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Abstract

Let X be a Hausdorff topological vector space and f be a real valued continuous function on
X. In this paper we introduce and study the concept of f−simultaneous approximation of a
nonempty subset K of X as a generalization to the problem of simultaneous approximation.
Further we present some results regarding f−simultaneous approximation in the quotient space.
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1. Introduction

Let K be a subset of a Hausdorff topological vector space X and f be a real valued continuous
function on X . For x ∈ X, set FK(x) = inf

k∈K
f(x − k). A point k0 ∈ K is called f−best

approximation to x in K if FK(x) = f(x − k0). The set P f
K(x) = {k0 ∈ K : FK(x) =

f(x − κ0)} denotes the set of all f−best approximations to x in K. Note that this set may
be empty. The set K is said to be f−proximinal (f − Chebyshev) if for each x ∈ X, P f

K(x)

is non-empty (singleton) . The notion of f−best approximation in a vector space X was given
by Breckner and Brosowski and in a Hausdorff topological vector space X by Narang. For a
Hausdorff locally convex topological vector space and a continuous sublinear functional f on X,
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Breckner, Brosowski, and Govindarajulu proved certain results on best approximation relative to
the functional f. By using the existence of elements of f−best approximation some results on
fixed point were proved by Pai and Veermani.

As a generalization to the problem of simultaneous approximation (see Saidi and Singer), we
introduce the concept of best f−simultaneous approximation as follows:

Definition 1.

Let f be a real valued continuous function on a Hausdorff topological vector space X. A subset
A of X is called f−bounded if there exists M > 0 such that |f(x)| ≤M every x ∈ A.

Note that f−bounded sets need not be bounded in the classical sense, for example if f(x) = e−x,

the set [0,∞) is an f−bounded subset of real numbers.

Definition 2.

Let X be a Hausdorff topological real vector space, f be a real valued continuous function
on X , and K be a non-empty subset of X. A point k0 ∈ K is called f−best simultaneous
approximation in K if there exists an f−bounded subset A of X such that

FK(A) = inf
k∈K

sup
a∈A
|f(a− k)| = sup

a∈A
|f(a− k0)| .

The set of all f−best simultaneous approximations to an f−bounded subset A of X in K is
denoted by

P f
K(A) =

{
k ∈ K : FK(A) = sup

a∈A
|f(a− k)|

}
.

The set K is called f−simultaneously proximinal (f − simultaneously Chebyshev) if for each
f−bounded set A in X, P f

K(A) 6= φ (singleton) .

We note that if f(x) = ‖x‖ (f(x) = ‖x‖+ ε) , then the concept of f−best approximation is
precisely best approximation, i.e. best ε-approximation (see Khalil, Rezapour, Singer and others).

A set K is said to be inf-compact at a point x ∈ X, (see Pai and Veermani), if each minimizing
sequence in K (i.e. f (x− kn)→ FK(x)) has a convergent subsequence in K. The set K is
called inf-compact if it is inf-compact at each x ∈ X. A subset K of X is called f−compact,
(see Moghaddam), if for every sequence {kn} in K, there exist a subsequence {kni

} of {kn}
and k0 ∈ K such that f(kni

− k0)→ 0. It is easy to see that if K is f−compact or inf-compact,
then K is f−simultaneously proximinal.

In this paper we introduce and study the concept of f−simultaneous approximation of a subspace
K of a Hausdorff topological real vector space X, and existence and uniqueness. Certain results
regarding f−simultaneous approximation in quotient spaces is obtained by generalizing some of
the results in Moghaddam.

Throughout this paper X is a Hausdorff topological real vector space and f is a real valued
continuous function on X .
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2. f -Simultaneous Approximation

In this section we give some characterization of f−proximinal sets in X. We begin with the
following definitions:

Definition 3.

A function f : X → R is called
(1) absolutely subadditive if |f(x+ y)| ≤ |f(x)|+ |f(y)| for all x, y ∈ X.
(2) absolutely homogeneous if f(αx) = |α| f(x), for all x ∈ X and all α ∈ R.

Definition 4.

A subset K of X is called f−closed if for all sequences {km} of K and for all x ∈ X such
that f (x− km)→ 0, we have x ∈ K.

Theorem 1.

Let K be a subset of X . Then,
(1) FK+y(A+ y) = FK(A), for all f−bounded sets A ⊂ X, y ∈ X.
(2) P f

K+y(A+ y) = P f
K(A) + y, for all f−bounded sets A ⊂ X, y ∈ X.

(3) K is f−simultaneously proximinal (f−simultaneously Chebyshev) if and only if K + y is
f−simultaneously proximinal (f−simultaneously Chebyshev) for every y ∈ X.

Moreover if f is an absolutely homogeneous function, then
(4) FλK(λA) = |λ|FK(A), for all f−bounded sets A ⊂ X and λ ∈ R.
(5) P f

λK(λA) = λP f
K(A), for all f−bounded sets A ⊂ X and λ ∈ R.

(6) K is f−simultaneously proximinal (f − simultaneously Chebyshev) if and only if λK is
f−simultaneously proximinal (f−simultaneously Chebyshev), λ ∈ R .

Proof:

(1) Let A ⊂ X, f−bounded set. Then

FK+y(A+ y) = inf
w∈K

sup
a∈A
|f ((a+ y)− (w + y))| = FK(A).

(2) The equation

sup
a∈A
|f(a− k0)| = inf

k∈K
sup
a∈A
|f((a+ y)− (k + y))| = inf

k∈K
sup
a∈A
|f(a− k)| ,

implies that k0 + y ∈ P f
K+y(A+ y) if and only if k0 ∈ P f

K(A). Thus

P f
K+y(A+ y) = P f

K(A) + y.

(3) This follows immediately from part two.
(4) Let A ⊂ X be an f−bounded set, λ ∈ R. Then

FλK(λA) = inf
k∈K

sup
a∈A
|f(λa− λk)| = |λ| inf

k∈K
sup
a∈A
|f(a− k)| = |λ|FK(A).
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(5) If λ = 0, we are done. If λ 6= 0 and k0 ∈ P f
λK(λA), then k0 ∈ λK and

sup
a∈A
|f(λa− k0)| = inf

k∈K
sup
a∈A
|f(λa− λk)| .

This implies that

sup
a∈A

∣∣∣∣f(a− 1

λ
k0)

∣∣∣∣ = FK(A),

which implies that
1

λ
k0 ∈ P f

K(A).

(6) This follows immediately from part 5. �

Theorem 2.

Let f be an absolutely homogeneous real valued function on X and M be a subspace of X .
Then,
(1) FM(λA) = |λ|FM(A), for all f -bounded sets A ⊂ X and λ ∈ R− {0}.
(2) P f

M(λA) = λP f
M(A), for all f -bounded sets A ⊂ X and λ ∈ R− {0}.

Proof:

(1) Let A ⊂ X be an f -bounded set and λ 6= 0 ∈ R. Then,

FM(λA) = inf
m∈M

sup
a∈A
|f(λa−m)| = |λ| inf

m′∈M
sup
a∈A

∣∣∣f(a−m′
)
∣∣∣ = |λ|FM(A).

(2) Let m0 ∈ P f
M(λA). Then,

sup
a∈A
|λ|
∣∣∣∣f(a− 1

λ
m0)

∣∣∣∣ = sup
a∈A
|f(λa−m0)|

= inf
m∈M

sup
a∈A
|f(λa−m)|

= inf
m′∈M

sup
a∈A
|λ|

∣∣∣f(a−m′
)
∣∣∣ .

Therefore,

sup
a∈A

∣∣∣∣f(a− 1

λ
m0)

∣∣∣∣ = inf
m′∈M

sup
a∈A

∣∣∣f(a−m′
)
∣∣∣ = FM(A),

for all λ ∈ R− {0}, which implies that
1

λ
m0 ∈ P f

M(A), and so m0 ∈ λ P f
M(A). �

For a subset K of X, let us define K̂F such that

K̂F =

{
A ⊂ X : FK(A) = sup

a∈A
f(a)

}
.

Using this we prove the following theorem characterizing f−simultaneously proximinal sets.

Theorem 3.

Let K be a subspace of X. Then K is f−simultaneously proximinal in X if and only if every
f−bounded subset A of X can be written as B + k for some k ∈ K and B ∈ K̂F .
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Proof:

Suppose the condition hold. Let A ⊂ X be an f−bounded subset of X. By assumption there
exists k0 ∈ K and B ∈ K̂F such that A = B + k0. Hence A− k0 ∈ K̂F . Therefore,

sup
a∈A
|f(a− k0)| = FK(A− k0)

= inf
k∈K

sup
a∈A
|f(a− k0 − k)|

= inf
k′∈K

sup
a∈A
|f(a− k′)| = FK(A).

Hence, K is f−simultaneously proximinal.

Conversely, suppose K is f−simultaneously proximinal and A ⊂ X be an f−bounded subset
of X. Then there exists k0 ∈ K such that

sup
a∈A
|f(a− k0)| = inf

k∈K
sup
a∈A
|f(a− k)| = inf

k′∈K
sup
a∈A

∣∣∣f(a− (k
′
+ k0))

∣∣∣
where k = k′ + k0. Hence,

sup
a∈A
|f(a− k0)| = FK(A− k0).

Consequently, A− k0 ∈ K̂F . So there exists B ∈ K̂F such that A− k0 = B or A = B + k0. �

Theorem 4.

Let f be a real valued continuous function on X such that x = 0 if and only if f(x) = 0. If K
is f−simultaneously proximinal, then K is f−closed.

Proof:

Let {km} be a sequence of K and x ∈ X, such that f(x− km)→ 0. Taking A = {x} , we have

FK(A) = inf
k∈K

sup
a∈A
|f(a− k)| ≤ |f(x− km)| → 0.

Since K is f−simultaneously proximinal, there exists k0 ∈ K such that

FK(A) = |f(x− k0)| = 0.

Hence, f(x− k0) = 0. Using assumption it follows that x− k0 = 0. Therefore, x = k0 ∈ K and
K is f−closed. �

3. f−Simultaneous Approximation in Quotient Space

Let M be a closed subspace of X. Then a function f̃ : (X/M)→ R can be defined as follows:

f̃(x+M) = inf
y∈M
|f(x+ y)| .

Proposition 1.

Let M be a closed subspace of X. If A is f−bounded in X, then A/M is f̃−bounded in X/M.
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Proof:

Let A be an f−bounded subset in X. Since M is a subspace, for x+M ∈ A/M∣∣∣f̃(x+M)
∣∣∣ = inf

y∈M
|f(x+ y)| ≤ |f(x)| .

Consequently since A is an f−bounded subset of X, it follows that A/M is f̃−bounded in
X/M. �

Theorem 5.

Let M a closed subspace of X. If B is f̃−bounded in X/M, then there exists an f−bounded
subset A of X such that B = A/M.

Proof:

Let B be a nonempty f̃−bounded in X/M . Let C =
⋃
b∈B

b.

Claim: B = {x = x+M : x ∈ C} . Indeed if b ∈ B, then b = xb +M for some xb ∈ X. But
M is a subspace. Thus xb = xb +0 ∈ xb +M ⊂ C. Hence b = xb +M ∈ {x = x+M : x ∈ C}
and B ⊆ {x = x+M : x ∈ C} . Similarly if x ∈ C, then x ∈ bx +M for some bx +M ∈ B.
This implies that x = bx+mx for some mx ∈M. Hence x+M = bx+mx+M = bx+M ∈ B.
Therefore, {x = x+ F : x ∈ C} ⊆ B.

Now clearly C is not bounded unless M is trivial. Note that B is f̃−bounded. So there exists
K > 0 such that

∣∣∣f̃(b)∣∣∣ ≤ K for all b ∈ B. Consider the set A = {x ∈ C : |f(x)| ≤ K + 1} ⊆ C.

Now we claim that for all x ∈ C,

x ∩ A = (x+M) ∩ A 6= φ.

Given x ∈ C. Since ∣∣∣f̃(x+M)
∣∣∣ = inf

m∈M
|f (x+m)| ≤ K,

there exists mx ∈M such that |f (x+mx)| < K+1. But x+mx ∈ x+M ⊆ C. Hence x+mx ∈
(x+M)∩A 6= φ. Claim B = A/M. Since A ⊆ C, we have A/F ⊆ {x = x+ F : x ∈ C} = B.

To show the other inclusion, let b ∈ B = {x = x+M : x ∈ C} . Then b = xb +M for some
xb ∈ C. But (xb +M) ∩ A 6= φ. Thus there exists a ∈ A such that a = xb + ma ∈ xb +M.

Therefore, b = xb +M = (xb +ma) +M = a +M ∈ A/M. Hence B ⊆ A/M. Consequently
A/M = B. �

Theorem 6.

Let K be a subspace of X and M be a closed f−proximinal subspace of K. If k0 is a point of
f−best simultaneous approximation to A ⊂ X in K, then k◦ +M is an f̃−best simultaneous
approximation to A/M in K/M.
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Proof:

Suppose k0+M is not f̃−best simultaneous approximation to A/M in K/M. Then, for at least
k ∈ K, say k1 ∈ K, we have

sup
a∈A

f̃(a− k1 +M) < sup
a∈A

f̃(a− k0 +M).

Since
sup
a∈A

f̃(a− k0 +M) = sup
a∈A

inf
m∈M

|f(a− k0 +m)| ≤ sup
a∈A
|f(a− k0)| ,

we have
sup
a∈A

f̃(a− k1 +M) = sup
a∈A

inf
m∈M

|f(a− k1 +m)| < sup
a∈A
|f(a− k0)| .

But M is f−proximinal, so for some m0 ∈M we have

sup
a∈A
|f(a− k1 +m0)| = sup

a∈A
inf
m∈M

|f(a− k1 +m)| < sup
a∈A
|f(a− k0)| .

Since M ⊂ K, it follows that k1−m0 ∈ K. Therefore, k0 not f−best simultaneous approximation
to A in K, which is a contradiction. �

Corollary 1.

Let K be a subspace of X and M is a closed f−proximinal subspace of K. If K is f−simultaneously
proximinal in X, then K/M is f̃−simultaneously proximinal in X/M.

Proof:

Let B be an f̃−bounded subset of X/M. Then, by Theorem 5, there exists f−bounded subset
A ⊂ X such that B = A/M. If K is f−simultaneously proximinal in X, then there exists at least
k0 ∈ K such that k0 is f−best simultaneous approximation to A in K. By Theorem 6, k0 +M

is an f̃−best simultaneous approximation to A/M in K/M , so K/M is f̃−simultaneously
proximinal in X/M. �

Theorem 7.

Let K be a subspace of X and M is a closed f−proximinal subspace of K. If K/M is
f̃−simultaneously proximinal in X/M, then K is f−simultaneously proximinal in X.

Proof:

Let A be an f− bounded subset of X. By Proposition 1, A/M is f̃−bounded in X/M. Since
K/M is f̃−simultaneously proximinal in X/M, then there exists k0 + M ∈ K/M such that
k0 +M is f̃−best simultaneous approximation to A/M from K/M, so

sup
a∈A

f̃(a− k0 +M) = inf
k∈K

sup
a∈A

f̃(a− k +M)

= inf
k∈K

sup
a∈A

inf
m∈M

|f(a− k +m)|

≤ inf
k∈K

sup
a∈A
|f(a− k +m)|

= inf
k∈K

sup
a∈A
|f(a− k′)| , (1)
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where, k′ = k −m ∈ K. Since M is f−proximinal, there exists m0 ∈M such that

sup
a∈A
|f(a− k0 −m0)| = sup

a∈A
inf
m∈M

|f(a− k0 +m)| = sup
a∈A

f̃(a− k0 +M). (2)

Consequently, combining (1) and (2) since M ⊂ K, it follows that

sup
a∈A
|f(a− k0 −m0)| ≤ inf

k′∈K
sup
a∈A
|f(a− k′)|

≤ sup
a∈A
|f(a− k0 −m0)|

Hence,
sup
a∈A
|f(a− k0 +m0)| = inf

k∈K
sup
a∈A
|f(a− k′)|

So k0 +m0 is an f−best simultaneous approximation to A from K and K is f−simultaneously
proximinal in X. �

Theorem 8.

Let W and M be two subspaces of X . If M is a closed f−proximinal subspace of X, then the
following assertions are equivalent:
(1) W/M is f̃−simultaneously proximinal in X/M,

(2) W +M is f−simultaneously proximinal in X.

Proof:

(1)⇒ (2). Since (W+M)/M = W/M and M are f−simultaneously proximinal, using Theorem
7, it follows that W +M is f−simultaneously proximinal in X.

(2) ⇒ (1). Since W + M is f−simultaneously proximinal and M ⊆ W + M, by Corollary
1, (W +M)/M = W/M is simultaneously f−proximinal. �

Theorem 9.

Let K,M be two subspaces of X such that, M ⊂ K. If M is closed f−simultaneously proximinal
in X and K is f -simultaneously Chebyshev in X , then, K/M is f̃−simultaneously Chebyshev
in X/M.

Proof:

Suppose not. Then there exists A, f−bounded subset of X such that A/M ∈ X/M is f̃−bounded
and k1 +M, k2 +M ∈ P f̃

K/M (A/M) such that k1 +M 6= k2 +M. Thus k1 − k2 /∈ M . Since
M is an f−simultaneously proximinal in X, then

P f
M(A− k1) 6= φ, and P f

M(A− k2) 6= φ.

Let m1 ∈ P f
M(A− k1), and m2 ∈ P f

M(A− k2). By Theorem 7, k1+ m1 and k2 +m2 are f−best
simultaneous approximations to A from K. Since K is f−simultaneously Chebyshev in X , then
k1 + m1 = k2 +m2 and hence k1 − k2 = m1 −m2 ∈M, which is a contradiction. �
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Definition 5.

A subset K of X is called f−quasi-simultaneously Chebyshev if P f
K(A) is nonempty and f -

compact set in X for all f−bounded subsets of X.

Theorem 10.

Let M be a closed f−simultaneously proximinal subspace of X and K is f−quasi-simultaneously
Chebyshev of X such that M ⊂ K. Then, K/M is f̃−quasi-simultaneously Chebyshev in X/M.

Proof:

Since K is f−simultaneously proximinal in X, By Corollary 1, K/M is f̃−simultaneously
proximinal in X/M. Let B be an f̃−bounded subset of X/M. Then, by Theorem 5, B = A/M

for an f−bounded subset A of X. If (kn +M) a sequence in P f̃
K/M(A/M), by the proof of

Theorem 7, for every n, there exists mn ∈ M such that kn +mn = k′n ∈ P
f
K(A). But since M

is a subspace, we have
k′n +M = kn +mn +M = kn +M.

Since K is f−quasi-simultaneously Chebyshev in X, the sequence {kn} has a subsequence {kni}
such that f(kni − k0)→ 0 for some k0 ∈ P f

K(A). But

f̃(kni − k0 +M) ≤ |f(kni − k0)| → 0.

Therefore,
f̃(kni − k0 +M)→ 0

and
f̃((kni +M)− (k0 +M))→ 0.

Hence, P f̃
K/M(A/M) is f̃ -compact and K/M is f̃−quasi-simultaneously Chebyshev. This com-

plete the proof. �

Definition 6.

A topological vector space X is said to have the f− property if every f−bounded sequence in
X has an f− convergent subsequence, where f is a real valued continuous function on X.

Note that the space X = l2 has the f−property for every projection f : X → R, and if
f(x) = ‖x‖ , then every finite dimensional Banach space has the f−property.

Proposition 2.

Let f be an absolutely homogeneous subadditive continuous real valued function on a topological
vector space X and K be an f−closed subspace of X. Then, for any f−bounded subset A of
X, P f

K(A) is f−closed.

Proof:

Let K be an f−closed subspace of X and A be an f−bounded subset of X. If {km} is a
sequence in P f

K(A) and x ∈ X such that f(km − x) → 0, then x ∈ K since K is f−closed.
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Further,

inf
k∈K

sup
a∈A
|f(a− k)| = sup

a∈A
|f(a− km)|

= sup
a∈A
|f((a− x)− (km − x))|

≥ sup
a∈A
||f (a− x)| − |f (km − x)|| .

Taking the limit as m→∞, we get

inf
k∈K

sup
a∈A
|f(a− k)| ≥ sup

a∈A
|f (a− x)| .

Consequently,
inf
k∈K

sup
a∈A
|f(a− k)| = sup

a∈A
|f (a− x)| .

Then, x ∈ P f
K(A) and P f

K(A) is f−closed. �

Theorem 11.

Let f be a real valued sub-additive continuous function on a topological vector space X that has
the f−property and M be a closed subspace of X. If W is a subspace of X such that W +M

is f−closed, then the following assertions are equivalent:
(1) W/M is f̃−simultaneously quasi-Chebyshev in X/M.

(2) W +M is f−simultaneously quasi-Chebyshev in X.

Proof:

(1)⇒ (2) Since M is f−simultaneously proximinal by Theorem 8, W+M is f−simultaneously
proximinal in X. Let A be an arbitrary f−bounded set in X. Then P f

W+M(A) 6= φ. Now
to show that P f

W+M(A) is f−compact, we need to show that every sequence in P f
W+M(A)

has an f−convergent subsequence. Let {gn}∞n=1 be an arbitrary sequence in P f
W+M(A). Then

by Theorem 6, for each n > 1, gn + M ∈ P f̃
(W+M)/M (A/M) . Since P f̃

(W+M)/M (A/M) is

f̃−compact, one can choose g0 ∈ W +M with g0+M ∈ P f̃
(W+M)/M (A/M) and {gnk

+M}∞k=1

is f̃−convergent to g0 +M for some subsequence {gnk
+M}∞k=1 of {gn +M}∞n=1. That means,

f̃ (g0 − gnk
+M) = inf

m∈M
|f (g0 − gnk

−m)| → 0.

Now, since M is f−proximinal in X, there exists mnk
∈ M such that mnk

∈ P f
M (g0 − gnk

) ,

for every k ≥ 1, and hence

|f (g0 − gnk
−mnk

)| = inf
m∈M

|f (g0 − gnk
−m)| .

Therefore,
lim
k→∞

f (g0 − gnk
−mnk

) = 0.

On the other hand, {gnk
}∞k=1 is an f−bounded sequence because gn ∈ P f

W+M(A). In fact
|f (gn)| ≤ 2sup

a∈A
|f(a)| . Since M has the f−property, with out loss of generality, we may assume
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that for some m0 ∈M, f (mnk
−m0)→ 0. Let g′ = g0 −m0. Then, g′ ∈ W +M and

f (g′ − gnk
) = f (g0 −m0 − gnk

)

≤ f (g0 − gnk
−mnk

) + f (mnk
−m0) ,

∀ k ≥ 1. Thus, lim
k→∞

f (g′ − gnk
) = 0. Since {gnk

}∞k=1 ∈ P f
W+M(A), for every k ≥ 1, and

P f
W+M(A) is f−closed, since W +M is f−closed by Proposition 19, we conclude that g′ ∈
P f
W+M(A). Hence, P f

W+M(A) is f−compact.

(2) ⇒ (1) Since M and W +M are f−simultaneously proximinal and M ⊆ W +M, then
(W +M) /M = W/M is f̃−simultaneously proximinal in X/M .

Now, let A be an arbitrary f−bounded set in X. Then, P f̃
W/M(A/M) is non-empty. So from the

hypothesis we have W +M is f−simultaneously quasi-Chebyshev in X, and hence P f
W+M(A)

is f−compact in X. Using Theorem 6, we conclude that

P f̃
(W+M)/M(A/M) = π

(
P f
W+M(A)

)
,

where π : X → X/M, π(x) = x+M, is continuous. Consequently P f̃
W/M(A/M) is f̃−compact.

Therefore, W/M is f−simultaneously quasi-Chebyshev in X. �

Note that Theorem 11 is still true if the restriction W + M is f−closed is replaced by the
condition that the function f(x) = 0 if and only if x = 0 and use Theorem 4 to prove that
W +M is f−closed.

4. Conclusions

In this paper we introduce and study the concept of f−simultaneous approximation of a nonempty
subset K of Hausdorff topological vector space X, existence and uniqueness as a generalization
to the problem of simultaneous approximation in the sense that if the function f is taken to be
the usual norm, the problem is turned out to be precisely the problem of best approximation in
the usual sense. Further, we obtain some results regarding f−simultaneous approximation in the
quotient space.
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