sykes, 1986; Kuppusamy et al., 1987;
Kaluarachchi and Parker, 1989; Panday et al., 1994). Li and Zienkiewicz (1990) and Rahman
and Lewis (1999) extended the above study for deforming soil. Sabbah et al. (2004) studied the
transport of polycyclic aromatic hydrocarbons in porous medium in the presence of dissolved
organic matter and predicted the sorption constants of polycyclic aromatic hydrocarbons to soil
and their binding constants to dissolved organic matter using breakthrough curves. Mukherjee
and Shome (2009) presented an analytical solution of fingering phenomenon arising in double
phase flow of water injected with constant velocity into a dipping oil saturated porous medium
using calculus of variation and similarity theory.

The multiphase equation of fluid movement describes how quickly the infiltration would occur.
A multiphase fluid flow equation is needed to calculate infiltration rate based on Darcy’s law
combined with the fluid constitutive theory, which is made from the permeability functions and
retention relations. The flow of each phase obeys Darcy’s law which states that the flow is linearly
proportional to the pressure gradient.

The objective of the present study is to achieve fundamental understanding of the two-phase flow
system in the subsurface that describe the transport of oil components dissolved in the water that
occupies the void space or part of it. In an oil spill two different types of flows occur. One is the
flow in the vertical direction down to the water table, under the influence of gravity; the other is
the lateral spreading which occurs on the subsurface/on top of the water table. In this paper, we
assume that the oil spill flows on a flat surface in a horizontal direction. Hochmuth and Sunada
(1985) explained that the Dupuit-Forchheimer approximation holds this by assuming that the flow
is strictly horizontal and is valid where vertical head gradients and components of flow are small
relative to the horizontal (i.e. gradual water-table slopes). We restrict ourself to two-dimensional
models of oil filtration in soil, which show quite well all main properties of three-dimensional
models. This paper introduces a number of useful equations to study the spread of oil in soil.
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2. Problem Formulation

A spill will spread to a different context if the surface is either smooth or rough with many
surface depressions. Generally in nature soils seldom have a flat surface and almost always
they have surfaces with complex configuration. In urban conditions there are many cases where
spilled oil covers the flat surface as positive pit rectangular type. Hence, we use a rectangular
coordinate system (x, y) to model this flow, where, x and y denote the horizontal and vertical
coordinates, respectively. The geometry under consideration consists of three-layer regions: region
I (h2 ≤ y ≤ H) and II (h1 ≤ y ≤ h2) are assumed to be fluid regions containing oil and water,
with densities ρ1 and ρ2, viscosities µ1 and µ2, respectively and region III (0 ≤ y ≤ h1) is the
subsurface considered to be a fluid saturated porous medium initially filled with water as shown
in Figure 1. For each layer, conservation of mass and momentum equations with appropriate
boundary conditions at the domain boundary and interface are considered. The subsurface soil
is considered to be a homogeneous porous medium bounded by fluid layers and the fluids are
supposed to be incompressible and the flow is transient. These flows are modeled via solution
of the Navier-Stokes equations coupled to a advective-diffusion equation for the concentration of
the more viscous fluid (i.e. oil). Through an imposed pressure-gradient, the initially filled water
is displaced by oil. The viscosity is modeled as an exponential function of the concentration of
oil, while the density contrast is neglected. Under these assumptions, the governing equations
are rendered as follows:

Figure 1: Physical configuration
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where, u1 and v1 are the velocities of oil in region I, u2 and v2 are the velocities of oil in region
II, u3 and v3 are the velocities of oil in region III along the x and y directions, respectively, t
is the time, c is the concentration of oil in water, s is the concentration of adsorbed oil in soil,
pi represents the pressure on the regions I, II and III for i = 1, 2, 3, respectively, ρi represents
the density on the regions I and II for i = 1, 2, respectively, ρb is the soil bulk density, βw is
the volumetric water content of soil, D is the mass diffusivity and kp is the permeability of the
medium. Here, the density (ρ) and viscosity (µ) of region III are scaled on that of less viscous
fluid (i.e., water).

Accounting for equilibrium in linear sorption process, the retardation factor R = 1+
ρbkd
βw

, where,

s = kdC, kd is the adsorption coefficient, reduces equation (7) to
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The solution to the governing equations also require specification of boundary conditions. The
boundary effects are modeled using Beavers-Joseph slip condition (Beavers and Joseph, 1967)
at the soil-water interface (y = h1), shear stress condition at the oil-water interface (y = h2)

and the continuity of velocity at both the interfaces. Under these assumptions and appropriate
boundary conditions at the domain boundary, the velocity and concentration fields are defined at
the boundary as

u1 = v0(1 + εei(αx+ωt)), v1 = 0 at y = H, (9)
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where αp is the slip parameter, α is the stream-wise wave number, ω is the frequency parameter,
ε is the perturbation parameter, and i represents the imaginary part.
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We now introduce the following non-dimensional quantities:
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where H, v0, and c0 are the characteristic height, velocity, and concentration respectively.

Making use of the non-dimensional variables in equations (1) to (6) and (8), neglecting the ’*’
symbol gives the following.
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where i = 1, 2.
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where Rei =
ρiv0H

µi
represents the Reynolds number on the Regions I, II and III for i = 1, 2, 3,

respectively, Sc =
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ρ2D
is the Schmidt number and σ =
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is the porous parameter.

Accordingly the non-dimensional boundary conditions are:
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3. Method of Solution

We decompose the flow and the concentration variables into steady base state quantities (des-
ignated by upper-case letters) and two-dimensional linear perturbations (designated by a hat)
as

(ui, vi, pi, c, µ) = (UBi
(y), 0, PBi

(x), CB(y), µB(y))+(ûi, v̂i, p̂i, ĉ, µ̂)(y) ε e
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for i = 1, 2, 3. In equation (24), the base state viscosity is given by µB = ecB ln m, where,
m = µ1

µ2
is the viscosity ratio and the perturbed part viscosity is neglected for the sake of brevity.

Substituting (24) into equations (13) to (19), neglecting the higher order of (ε2) and equating the
zeroth and first order terms, we obtain the following set of ordinary differential equations.

Base State:

By assuming a steady, parallel, fully developed flow, the base state equations obtained are:
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The solution of the above equations yielding the base state velocities and concentration are
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UB3 = g11e
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− y

h1 , (34)

CB =
y
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. (35)

The required constants gi (i = 4 to 13) and related constants gi (i = 14 to 19) and fi (i = 1 to 9)

are defined in the Appendix. Assuming uniform pressure (p1 = p2 = p3) in all the three
regions, the dimensionless pressure gradient is determined satisfying the condition
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0
UB3dy +∫ h2
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∫ 1
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UB1dy = 1.

Perturbed Part:

Restricting our attention to the real parts of the solutions for the perturbed quantities, re-expressing
them in terms of the stream-function (ûi, v̂i) = (φ̂iy,−φ̂ix) for i = 1, 2, 3 and eliminating the
pressure perturbations yields the following set of equations (after suppressing hat (ˆ) symbols):
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where the prime ( ′ ) denotes differentiation with respect to y.

The above equations (36) to (38) are solved numerically subject to the boundary conditions
outlined below.
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φ
′′

3 = −αpσ(φ
′

3 − φ
′

2), φ3 = 1, c = 1 at y = 0 . (42)

4. Results and Discussion

We have performed computations for various pertinent parameters to understand the nature of
spread of oil and its characteristics in the two-phase flow. Some of the qualitative interesting
features are presented graphically.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

u

y

m=38

m=32

m=26

Figure 2: Effect of viscosity ratio on axial velocity
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Figure 3: Effect of porous parameter on axial velocity
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Figure 4: Effect of Schmidt number on concentration distribution

The axial velocity profiles for different viscosity ratio and porous parameter values are exhibited
in Figures 2 and 3. The concentration distributions are described in Figures 4 to 8 for different
Schmidt number, retardation factor, viscosity ratio, porous and slip parameter values. The surface
plots for both the velocity and concentration are pictured in Figures 9 and 10.

The velocity of oil for different viscosity ratios is displayed in Figure 2. The effect of viscosity
ratio enhances the velocity in region I and II. It is observed that the viscosity ratio is more
significant in the region III. Here we see that the viscosity ratio enhances the velocity in the
lower subsurface and suppresses the velocity in the upper subsurface. Physically as the viscosity
ratio increases the fluid becomes more viscous reducing the velocity in the upper subsurface.
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Figure 5: Effect of retardation factor on concentration distribution
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Figure 6: Effect of viscosity ratio on concentration distribution

Figure 3 show the velocity of oil for different porous parameter. It is seen that the effect of porous
parameter are similar to that of the viscosity ratio. The discontinuity in the slope of the axial
velocity at the fluid-porous interface is due to the slip effect. In the upper subsurface, the velocity
decreases for increasing porous parameter indicating the fact that the effect of porosity is to retard
the flow. This is due to the frictional drag resistance against the flow that decelerates the fluid flow
in the porous region. As the permeability is inversely proportional to porous parameter, increase
in porous parameter is due to decrease in permeability. The result agrees with the statement of
Johnson et al. (1989) which states that the contaminants (the term ”contaminants” is used broadly
including NAPL in their study) move rapidly along the layers with higher permeability and more
slowly along the lower permeability layers.

The effect of decreasing the value of Schmidt number from 10 to 0.1, thereby rendering the flow
more diffusive, while keeping rest of the parameters unaltered can be seen through Figure 4.
The waviness in the concentration distribution for higher Schmidt number indicates decreasing
relative significance of diffusion through an increase in Schmidt number.

From Figure 5, it can be observed that the variation of the retardation factor also has a profound
effect on the concentration profile as the sorption between oil components and soil surface plays
an important role in the transport of oil. It can be noticed that the retardation factor R retards
the oil concentration which means that at higher concentrations, retardation factor is less and at
lower concentrations, retardation factor is greater.

The results of the present analysis agrees with the similar experimental results of Johnson et al.
(1989) stating that the contaminant concentration arriving at a certain point at a certain time is
less than it would have been for a conservative (non-retarded) contaminant. They did not consider
the coupling and variable viscosity, which are included in our study.

Figure 6 describing the variation of viscosity contrast on concentration is found to be invariant.
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Figure 7: Effect of porous parameter on concentration distribution
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Figure 8: Effect of slip parameter on concentration distribution

The effect of porous parameter on the concentration profile is illustrated through Figure 7. It
reveals that porous parameter enhances the concentration in the subsurface. Figure 8 represent-
ing the slip parameter effect on concentration shows that the slope of concentration remains
remarkably linear, indicating approximately constant spreading.

The spatiotemporal evolution of axial velocity and concentration surface plots are depicted in
Figures 9 and 10, respectively. A surface plot is used to explore the potential relationship between
the predictor variables (x and t) and the response variable (axial velocity and concentration)
represented by a smooth surface. Based on the regression model, the surface plot provides a clearer
concept of the response surface. Figure 9 reveals that velocity of oil accelerates linearly with
axial length. From the Figure 10, we come with the understanding that as the color gets darker,
the response increases providing the information that there is a decrease in the concentration of
the spilled oil through the subsurface.

5. Conclusion

In the present study the movement of oil flow and its characteristics in the subsurface are exam-
ined through a two-phase flow. The governing non-linear equations are solved by linearization
technique wherein the flow is assumed to be in two parts, i.e. a base part and a perturbed part.
The exact solutions are obtained for the base part, the perturbed part is solved numerically and
the results are represented graphically for various governing parameters such as Schmidt number,
retardation factor, viscosity ratio, porous and slip parameter.

In general, the analysis of the obtained results showed that the flow field is significantly influenced
by these parameters, in particular, the effect is more significant in the upper subsurface. This
can be identified by the Figures 2 and 3 representing the velocity of oil. Here we observe that
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Figure 9: Spatiotemporal evolution for velocity surface plot

Figure 10: Spatiotemporal evolution for concentration surface plot

the velocity of oil decreases for increase in both the viscosity ratio and porous parameter in
the upper subsurface. This agrees with the result of Johnson et al. (1989) which states that the
contaminants move rapidly along the layers with higher permeability and more slowly along the
lower permeability layers.

The concentration of oil in the subsurface is invariant for different viscosity ratio and the
porous parameter enhances the concentration. We also see that the retardation factor retards
the concentration of oil. These results of the present analysis agree with the results for a one
dimensional problem encountered by Johnson et al. (1989) which states that the contaminant
concentration arriving at a certain point at a certain time is less than it would have been for a
conservative (non-retarded) contaminant.

These investigations provide valuable information regarding the source, extent, and strength of
subsurface contamination, its potential impact on groundwater, and implications for remediation.
This model serves as a basis to monitor the rate of hydrocarbon contaminant in unsaturated soil,
migrating through multi-flow in the soil-water environment.
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Appendix

g4 =
1

g15
(f9 − (g9 + αpσ)g11 − (g10 − αp σ)g12)

g5 = f1 − g4

g6 = mg4 − f3

g7 = (h2 − 1− h2m)g4 − (f2 − f1 − h2f3)

g8 =
ln[m]

h1

g9 =
−g8 +

√
(g28 + 4σ2)

2

g10 =
−g8 −

√
(g28 + 4σ2)

2

g11 =
1

g16
(g14f7 +mf8 − g17g12)

g12 =
g14g18f7 +mf8g18 − g15g16f8 − g14g16f9

g17g18 − g16g19

g13 =
g3h

2
1

(ln[m] + g9h1)(ln[m] + g10h1)

g14 = −αpσh1m+ g15

g15 = −αpσ(h2 − 1− h2m)

g16 = g14g9e
g9h1 +m(g9 − αpσ)e

g9h1

g17 = g14g10e
g10h1 +m(g10 − αpσ)e

g10h1

g18 = g15(g9 − αpσ)e
g9h1 − g14(g9 + αpσ)

g19 = g15(g10 − αpσ)e
g10h1 − g14(g10 + αpσ)

f1 = 1− g1
2

f2 =
h22
2
(g2 − g1)

f3 = h2(g2 −mg1)

f4 = g2h1 +
g8g13
m

f5 =
(g8 + αpσ)g13

m
− αpσg2h

2
1

2
f6 = (g8 − αpσ)g13

f7 = f4 − f3

f8 = f5 − αpσh1f3 − αpσ(f2 − f1 − h2f3)

f9 = f6 − αpσ(f2 − f1 − h2f3)


