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Abstract

Vandermonde matrices have important role in many branches of applied mathematics such as
combinatorics, coding theory and cryptography. Some authors discuss Vandermonde rhotrices in
the literature for its mathematical enrichment. Here, we introduce a special type of Vandermonde
rhotrix and obtain its LR factorization, namely left and right triangular factorization which is
further used to obtain the inverse of the rhotrix.

Keywords: Vandermonde Matrix; Vandermonde Rhotrix; Special Vandermonde Rhotrix; Left
and Right Triangular Rhotrix
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1. INTRODUCTION

Vandermonde matrix Vis an |xm matrix with terms of a geometric progression in each row;
that is
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B 2 m-17]
al al 1
2 m-1
a, a, a,
V=1 a a o | (1.1)
1 o o . o

Due to wide range of applications of Vandermonde matrices in different areas of mathematical
sciences as well as other sciences, they have attained much importance; see Lacan and Fimes
(2004), Lin and Costello (2004) and Sharma and Rehan (2014). The solutions of the linear
system of equations Vx=b have been studied by Bj orck and Pereyra (1970) and Tang and
Golub (1981). The solutions of the equation x=V b lead to the factorizations of v, such as
Lower and Upper factorizations and 1-banded factorizations. Oruc and Phillips (2000) obtained
formula for the Lu factorization of v and expressed the matrices L and U as a product of 1-
banded matrices. Yang (2004, 2005) modified the results of Oruc and obtained a simpler
formula. In recent literature, special generalized VVandermonde matrices have attain great amount
of attention. Demmel and Koev (2005) studied totally positive generalized Vandermonde
matrices and gave formulae for the entries of the bidiagonal factorization and the LDU
factorization. Yang and Holtti (2004) discussed various types of generalized Vandermonde
matrices. Li and Tan (2008) discussed the Lu factorization of special class of generalized
Vandermonde matrices which was introduced by Liu (1968). This matrix arises while solving the
equation

a =ca _ +ca ,+...+ca _, m=2p, (p fixed), (1.2)

-p

where ¢C;,C,,...,C, are constants and ¢, = 0. If Equation (1.2) has distinct real roots v,,v,,...,v,

with multiplicities u,,u,,...,u

q
o respectively and ;ui =m, then the corresponding generalized

Vandermonde matrix has the following form:

1 0 0 w1 0 0
A A A A v, v, (1.3)
{aiug Uy ug } = : : : : . . : . : .
viom=DvtoL (m=DE L v (m=Dvt L (m=1)tv

A special class of generalized VVandermonde matrices Vé{z;l,m_l} is defined by Li and Tan (2008)

is the transpose of V., and given as

RCHURUSIT

as follows: For u, =1,u,=m-1,9=2,V;,, . 4
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2 m-1
v, V. :
2 m-1
v, V. A
, , .
VR{z:l,m—u =10 v, 2v, . (m_l)Vz t (1.4)

0 v, 2", . (mM=D)""v,"

The study of rhotrices is introduced in the literature of mathematics by Ajibade (2003). Rhotrix
is a mathematical object, which is in some ways between 2x2- dimensional and3x3 -
dimensional matrices. The dimension of a rhotrix is the number of entries in the horizontal or
vertical diagonal of the rhotrix and is always an odd number. A rhotrix of dimension 3 is defined
as

8y
RA)=(a; a, a,), (1.5)

83

where a,,a,,a,,a,,a, are real numbers. Sani (2007) extended the dimension of a rhotrix to

any odd number n > 3 and gave the row-column multiplication and inverse of a rhotrix as
follows:

Let
by
Q(3) = b31 b21 b12 ’
by,
Then
ay; by + 83,05
R(3)0Q(3) = agibyy + aghy ay1by aby, +ap,bs,
a0y, + by,
Also,
a3
) 1 a) 1830 —agqa
(RE) ' =————( -a, 822 5 ),
81183 — 838, a1

8y,
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provided a,,(a,,8;, —a,,3,,) # 0. Conversion of a rhotrix to a coupled matrix is discussed by
Sani (2008). For instance, for a 5-dimensional rhotrix

R(5) ={ 8y Cy 3, C, a; ),

we have two coupled matrices

a, a, a;
A = a’21 a’22 a23

8y 8y Ay

= {cu clz]
C21 C22
Algebra and analysis of rhotrices are discussed in the literature by Ajibade (2003), Sani (2004),
Sani (2007), Aminu (2010), Tudunkaya and Makanjuola (2010), Absalom et al. (2011), Sharma
and Kanwar (2011), Sharma and Kanwar (2012a, 2012b, 2012c), Kanwar (2013), Sharma and
Kanwar (2013), Sharma and Kumar (2013), Sharma et al. (2013a, 2013b), Sharma and Kumar

(2014a, 2014b, 2014c) and Sharma et al. (2014). Sharma et al. (2013b) have introduced
Vandermonde rhotrix which is defined as

and

1
1 1 a
1 1 a a &
v=1 a, a, a. ar ). (1.6)
a, a, aj
a,

f
N

In the present paper, we introduce special type of generalized Vandermonde rhotrices and
factored it into | and R, rhotrices namely left and right triangular rhotrices. Further, we factor

the rhotrices | and R, as product of left and right triangular rhotrices. As an application, we
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obtain the inverse of the rhotrix considered with the help of the above said factorization.
2. NOTATIONS AND SYMBOLS

The following notations are used in the present paper:

m a positive integer
n an odd number
s generalized Vandermonde matrix
Vein s special Vandermonde matrix
R(3),Q(3) 3-dimensional rhotrices
V, n-dimensional Vandermonde rhotrix
Veging n-dimensional special Vandermonde rhotrix

L ,L, L  n-dimensional left triangular rhotrix
R.,R®,R® n-dimensional right triangular rhotrix
a, entries in the rhotrix

U]

3. LEFT AND RIGHT TRIANGULAR FACTORIZATION

In this section, we introduce special type of Vandermonde rhotrix. We factor v and v

R{2;1,4} R{2:1,2}
in terms of left and right triangular rhotrices in Theorem 3.1 and Theorem 3.2. Further
factorization of left and right triangular rhotrices is given in Theorem 3.3.

Definition:

Let v,,v, be two numbers such that v, has multiplicity (n-1). Then the rhotrix

o o
= o -
S S =
N

. <
l\l<l\l =
<
N

v o0 . ... . et

R{2;1,n-1} —

3.1)
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is defined as special generalized VVandermonde rhotrix.
Theorem 3.1.

Let v

R{2;1,4}

VR{2;1,4}
entries of | are
a;=1i=1235,j=1
a; =0,i=j,i=l
a;=0,j=23j=1
8, =08, =V, —V;;
a; =V, j=2,i=j+3
a; =V,,i=2+],j=2

22
a, =82 22 i_p -3
Vo —Vp

and the entries of R are
aij:O,i=3,4,5;j=1;
aij:O,j=2,i=j+3;
a; =1i=34;j=2
a; =1i=12,j=1
aij:vf,izl,j=2+i;
aij:vl,izl,j=i+1;
2 2
P P P
V, =V,

a; =V,,i=2,]=2;

a,=1j=3i=j+2

Proof:
Let\/R{z,1 N be 5-dimensional special Vandermonde rhotrix defined as
1
1 1 v,

2
0 0 v, v, Vv
2
vV, vV, 2V,
2
8v,

VR{2;1, Vs S

Two coupled matrices of (3.2) of order 3x3 and 2x2are

be a 5-dimensional special Vandermonde rhotrix. Then VA
=R, Where L is a left triangular rhotrix and R, is a right triangular rhotrix and the

4}

P. L.Sharma et al.

can be factored as

(3.2)
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B {1 vz}
0 v,|
Now, we factor the matrix A using LU decomposition (see, Horn and Johnson (2013)) method
as follows: Consider

and

2

1 v, v l, 0 Of1 u, u,
2

1 v, 2v,|=|l, I, 00 1 wu,]|
2

0 v, 8y, L, 1, 150 0 1

This gives,

2

l Vl Vl Ill I11u12 Illu13
2| _ 3.3

V2 2V2 - |21 |21u12+|22 |21ul3+|22u23 ( )

2

0 V2 8V2 ISl |31U12+|32 |31u13+|32u23+|33

On solving (3.3), we get

|11 = |21 =1, |31 =0;
Izz =V, _V1'|32 =V,

2 2
I :8V2_V2(2V2_V1).
33 2 v, —V,

2.
U, =V,,U;3 =V

vy -y
23 V2 _ Vl '
Therefore, the matrix A becomes
1 v v
1 0 0 o2 2
A=1 v,-v 0 0 1 ——2X|=AA.
v, (2v2 —Vv?2) 2N
0 v, 8i--2—2_1710 0 1
L Vo=V |

Now, we factor the matrix B using the same method as follows:

Consider
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|:1 V2:|:|:Ill O :||:u11 ulZ}
O VZ |21 I22 O l"122

F— V2:| _ |:|11u11 I11u12 :| (3_4)
0 vV, |21U11 |21u12 + |22u22

This gives,

On solving (3.4), we get

|11 =U,, =1, |21 =0;
|22 =V,, Uy, =1, U, =V;.

1 0|1 v,
B= =B,B,.
0 v,||0 1

Now, using matrices A,B , we get the rhotrix |, as

Therefore, matrix B becomes

1 1 0
L- 0 O Vv, -V, 0 0
v, v, 0
8V2 _ v, (2\/22 _V12)
’ Vo =V,
and using matrices A,,B,, we get the rhotrix R as
1
01 A
n - 0 01 v, v,
° 2v,? —v,°
01
Vo, =V,
1

Therefore, (3.2) can be factored in the product of two rhotrices as
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1
1 0 01 v, (3.5)
v oo v, -V, 00 001 v, V2 LR '
R{2;1,4} v, v, 0 01 2V22 —Vlz 5
8v2 — v, (2V22 _V12) Vo=V
2 vV, -V, 1
where the rhotrix L is a left triangular rhotrix and R, is a right triangular rhotrix.
[ |
Theorem 3.2.
Let Ve be a 3-dimensional special Vandermonde rhotrix. Then Vigan 2N be factored as
Veazn = LRy, where L, is a left triangular rhotrix and R, is a right triangular rhotrix. The entries
of L, are

a; =1i=123j=1

a, =0;

a; =V, -V, j=2/i=]+],
and the entries of R,are

a,=1i=123j=12

aij:vl,i:l,j:i+l;

a,=0i=j+2j=1.

Proof:

Let v

R{2;1,2}

be a 3-dimensional special Vandermonde rhotrix defined as

1
Vepana=(1 1 v (3.6)
V2
Then, we factor the rhotrix (3.6) using similar argument as in Theorem 3.1. Therefore,
1 1
Veagy ={ 1 1 0)(0 1 v ) (3.7)
vV, =V, 1

Using (3.6) in (3.7), we get
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1 1
1 1 v )=(1 1 0)(0 1 v
v, v, -V, 1

From row-column multiplication of rhotrices, we get

[

<
N

V.

N

which verifies the result.

Theorem 3.3.

Let v

R{2;1,4}

be a 5-dimensional special VVandermonde rhotrix. Then, Vigaay €8N be factored as

VR{2;1,4} = Lg) Rs(l) L(SZ)RS(Z) !
where the entries of L are

a; =0,i<ji,j=1

a; =0,i>j,j=Li=#23;

&; =11> j,1=2,3,4,]=1,2;

L Bk W PR SV
V2

=0,j=Li=j+3
j=-Li=2+j,j=3,

ij
a
a
the entries of R® are

a; =0,i<ji,j=L

a; =0,i>j,j=1i=34,5;

a; =1i>j,i=245j=123;

Vs

a; = d=j+Lj=2

_VZ_Vl
a;, =0,
the entries of |» are
a;=0,i<j,ij=1
a;=0,i>1i=34,5]j=1
a; =0,i>1i=3 j=i
a;=1i>j,i=234,j=12
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Ay =85, = 0;
a, =1
2 2
— Vv, (2V2 -V )
Vo =V,

-8v,%,i=2+1],j=3

ij
and the entries of R® are

a;=li=j,i=1

a; =Vv,i<];

a; =Vv,i<j;

a,;=0,i>j,j=1i=34,5

Ay =8y =V,

a,=1j=3i=j+2

aij:O,i>1,i:3,4,5,j:1,2;

8 :(2\/22 _Vlz)'i =jj=3

Proof:
Let Ve be a special type of Vandermonde rhotrix as defined in (3.2). From (3.5), we have
1
1 0 01 A
v J oo v, -V, 00 001 v, % LR
R{2;1,4} — Vz Vz O 0 1 2V22 —Vlz - 5
8V2 _ \2) (2V22 _V12) Vo —Vp
2 v, -V, 1

1 0
0 o0 00
L=,
2 1 0
vV, =V,
1
1
1 0 0 1 o0
_ 38
(oo Y2"Y%o0)lo0o0 Y2 00) (3:8)
Vv, V, —V;
1 0 0 1 0
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which are left and right triangular rhotrices. Therefore,

L= R
Similarly,
0 A
00 v, -V, v, v’
R = 0 v 2v,” —v?
2 2 1
v, (2v,2 —v,?) 8y
Vo =V ’
1
1
0 1 0 0 1
v
00 1 00 ' , (3.9)
= o 0 V2 _V]_ V2 Vl !
0 1 0 2
. 0 v, 2v,5-y
v, (2v," —v°) 8y.2 1
VZ Vl ’

which are left and right triangular rhotrices. Therefore,

R~ LORE.

Hence,
N (2) 2
VR{2;1,4} = L(S)RS( )L(s )Rs( ).

4. Application of Factorization of Special Vandermonde Rhotrix

In this section, we apply the factorization of special Vandermonde rhotrix to find the inverse of
the rhotrix. The inverse of Vegn in terms of the inverses of |, R, is given in Theorem 4.1. We

also obtain the inverse of Vg in Theorem 4.2. We find the inverse of Vg in terms of

2} 5
L, R®, L@ R®in Theorem 4.3.

Theorem 4.1.

Let v, , bea 5-dimensional special Vandermonde rhotrix. Then, v=_ =R L ", where

the entries of R are
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a. =1i=12j=1
a.=0,i=12,j=2,3;
a;, =0,i=j,j=3,a, =0;

a; = 1 iosj-1
v, —V
1 2
1 . .
a=—————,j=li=j+4;
Ty —-8vy, +6v,° ) )
q =- ! Jd=j+1j=2
ViV,
8= j=2i=2+];
v2
aij=2_—12,j:2,i:j+3;
V,* —8vv, +6v,
—(v,—V,) . .
a; = 1 2 . 1=3i=]+2

V2V, —8V,V,” + 6V,
and |_5-1 has entries
a =1i>j,i=12j=1
ij
a;=1j=2i=34
a; =0,i=3,4,5j=1

as, = O'ass =1
3; =-v,i=1j=i+1

2, 2
aij :M,i =1, J :i+2;
Vo=V
a; =-V,,i=j,j=2
(2 _ 2
o) s
Vi =V,
Proof:
Let\/R{z,1 N be a 5-dimensional special Vandermonde rhotrix as defined in (3.2). Then the inverse
of Vegua 19
6v,”
v/ -8y, +6v, (4-1)
~ v, 1 v -8y,
v — 8V, +6v,” v — 8V, +6v,”
N 1 0 8v, 3 _vi-2wy,
Fe v, —8vy, +6v,’ v, —8vy, +6v,’ v, — 8V, + 6V,
-1 1 1o
v/ -8V, +6v, v, v, V2 — 8V, +6v,
1 (Vlfvz)

v, V2 —8vv, +6v,’

Now,
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1

and

(BN

R =

On multiplying (4.2) and (4.3), we get

1
01 -V
2, _ 2
L 001 , V'V, — 2V,
Rils = Vi =V,
01 v -2,
V=V,
1
i . T
v/ =8V, +6V,’
1
ey spu? 0
v,” —8vyv, +6v,
-1

2 2
V" =8V, + 6V,

=V

R{2;1,4}"

2 2
v, —8v,v, + 6V,

1
Vi—V,

0

1

V2 —8V,V, +6V;

1
V2 —8v,v, +6v2

2
6v,

2 2
v, =8wv, +6v,
1

8v,
v,2—8v,v, + 6V,
1 1%2 2
1

v,
1 (V1 — Vz)

V, V.2 —8v,v, + 6V,

V2 — 8V, + 6V

v —8vy,
2 2
v," —8vv, +6v,

P. L.Sharma et al.

0
4.2)
00
0
(4.3)
1
1 0
4 00
V-V,
1 0
VZ
_ Vi—V,
Vv, —8vVZ + 6V
v =2y,

-1

2 2
v, -2V,

1
v, V.28V, + 6V,
2 "1 12 2

T2 2
v,'v, —8v,v, +6v,
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Therefore,
V_lR{2;1,4} = Rs_l Ls_l'
Theorem 4.2.
Let v, , bea 3-dimensional special Vandermonde rhotrix. Then v.. . =R ‘L *, where the

entries of R are
a; =li=1j=1
a; =—v,i=1j=i+1
a;=Lj=Li=j+]
a; =0,i=j+2,j=1,
a; =1j=2i=j+]
and entries of |_*are
a; =1i=1j=1
aij=0,i=1,j:i+1;
a; =1li=j+1 j=1

a; = ! Jd=j+2,j=1
Vi—V,
a=——,i=j+Lj=2.
V=V,
Proof:
Letv= ., be a 3-dimensional special Vandermonde rhotrix as defined in (3.5). Then,

1 v, (4.4)
v, -V, v, -V, |

-1 _
\% R{21,2} —

Now,
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1
4.5
s 1 Lo (4.5)
Vi =V,
-1
Vi—V,
and
R7'=(0 1 -v ). (4.6)
On multiplying (4.5) and (4.6), we get
1 1
R7AL'=(0 1 —v ! 1 0
1 Vi—V,
-1
Vi—V,
_V2
Vi =V,
_ 1 1 v,
Vi =V, ViV,
-1
Vi =V,
:VilR{Z;l,Z}'
Therefore,
Vepiy = R,
Theorem 4.3.
Let Ve be a 5-dimensional special Vandermonde rhotrix. Then,

Vet =(RP) () (RO)* (1)
where entries of (R® )*l are
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a. =0,i<j,i j=1
a. =0,i>],j=13,i=34,5;
a =1i>j,j=123;

entries of (|_g> )*l are

a.ij :0,i§j,|,j¢1;
a; =1i>j,j=1234;

V. . . .
a,=—*—i>}i=35]j=1
Vi =V,

V. .. .
aij:_ 2 ,lZJ,J=2,|=3,5,
Vi =V,

a,=-1j=3i=j+2

entries of (Rg) )*l are

a;=1i=j,i,j=1
a; =0,i>],j=1i=34,5
a;=Lj=li=j+L
aij:O;J:2,|:J+3,
Vi =V,
2 _ 2
aiJ-:M,i=1,j=i+2:
Vv, -V,
aij——l;j_|,|_2,
1 .
;= Jj=2,i=j+1
V=V,
1 -
a;=—,i=2+j,j=2

and entries of (|_<52> )*1 are

a; =0,i<j,i,j=#1
a;=0,i>j,j=1i=34,5
a;=1i>j,j=12
a;=1i<j,j=23
a;=0,j=2i=j+3

v, —V,

_ j=3i=j+2.
v,’v, —8v,v,” + 6v,° ) )

333
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Proof:
Let Ve be a special type of Vandermonde rhotrix as defined in (3.2) and its inverse is given in
(4.1). Now,
1
0 1 0 4.7)
(R®)'=( 0 0 =% 0 0
VZ
0 1 0
1
1
Y2 1 0
Vv, =V, (4.8)
) 71: v, 0 =V, 0 0
(LS ) Vi—V, Vi—V,
e T T
Vi =V,
-1
1
0o 1 Y
imV, (4.9)
2 2
(R(z))%l: 00 -1 1 VvV, —2V,V,
® Vi =V, Vi =V,
o X -(v' -2v,)
v, V=V,
1
and
1
0 1 0
(4.10)
(ng))fl _ 0 0 l O 0
0 1 0
V, —V.

1 2
2 2 3
V'V, —8VV,” + 6V,

On multiplying (4.7)-(4.10), we get
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(/) () (R2) () -

1
V,
0o 1 L 1
Vi—V, 0 1 0
| o0 -1 1 V2V, — 2v,V,° 00 1 00
Vi =V, Vi =V, ' 0 1 0
o 1 —(v’ —2v,%) v, -V,
— - 2 2 3
v, V, -V, V,°V, —8V,V,” + 6V,
1
1
21 o
0 1 0 v, -V,
00 2% oo Lo oo
Vs Vi =V, Vi—V,
0 1 0 v, L0
1 Vv, -V,
-1
6v,’
V2 =8V, +6V,’
v, v, -8,
P2 2 1 2 2
V" —8vv, +6V, V" —8vv, + 6V,
R 0 o8 4 oW,
2 2 2 2 2 2
v," —8v,v, +6v, v," —8v,v, +6v, v," —8vyv, +6v,
-1 1 1 vy
v’ -8V, +6v,’ v, v, V2 =8V, + 6V,
1w
v, V2 =8V, +6V,"
-1
= VR{2 1,4}

Hence,

Veguwo =(R?) (L) " (RY) (L&)
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5. CONCLUSION

In the present era of information technology it has become essential to provide security to the
data which is at rest (for example, Hardware); that is, in hardware, and secondly to the data
which is in transit (for example, in the wire). Cryptography provides the security to the data and
makes e-commerce, e-mail, transaction from ATM, internet banking safe to the users. Strong
algorithms and structures of mathematics are behind the cryptography which are responsible for
providing security to the users who are interacting with different computers at distant places for
safe communications or financial transactions. In this context some researchers used
Vandermonde matrices for the encryption and decryption of messages which travel over the
insecure channels and the financial transaction over the internet. With the appearance of a new
mathematical object known as rhotrix in the literature, the Vandermonde rhotrices played an
important role in cryptography.

In the present paper we introduced a special type of Vandermonde rhotrix. Since every rhotrix of

dimension m = 2n + 1 can be represented as coupled matrices of order (n + 1) and n

m2+1

respectively. The total entries in the rhotrix are always . The coupled matrices of this

rhotrix will have the elements (n + 1)2 and n?, respectively. The importance of matrices in
cryptography is discussed initially by Lester S. Hill. Upper triangular matrices and lower
triangular matrices have much importance for fast calculation in addition and multiplication
operations of matrices. Therefore, such type of matrices would help to increase the efficiency of
the computer hardware and software for fast encryption and decryption.

Keeping in view the utilities of upper triangular and lower triangular matrices in cryptography,
we use the special type of Vandermonde rhotrix, which is represented by coupled matrices.
Initially we factorize the special Vandermonde rhotrix into two rhotrices known as left triangular
rhotrix and right triangular rhotrix. These left and right triangular rhotrices are then converted
into the coupled matrices. The structure of rhotrices is the representation of coupled matrices
which provides double security to the cryptosystems because the use of rhotrix means use of two
matrices which becomes tedious to know for the adversary. If the original message will be
confused and diffused by making use of two matrices then the security of the data which travel
over the insecure channels will be doubled, and to retrieve the original data without knowing the
key will be very difficult. In this way the use of Vandermonde rhotrices in the field of
cryptography will be more important. The obtained coupled matrices are decomposed in upper
and lower triangular matrices. Then we composed the coupled lower and upper triangular
matrices into the structure of rhotrices and further we obtained the left and right triangular
rhotrices.

In cryptography, obtaining the original message from the encrypted messages is known as
inverse. Therefore, in communication, e-commerce, transaction from ATM, internet banking, e-
mail etc., the inverse is important for the decryption of the data. In order to meet this requirement
we used the factorization of special Vandermonde rhotrix to obtain the inverse of rhotrix. The
inverse of a rhotrix is obtained with the help of inverses of its left triangular rhotrix and right
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triangular rhotrix. For the process to obtain inverses of left triangular rhotrices and right
triangular rhotrices, we have written these rhotrices in the form of coupled matrices and obtained
their inverses. Again, composing the coupled matrices we obtained the respective left and right
triangular rhotrices. Further compositions of left and right triangular rhotrices again have become
the special Vandermonde rhotrix.
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