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Abstract 
 

Vandermonde matrices have important role in many branches of applied mathematics such as 

combinatorics, coding theory and cryptography. Some authors discuss Vandermonde rhotrices in 

the literature for its mathematical enrichment. Here, we introduce a special type of Vandermonde 

rhotrix and obtain its LR  factorization, namely left and right triangular factorization which is 

further used to obtain the inverse of the rhotrix.  
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1.  INTRODUCTION 
 

Vandermonde matrix is an l m   matrix with terms of a geometric progression in each row; 

that is 
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                                                      (1.1) 

 

Due to wide range of applications of Vandermonde matrices in different areas of mathematical 

sciences as well as other sciences, they have attained much importance; see Lacan and Fimes 

(2004), Lin and Costello (2004) and Sharma and Rehan (2014). The solutions of the linear 

system of equations Vx b  have been studied by Bj¨orck and Pereyra (1970) and Tang and 

Golub (1981). The solutions of the equation 1x V b  lead to the factorizations of 1V  , such as 

Lower and Upper factorizations and 1-banded factorizations. Oruc and Phillips (2000) obtained 

formula for the  LU   factorization of V and expressed the matrices L  and  U   as a product of 1-

banded matrices. Yang (2004, 2005) modified the results of Oruc and obtained a simpler 

formula. In recent literature, special generalized Vandermonde matrices have attain great amount 

of attention. Demmel and Koev (2005) studied totally positive generalized Vandermonde 

matrices and gave formulae for the entries of the bidiagonal factorization and the LDU  

factorization. Yang and Holtti (2004) discussed various types of generalized Vandermonde 

matrices. Li and Tan (2008) discussed the LU  factorization of special class of generalized 

Vandermonde matrices which was introduced by Liu (1968). This matrix arises while solving the 

equation 

                                           
1 1 2 2

..... ,
m m m p m p

a c a c a c a
  

      ,m p   ( p    fixed),        (1.2) 

 

where pccc ...,,, 21  are constants and .0pc  If Equation (1.2) has distinct real roots 
1 2
, ,...,

q
v v v  

with multiplicities quuu ...,,, 21  respectively and 
1

,
q

i
i

u m


  then the corresponding generalized 

Vandermonde matrix has the following form: 

 

 

   
1 2
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1 1 1'

{ ; , ,.., }

111 1 1 1 1 1

1 1 1

1 0 ... 0 ... 1 0 ... 0

... ... ...
.

: : : : : : : : :

( 1) ... ( 1) ... ( 1) ... ( 1)

q

q

q q q

q u u u

uum n m m m m

q q q

v v v v v v
V

v m v m v v m v m v
     

 
 
 
 
 

    

    (1.3)                                                                                                                                                                                          

                                                                                                                                                

A special class of generalized Vandermonde matrices '

{2;1, 1}R mV


 is defined by Li and Tan (2008) 

as follows: For  
1 21, 1, 2,u u m q    '

{2;1, 1}R mV


 is the transpose of 
1 2

'

{ ; , ,.., }qq u u u
V  and given as 
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                                    (1.4) 

 

The study of rhotrices is introduced in the literature of mathematics by Ajibade (2003). Rhotrix 

is a mathematical object, which is in some ways between 2 2 - dimensional and 33  - 

dimensional matrices. The dimension of a rhotrix is the number of entries in the horizontal or 

vertical diagonal of the rhotrix and is always an odd number.  A rhotrix of dimension 3 is defined 

as 

 

                                                         

11

31 21 12

32

(3) ,

a

a a a

a

R                                           (1.5) 

 

where 
11 12 21 31 32, , , ,a a a a a  are real numbers. Sani (2007) extended the dimension of a rhotrix to 

any odd number 𝑛 ≥ 3 and gave the row-column multiplication and inverse of a rhotrix as 

follows: 

  

Let  

                                                     (3)Q  

11

31 21 12

32

,

b

b b b

b

  

Then 

  

(3) (3)R oQ 

11 11 12 31

31 11 32 31 21 21 11 12 12 32

31 12 32 32

.

a b a b

a b a b a b a b a b

a b a b



 



 

 

Also, 
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provided 
21 11 32 31 12( ) 0a a a a a  . Conversion of a rhotrix to a coupled matrix is discussed by 

Sani (2008). For instance, for a 5–dimensional rhotrix 

  

11

21 11 12

31 21 22 12 13

32 22 23

33

(5) ,

a

a c a

R a c a c a

a c a

a

   

 

we have two coupled matrices 

 

                    𝐴 = 
11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 
 
  

 

and 

                     𝑐 =  11 12

21 22

c c

c c

 
 
 

. 

 

Algebra and analysis of rhotrices are discussed in the literature by Ajibade (2003), Sani (2004), 

Sani (2007), Aminu (2010), Tudunkaya and Makanjuola (2010), Absalom et al. (2011), Sharma 

and Kanwar (2011), Sharma and Kanwar (2012a, 2012b, 2012c), Kanwar (2013), Sharma and 

Kanwar (2013), Sharma and Kumar (2013), Sharma et al. (2013a, 2013b), Sharma and Kumar 

(2014a, 2014b, 2014c) and Sharma et al. (2014). Sharma et al. (2013b) have introduced 

Vandermonde rhotrix which is defined as  
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                           (1.6) 

 

In the present paper, we introduce special type of generalized Vandermonde rhotrices and 

factored it into 
5L  and 

5R  rhotrices namely left and right triangular rhotrices. Further, we factor 

the rhotrices 
5L  and 

5R   as product of left and right triangular rhotrices. As an application, we 
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obtain the inverse of the rhotrix considered with the help of the above said factorization. 

 

2. NOTATIONS AND SYMBOLS 
 

The following notations are used in the present paper: 

 

m                        a positive integer 

n                          an odd number 

1 2

'

{ ; , ,.., }qq u u u
V                generalized Vandermonde matrix  

'

{2;1, 1}R mV


              special Vandermonde matrix 

(3), (3)R Q              3-dimensional rhotrices 

n
V                       n-dimensional Vandermonde rhotrix 

{2;1, 1}R n
V


                n-dimensional special Vandermonde rhotrix 

(1) (2), ,
n n n

L L L       n -dimensional left triangular rhotrix 
(1) (2), ,

n n n
R R R    n -dimensional right triangular rhotrix 

ij
a                        entries in the rhotrix 

 

3.  LEFT AND RIGHT TRIANGULAR FACTORIZATION 
  

In this section, we introduce special type of Vandermonde rhotrix. We factor 
{2;1,4}R

V  and 
{2;1,2}R

V  

in terms of left and right triangular rhotrices in Theorem 3.1 and Theorem 3.2. Further 

factorization of left and right triangular rhotrices is given in Theorem 3.3. 

 

Definition:  

 

Let 
1 2,v v be two numbers such that 

2v has multiplicity  1n  . Then the rhotrix  
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is defined as special generalized Vandermonde rhotrix.  

 

Theorem 3.1.  
 

Let 
{2;1,4}R

V  be a 5-dimensional special Vandermonde rhotrix. Then 
{2;1,4}R

V  can be factored as  

 {2;1,4} 5 5
,

R
V L R  where 

5L  is a left triangular rhotrix and 
5R  is a right triangular rhotrix and the 

entries of 
5L are           

1, 1,2,3,5, 1;

0, , 1;

0, 2,3, 1;

ij

ij

ij

a i j

a i j i

a j j

  

  

  

 

              
41 32 2 1

2

2

2 2
2 2 1
2

2 1

0, ;

, 2, 3;

, 2 , 2;

(2 )
8 , 2 , 3,

ij

ij

ij

a a v v

a v j i j

a v i j j

v v
a v i j j

v v

  

   

   


    



 

and the entries of 
5R are 

                                                                    

0, 3,4,5; 1;

0, 2, 3;

1, 3,4; 2;

1, 1,2, 1;

ij

ij

ij

ij

a i j

a j i j

a i j

a i j

  

   

  

  

 

2

1

1

2 2

2 1

2 1

2

, 1, 2 ;

, 1, 1;

2
, , 3;

, 2, 2;

1, 3, 2.

ij

ij

ij

ij

ij

a v i j i

a v i j i

v v
a i j i

v v

a v i j

a j i j

   

   


  



  

   

 

 

Proof:  

 

Let
{2;1,4}R

V  be 5-dimensional special Vandermonde rhotrix defined as 

                                                 1

2

{2;1,4} 2 2 1

2

2 2 2

2

2

1

1 1

.0 0

2

8

R

v

V v v v

v v v

v


                                       (3.2) 

 

Two coupled matrices of (3.2) of order 3 3  and 2 2 are 

 
2

1 1

2

2 2

2

2 2

1

1 2

0 8

v v

A v v

v v
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and 

2

2

1
.

0

v
B

v

 
  
 

 

 

Now, we factor the matrix A  using LU decomposition (see, Horn and Johnson (2013)) method 

as follows: Consider 

 

                                      

2

1 1 11 12 13

2

2 2 21 22 23

2

2 2 31 32 33

1 0 0 1

1 2 0 0 1 .

0 8 0 0 1

v v l u u

v v l l u

v v l l l

     
          
        

       

   

This gives,   

                      

                                     

2

1 1 11 11 12 11 13

2

2 2 21 21 12 22 21 13 22 23

2

2 2 31 31 12 32 31 13 32 23 33

1

1 2 .

0 8

v v l l u l u

v v l l u l l u l u

v v l l u l l u l u l

   
        
       

                          (3.3) 

 

On solving (3.3), we get 

 

11 21 31

22 2 1 32 2

2 2
2 2 2 1

33 2

2 1

2

12 1 13 1

2 2

2 1
23

2 1

1, 0;

, ;

(2 )
8 ;

, ;

2
.

l l l

l v v l v

v v v
l v

v v

u v u v

v v
u

v v

  

  


 



 






 

 

Therefore, the matrix A  becomes 

 

2

1 1

2 2

2 1
2 1 1 2

2 12 2
2 2 2 1

2 2

2 1

1
1 0 0

2
1 0 0 1 .

(2 )
0 8 0 0 1

v v

v v
A v v A A

v v
v v v

v v
v v

 
  
       
  
       

 

 

Now, we factor the matrix B using the same method as follows: 

 

Consider 
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                                                      2 11 11 12

2 21 22 22

1 0
.

0 0

v l u u

v l l u

     
     

     

      

    

This gives,    

                     

                                                    2 11 11 11 12

2 21 11 21 12 22 22

1
.

0

v l u l u

v l u l u l u

   
      

                                        (3.4) 

 

On solving (3.4), we get 

 

11 22 21

22 2 11 12 1

1, 0;

, 1, .

l u l

l v u u v

  

  
 

 

Therefore, matrix B  becomes 

 

2

1 2

2

1 0 1
.

0 0 1

v
B B B

v

   
    

  

 

 

Now, using matrices 
1 1,A B , we get the rhotrix 

5L  as 

 

2 1

5

2 2

2 2
2 2 2 1
2

2 1

1

1 1 0

0 0 0 0

0

(2 )
8

v v
L

v v

v v v
v

v v









 

 

and using matrices 
2 2,A B , we get the rhotrix 

5R as 

 

1

2

2 1

5 2 2

2 1

2 1

1

0 1

0 0 1
.

2
0 1

1

v

v v
R

v v

v v






 

 

Therefore, (3.2) can be factored in the product of two rhotrices as 
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         (3.5)      

     

 

where the rhotrix 
5L  is a left triangular rhotrix and 

5R is a right triangular rhotrix.  

  

Theorem 3.2.  
 

Let 
{2;1,2}R

V  be a 3-dimensional special Vandermonde rhotrix. Then 
{2;1,2}R

V  can be factored as  

 {2;1,2} 3 3
,

R
V L R  where 

3L  is a left triangular rhotrix and 
3R  is a right triangular rhotrix. The entries 

of  
3L  are  

 

    
12

2 1

1, 1,2,3, 1;

0;

, 2, 1,

ij

ij

a i j

a

a v v j i j

  



    

 

and the entries of 
3R are  

1

1, 1,2,3, 1,2;

, 1, 1;

0, 2, 1.

ij

ij

ij

a i j

a v i j i

a i j j

  

   

   

 

 

Proof:  

 

Let 
{2;1,2}R

V  be a 3-dimensional special Vandermonde rhotrix defined as  

 

                                                                 
{2;1,2} 1

2

1

1 1RV v

v


.                                                (3.6) 

 

Then, we factor the rhotrix (3.6) using similar argument as in Theorem 3.1. Therefore, 

 

                                                         
{2;1,2} 1

2 1

1 1

1 1 0 . 0 1

1

RV v

v v





.                                (3.7) 

 

Using (3.6) in (3.7), we get 
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1 1

2 2 1

1 1 1

1 1 1 1 0 . 0 1

1

v v

v v v





.         

                          

From row-column multiplication of rhotrices, we get 

 

                                                        
1 1

2 2

1 1

1 1 1 1 ,v v

v v


 

 

which verifies the result. 

  

 

Theorem 3.3.  
 

Let 
{2;1,4}R

V  be a 5-dimensional special Vandermonde rhotrix. Then, 
{2;1,4}R

V  can be factored as     

 
(1) (1) (2) (2)

{2;1,4} 5 5 5 5RV L R L R , 

where the entries of (1)

5
L  are 

            

0, , , 1;

0, , 1, 2,3;

1, , 2,3,4, 1,2;

ij

ij

ij

a i j i j

a i j j i

a i j i j

  

   

   

 

 

2 1

2

, 1, 2;

0, 1, 3;

1, 2 , 3,

ij

ij

ij

v v
a i j j

v

a j i j

a i j j


   

   

    

 

the entries of (1)

5
R  are  

                                                             
0, , , 1;

0, , 1, 3,4,5;

1, , 2,4,5, 1,2,3;

ij

ij

ij

a i j i j

a i j j i

a i j i j

  

   

   

 

                                                                    
2

2 1

52

, 1, 2;

0,

ij

v
a i j j

v v

a

   




 

 the entries of (2)

5
L  are      

                                                               

0, , , 1;

0, 1, 3,4,5; 1;

0, 1, 3, ;

1, , 2,3,4, 1,2;

ij

ij

ij

ij

a i j i j

a i i j

a i i j i

a i j i j
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22 52

42

2 2
22 2 1

2

2 1

0;

1;

(2 )
8 , 2 , 3,ij

a a

a

v v v
a v i j j

v v

 




    



 

and the entries of (2)

5
R  are   

                                                              1

2

1

1, , 1;

, ;

, ;

0, , 1, 3,4,5;

ij

ij

ij

ij

a i j i

a v i j

a v i j

a i j j i

  

 

 

   

 

     
42 22 2

53

2 2

2 1

;

1, 3, 2;

0, 1, 3,4,5, 1,2;

(2 ), , 3.

ij

ij

a a v

a j i j

a i i j

a v v i j j

 

   

   

   

 

 

Proof:  

 

Let 
{2;1,4}R

V  be a special type of Vandermonde rhotrix as defined in (3.2). From (3.5), we have  

 

1

2

2 1 2 1

{2;1,4} 5 52 2
2 2 2 1

2 2
2 12 2 2 1

2

2 1

1 1

1 1 0 0 1

0 0 0 0 0 0 1
. .

0 2
0 1

(2 )
8

1

R

v

v v v v
V L R

v v v v

v vv v v
v

v v


 








 

                                                       
  Using the same arguments as used in Theorem 3.1, we further factor 

5L  and 
5R . 

 

                            
5

2

2 1

1

1 1 0

0 0 1 0 0

1 0

1

L
v

v v







 

                         
2 1 2

2 2 1

1 1

1 1 0 0 1 0

0 0 0 0 0 0 0 0. ,

1 1 0 0 1 0

1 1

v v v
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                           (3.8) 
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which are left and right triangular rhotrices. Therefore, 

 
(1) (1)

5 5 5
.L L R  

 

Similarly,  

 

                        1

2

2 1 2 1

5 2 2

2 2 1

2 2
22 2 1

2

2 1

1

0 1

0 0

0 2

(2 )
8

v

v v v v
R

v v v

v v v
v
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                            1

2

2 1 2 1

2 2

2 2 12 2
22 2 1

2

2 1

1
1

0 1 0
0 1

0 0 1 0 0
. ,0 0

0 1 0
0 2

(2 )
8 1

v

v v v v

v v v
v v v

v
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          (3.9) 

which are left and right triangular rhotrices. Therefore,  

 
(2) (2)

5 5 5
.R L R  

 

Hence,  
(1) (1) (2) (2)

{2;1,4} 5 5 5 5
.RV L R L R  

  

 

4.  Application of Factorization of Special Vandermonde Rhotrix 
 

In this section, we apply the factorization of special Vandermonde rhotrix to find the inverse of 

the rhotrix. The inverse of 
{2;1,4}R

V  in terms of the inverses of 
5 5,L R  is given in Theorem 4.1. We 

also obtain the inverse of 
{2;1,2}R

V  in Theorem 4.2. We find the inverse of 
{2;1,4}R

V  in terms of 

(1) (1) (2) (2)

5 5 5 5
, , ,L R L R in Theorem 4.3. 

 

Theorem 4.1.  
 

Let 
{2;1,4}R

V  be a 5-dimensional special Vandermonde rhotrix. Then,  1 1 1

{2;1,4} 5 5RV R L   , where 

the entries of 1

5
R   are 
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41

1 2

2 2

1 1 2 2

1, 1,2, 1;

0, 1,2, 2,3;

0, , 3, 0;

1
, 3, 1;

1
, 1, 4;

8 6

ij

ij

ij

ij

ij

a i j

a i j

a i j j a

a i j
v v

a j i j
v v v v

  

  

   

  


   
 

 

               

1 2

2

2 2

1 1 2 2

1 2

2 2 3

1 2 1 2 2

1
, 1, 2;

1
, 2, 2 ;

1
, 2, 3;

8 6

( )
, 3, 2,

8 6
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ij

ij

ij

a i j j
v v

a j i j
v

a j i j
v v v v

v v
a j i j

v v v v v

    


   


   

 

 
   

 

 

and 1

5
L   has entries  

52 53

1, , 1,2, 1;

1, 2, 3,4;

0, 3,4,5, 1;

0, 1;

ij

ij

ij

a i j i j

a j i

a i j

a a
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2 2

1 2 1 2

2 1
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2 2

1 2

1 2
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2
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( 2 )
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a v i j i

v v v v
a i j i

v v

a v i j j

v v
a i j j

v v

    


   



   

 
  



 

 

Proof:  

 

Let
{2;1,4}R

V  be a 5-dimensional special Vandermonde rhotrix as defined in (3.2). Then the inverse 

of 
{2;1,4}R

V  is 

 

                         

2

2

2 2

1 1 2 2

2

2 1 1 2

2 2 2 2

1 1 2 2 1 1 2 2

2
1 2 1 1 2

{2;1,4} 2 2 2 2 2 3

1 1 2 2 1 1 2 2 1 2 1 2 2

2 2

1 2

2 2 2 3

1 1 2 2 2 2 1 1 2 2

1 2

2

2 1 1 2

6

8 6

8
8 1

8 6 8 6

1 8 2
0 1

8 6 8 6 8 6

1 1 1 2

8 6 8 6

1 ( )

8 6

R

v

v v v v

v v v v

v v v v v v v v

v v v v
V

v v v v v v v v v v v v v

v v

v v v v v v v v v v

v v

v v v v v
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On multiplying (4.2) and (4.3), we get 
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Therefore,  

 
1 1 1

{2;1,4} 5 5RV R L   .         

  

 

Theorem 4.2.  
 

Let 
{2;1,2}R

V  be a 3-dimensional special Vandermonde rhotrix. Then 
 

1 1 1

{2;1,2} 3 3
,RV R L    where the 

entries of 1

3
R   are  

        
1

1, 1, 1;

, 1, 1;

1; 1, 1;

0, 2, 1;

1, 2, 1,

ij

ij

ij

ij

ij

a i j

a v i j i

a j i j

a i j j

a j i j

  

    

   

   

   

 

and entries of  1

3
L  are  

      

1, 1, 1;

0, 1, 1;

1, 1, 1;

ij

ij

ij

a i j

a i j i

a i j j

  

   

   

 

                                                                 1 2

1 2

1
, 2, 1;

1
, 1, 2.

ij

ij

a i j j
v v

a i j j
v v

   



   



 

 

Proof:  

 

Let 1

{2;1,2}RV   be a 3-dimensional special Vandermonde rhotrix as defined in (3.5). Then,  
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Now, 



332   P. L.Sharma et al. 

 

 

                                                       
1

3

1 2

1 2

1

1
1 0

1

L
v v

v v

 






                                                       (4.5) 

and  

                                                                 1

3 1

1

0 1 .

1

R v                                                             (4.6) 

 

On multiplying (4.5) and (4.6), we get 
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Therefore, 

                                                 
 

1 1

{2;1,2} 3 3
.RV R L   

  

Theorem 4.3.  
 

Let 
{2;1,4}R

V  be a 5-dimensional special Vandermonde rhotrix. Then,   

 

       
1 1 1 1
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Proof:  

 

Let 
{2;1,4}R

V  be a special type of Vandermonde rhotrix as defined in (3.2) and its inverse is given in 

(4.1). Now,  
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On multiplying (4.7)-(4.10), we get 
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5.  CONCLUSION 
 

In the present era of information technology it has become essential to provide security to the 

data which is at rest (for example, Hardware); that is, in hardware, and secondly to the data 

which is in transit (for example, in the wire). Cryptography provides the security to the data and 

makes e-commerce, e-mail, transaction from ATM, internet banking safe to the users. Strong 

algorithms and structures of mathematics are behind the cryptography which are responsible for 

providing security to the users who are interacting with different computers at distant places for 

safe communications or financial transactions. In this context some researchers used 

Vandermonde matrices for the encryption and decryption of messages which travel over the 

insecure channels and the financial transaction over the internet. With the appearance of a new 

mathematical object known as rhotrix in the literature, the Vandermonde rhotrices played an 

important role in cryptography.  

 

In the present paper we introduced a special type of Vandermonde rhotrix. Since every rhotrix of 

dimension 𝑚 = 2𝑛 + 1 can be represented as coupled matrices of order (𝑛 + 1) and 𝑛 

respectively. The total entries in the rhotrix are always 
𝑚2+1

2
 . The coupled matrices of this 

rhotrix will have the elements (𝑛 + 1)2  and 𝑛2, respectively. The importance of matrices in 

cryptography is discussed initially by Lester S. Hill. Upper triangular matrices and lower 

triangular matrices have much importance for fast calculation in addition and multiplication 

operations of matrices. Therefore, such type of matrices would help to increase the efficiency of 

the computer hardware and software for fast encryption and decryption.  

 

Keeping in view the utilities of upper triangular and lower triangular matrices in cryptography, 

we use the special type of Vandermonde rhotrix, which is represented by coupled matrices. 

Initially we factorize the special Vandermonde rhotrix into two rhotrices known as left triangular 

rhotrix and right triangular rhotrix. These left and right triangular rhotrices are then converted 

into the coupled matrices. The structure of rhotrices is the representation of coupled matrices 

which provides double security to the cryptosystems because the use of rhotrix means use of two 

matrices which becomes tedious to know for the adversary. If the original message will be 

confused and diffused by making use of two matrices then the security of the data which travel 

over the insecure channels will be doubled, and to retrieve the original data without knowing the 

key will be very difficult. In this way the use of Vandermonde rhotrices in the field of 

cryptography will be more important. The obtained coupled matrices are decomposed in upper 

and lower triangular matrices.  Then we composed the coupled lower and upper triangular 

matrices into the structure of rhotrices and further we obtained the left and right triangular 

rhotrices.  

 

In cryptography, obtaining the original message from the  encrypted messages is known as 

inverse. Therefore, in communication, e-commerce, transaction from ATM, internet banking, e-

mail etc., the inverse is important for the decryption of the data. In order to meet this requirement 

we used the factorization of special Vandermonde rhotrix to obtain the inverse of rhotrix. The 

inverse of a rhotrix is obtained with the help of inverses of its left triangular rhotrix and right 
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triangular rhotrix. For the process to obtain inverses of left triangular rhotrices and right 

triangular rhotrices, we have written these rhotrices in the form of coupled matrices and obtained 

their inverses. Again, composing the coupled matrices we obtained the respective left and right 

triangular rhotrices. Further compositions of left and right triangular rhotrices again have become 

the special Vandermonde rhotrix. 
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