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Abstract

In the present work a mathematical model of the prey-predator system with disease in the prey is
proposed. The basic model is then modified by the introduction of time delay. The stability of the
boundary and endemic equilibria are discussed. The stability and bifurcation analysis of the
resulting delay differential equation model is studied and ranges of the delay inducing stability as
well as the instability for the system are found. Using the normal form theory and center
manifold argument, we derive the methodical formulae for determining the bifurcation direction
and the stability of the bifurcating periodic solution. Some numerical simulations are carried out
to explain our theoretical analysis.
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1. Introduction

Both mathematical ecology and mathematical epidemiology are distinct major fields of study in
biology. But there are some commonalities between them. A branch of ecology which considers
the effect of transmissible diseases is called eco-epidemiology. On the other hand interaction
between predators and their prey is a complex phenomenon in ecology. This complexity is
further increased when one considers the presence of various infectious diseases prevalent in
their populations. In the present paper, we consider a prey-predator model with disease in the
prey. A biologically relevant example for this model can be found in the Salton Sea ecosystem.
We could cite in particular the example of Tilapia (prey) and the Pelicans (predator). When the
Tilapia become infected and struggle in their death, they tend to come closer to the surface of the
sea and become more vulnerable as well as attractive to fish eating birds, like Pelicans (see Slack
1997). Chattopadhyay and Bairagi (2001) proposed an eco-epidemiological model of the Salton
sea consisting of susceptible and infected tilapia fish populations and their predators, the pelican
bird population, where it is assumed that predation is only on infected fish population. Hadeler
and Freedman (1989) have discussed a predator-prey model where the prey population is
infected by a parasite and in turn infects the predator with the parasite. Haque et al. (2008),
proposed an eco-epidemiological predator-prey model with standard disease incidence.

The incidence rate, i.e., the rate of new infection plays an important role in the context of
epidemiological modeling. Generally, the incidence rate is assumed to be bilinear in the infected
fraction / and the susceptible fraction S. However, there are many factors that emphasize the
need for a modification of the standard bilinear form. It has been suggested by several authors
that the disease transmission process may follow the saturation incidence (see Kar and Mondal,
2011; Cai et al., 2009; Esteva and Matias, 2001). We have considered the incidence rate as
PSI (a+S), where [ is the transmission rate and « is a saturation factor, which is more

realistic than the bilinear one, as it includes the behavioral change and crowding effect of the
susceptible individual and also prevents unboundeness of the contact rate. The main aim of the
paper is the study of the mutual relations occurring in an ecosystem where an epidemic runs
through a prey population and the predator population being unaffected by the disease. We study
some basic questions, among which whether and how the presence of the disease in the prey
species affects the behavior of the model, but also whether the introduction of a sound predator
can affect the dynamics of the disease in the prey.

Model with delay is much more realistic, as time delay occurs in almost every biological
situation. For example, parasite is passed from one infected prey to another susceptible prey. So,
the infection process cannot be done instantaneous. Therefore, the effect of time delay can’t be
ignored. Xiao and Chen (2001) claimed that they were the first to formulate and analyze an eco-
epidemiological model with time delay. Bhattacharyya and Mukhopadhyay (2010) studied an
analysis of periodic solutions in an eco-epidemiological model with saturation incidence and
latency delay. They have incorporated the time required by the susceptible individuals to become
infective after their interaction with the infectious individuals as a discrete time delay. They also
elucidated the role of differential predation on disease dynamics and the role of latency delay in
infection propagation. They have found an interval of the time delay parameter, in terms of
different system parameter, that imparts stability around the infected equilibrium point and also
deduced a threshold delay, which indicates the change of stability of the endemic equilibrium
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point. In this paper, we consider the discrete time delay in the disease transmission term and also
consider an average information delay that measures the influence of the past disease. The main
aim of this paper is to study the dynamics of the system around the biologically feasible
equilibria.

We have two populations: (a) the prey, whose population is denoted by N and (b) the predator,
whose population is denoted by P.

The following assumptions are made for formulating the basic mathematical model:

(1) In the absence of infection, the prey population grows according to the logistic law of
growth with carrying capacity K (> 0) and intrinsic growth rate »(> 0).

(i) In the presence of infection the total prey population N is divided into two classes,
susceptible population S and infected population . Therefore, at any time z,

N(@)=S@)+1(2). (1.1)
(1i1) Susceptible prey becomes infected when it comes to the contact with the infected prey.

(iv) Infected individuals fail to contribute in the reproduction process and the growth dynamics
of the susceptible.

(v) We assume that the predators’ growth depend on past quantities of prey. Since prey
populations are infected by a disease, so infected preys are weakened and become easier to

catch.

Also, we assume that predator catches very small quantities of susceptible prey. Consider a
continuous weight (or density) function f,, whose role is to weight moments of the past and
satisfies the following conditions:

f1(s)20, s€(0,+0), Tfl(s)dszl. (1.2)
Assume two weighted average over the past
0, = [1(s)/,(t s5)ds, 0,(t) = [S(s)g, (¢~ s)ds. (1.3)

From the above assumptions we obtain the following model:
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where S(t),I(f) and P(t) denote the quantities of sound prey, infected prey and predator,
respectively. p,, p,(> 0) are the capturing rates, A,,4,(> 0) are the product of the per-capita rate
of predation and the rate of conversing prey into predation, z,&(>0) are the death rate of

infective prey and predator, respectively. 7 is a time, during which the infectious prey develop
in the fish population and only after that time the infected prey becomes itself infectious.

The predator species feeds on both the susceptible and infected prey, but as the infected prey
becomes more vulnerable than the susceptible prey, the rate of predation on infected prey is
much more than the susceptible prey. As the predation on susceptible prey is negligible so for the
simplicity we do not consider the predation term on susceptible prey.

Therefore, we will discuss the integro-differential system as follows:

2

B _ 505,y ASle-D)

dt K a+S

dl  pSIt-7) - ==

Sl -p,IP, 1.5
di z+S ul —p, (1.5)
dP

T P(—¢+h, _j;l_(S) £t —s)ds).

If we choose the density function f;(s)=dJe®’, where 6 >0 is the average delay of the
collected information on the disease, as well as the average length of the historical memory

concerning the disease in study, then f, satisfies the condition (1.2). Then

Q(t) = J.I_ (s)0e°“ds is the weighted average over the past values of disease and the choice
of f, lays down exponentially fading memory (see Cushing, 1977; MacDonald, 1977; Farkas,
2001). Since f, is the probability density of an exponentially distributed random variable, the
probabilistic interpretation is obvious. The smaller ¢ > 0 is longer is the time interval in the past
in which the values 7(¢) are taken into account, i.e., 1/J is the “measure of the influence of the

past.” Therefore, the system (1.5) can be transformed into the system of differential equations on
the interval [0, + o) as follows:
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B _ s S, HSle—n)

dt K a+S

ar_pSIe=o _p L i,

dt a+S (1.6)
/R — '
E:—EP-F}ZIPQI,

do, I

=L =5-0)).

4 (-0)

We set S/a=S,1/a=1, Q =aQ, P =P and use dimensionless time scale 7 =rt. For
simplicity, we replace the notation ¢ by¢. Then the system (1.6) can be written as follows:

dS—S(l $)— bSI(t — )’
dt 1+S
dal bSI(t 7) BSIE=T) _ 41— pip,
dt 1+S
P (1.7)
—=—-d,P+hP
dt Q.
d
L _ci-o)
where a=a/K,b=p/r,d, =ulr,p=p,/r,d,=¢clr,h=halr,c=90/r,t=rr7.
The initial conditions for the system (1.7) are
(#(0),y,(0).,(0).v5(0))eC, = C([-7,0],R?), (1)

#(0)>0, w,(0)>0, i=123,
where
R ={(S,I,P,Q)eR*:S8,1,P,0>0}.

We observe that the right hand side of Equation (1.7) is a smooth function of the variables
(S,1,P,0Q) and the parameters, as long as these quantities are non-negative, so local existence

and uniqueness properties hold in the positive octant.

Rest of this paper is organized as follows: In section 2, we discussed the existence of equilibria
and the stability of non-negative equilibria. The dynamical behavior of endemic equilibrium
point and the existence of Hopf-bifurcation around the endemic equilibrium point are also
presented in this section. In section 3, we have discussed the direction of Hopf-bifurcation and
the stability of bifurcating periodic solutions by using normal form theory and the center
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manifold theorem due to Hassard et al. (1981). Some numerical simulations are given to satisfy
our theoretical results in section 4. o

2. Equilibria and Stability Criteria

We now investigate non-negative equilibria for system (1.7). E, =(0,0,0,0) is the trivial
equilibrium, E =(1/a,0,0,0) 1S the equilibrium
E,=(d I(b—d,),(b—d, —ad,)/(b-d,)*,0,(b—d,—ad)/(b—d,)") the
equilibrium. The interior equilibrium isE™ =(S", I", P*, Q"),where S" = (h(1-a) +\/Z)/2ah,
I'=0"=d,/h, P =((b—d,)(h+m—ah)—2ahd,)! p(h+~/m + ah)
m=h>(1—a)’ +4ah(h—bd,).

axial and

is boundary

and

We see that equilibria £, E, always exist. The boundary equilibria £, exists if b > d,(1+ a).
Now if b < d,(1+a), i.e. if the maximal renewal rate of infected prey is less than their mortality
rate, then both infected prey and predator tends to zero. So, we note that the equilibrium £,
arises from E, for b =d,(1+a) and persists for b < d,(1+ a). The existence condition for the

interior equilibrium E” is
(H,):b<h(1+a)*/4ad,, (b—d,)(h+~m —ah) —2ahd, > 0.

From the system (1.7), we observe that (d/dt),_, <0 if S(0)<d, /(b—d,), since S(t) < S(0)

at any time ¢. In this case S(¢)<S(0)<d,/(b—d,). This is usually known as threshold

phenomenon. If the initial susceptible prey population is less than the ratio of the death rate of
infected prey to the maximal renewal rate of infected prey decreased by the death rate of infected
prey, the epidemic can not at all spread. The more susceptible population in the system, the
greater chance of becoming infective in the diseased system. o

Let E =(S,1,P,0)be any arbitrary equilibrium. Then the Jacobian matrix evaluated at E leads
to the characteristic equation as follows:

A-{(1-a8)--2Ly S, bS_ e 0 0
1+5 (1+5) 145
bl - bS -
__ bl Avd 4+ pP - ] 0|=0. (.1
1+35)° TPETILS P @D
0 0 A+d,-hQ —hP
0 —c 0 A+c
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Theorem 2.1:

The trivial equilibrium £, is unstable.

Proof:

The characteristic equation (2.1) at the trivial equilibrium £, is
A-DA+d)A+d,)(A+c)=0.

So, the trivial equilibrium is unstable (saddle).

Theorem 2.2:

The disease free equilibrium E, =(1/a,0,0,0) is

(1) Asymptotically stable when (b—d,)/ad, <1,
(11) Linearly neutrally stable for d, =b/(a+1) and
(ii1) Unstable when (b—d,)/ad, > 1.

Proof:

The characteristic equation at the disease-free equilibrium E| is

(A+D(A+d,)A+c)A+d, —be ™™ /(1+a)) =0.

T. K. Kar and Prasanta Kumar Mondal

(2.2)

Thus the stability of the disease-free equilibrium depends on I'(1) = A +d, —be ™ /(1 + a).

(i) TA)= A+d,-be™ /(1+a)=0, A =be ™ /(1+a)-d,)|._,=b/(1+a)—d, <0 if
(b—d,)/ad, <1. In fact, the root of I'(1) =0 has negative real part for 7 >0. Thus, if
(b—d,)/ad, <1, the disease-free equilibrium is asymptotically stable for all 7 > 0.

(i) If d,=b/(1+a), we see that A =0 is a simple root of I'(1)=0. If I'(1) has a

characteristic root as A = y +iw, then we have
y+io+d, —de” (coswr —isinwr)=0.
This implies that

(y+d,) +0* =d ™",
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which holds only when y<0. If >0, we will reach a contradiction. Thus, when
d, =b/(1+a), the disease-free equilibrium is linearly neutrally stable.

(iii) When (b—d,)/ad, >1, T'(0) <0 and I'(4+o) > 0. Thus, the characteristic equation (2.2) has
at least one positive root. So the disease-free equilibrium is unstable and the equilibrium
point E, exists. o

To discuss the stability of the equilibrium point E,, we state the following theorem, which is set
up in Kar, (2003).

Theorem 2.3:

A set of necessary and sufficient conditions for (x", ") to be asymptotically stable for all 7 >0
is the following:

1. The real parts of all the roots of A(A,0) =0 are negative.
2. Forallreal v and 7 >0, A(iv,7)# 0, where i =+/—1.

Theorem 2.4:
The boundary equilibrium £, =(d, /(b—d,),(b—d, —ad,)/(b—d, )2,0, (b—d,—ad)/(b-d, )2)

is
(1) Locally asymptotically stable forall 7 >0, if b—d, —ab<ad,,

(1) Unstable for 7 =0, if b—d, —ab > ad,.
Proof:

The characteristic equation at the equilibrium point £, is
(—c=A){-d, +h(b—d, —ad,)/(b— d1)2 —AH(x— ﬂ)(dle_h —d,—4)

(2.3)
+d,(b—d,—ad,)e”" / b} =0,

where
x=d(b—-ab—-d,—ad,)/b(b-d,)).
As(H,)holds, so
A=—-d,+h(b—d,—ad)/(b-d,)’ =(-d,d] +(2bd, — h—ah)d, + bh—b’d,)/(b—d,)’ <O.

Thus, the stability of the equilibrium point £, depends on the equation
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AA,7)=(x—-A)d e —d, -~ A)+d,(b—d, —ad,)e™” /b=0. (2.4)
AT =2 +(d, —x)A—xd, —e " [dA—xd,~d,(b—d, —ad,)/b].

For 7 =0, the equation (2.4) can be written as
A —xA+d,(b—d,—ad))/b=0. (2.5)

If x<01ie. b—d, —ab<ad, and since b—d, —ad, > 0, all roots of the Equation (2.5) are real
and negative or complex conjugate with negative real parts. Therefore, the equilibrium point E,
is locally asymptotically stable for 7 = 0.

For 7 #0, if A =iw is aroot of the Equation (2.4), then we have

(—~0* —xd,)+i(d, - x)w =[d,wsin wr — {xd, +d,(b—d, —ad,)/ b} cos wr]
+i[d,wcoswt +{xd, +d,(b—d, —ad,)/ b}sin wr].

(2.6)
Separating real and imaginary parts, we get

(—~0* —xd,)=d,wsinwr —{xd, +d,(b—d, —ad,)/ b} cos wr,

(d, —x)o=d,wcoswr+{xd, +d,(b—d, —ad,)/b}sinwr.
Squaring and adding the above two equations, we have

o' +x’0’ —d,(b—d, —ad,){2d,x +d,(b—d, —ad,)/b} /b =0. 2.7)

Now, 2d,x+d,(b—d, —ad,)/b=d [-(1+a)d] —3abd, +b*]/b(b—d,)<0. So, the equation
(2.7) does not have any real solutions. Hence, by the theorem 2.3., the theorem is proved. o

Now we consider the following assumptions:
(Hy)HS " (a= 1)} ~hpI P} =4£5S" (a= 1)} <0,

* * * * %3
(H,):4/gS (a~ f){d, fgpP'S (a~ f)+ [*g*S (a~ f)~d,pP"S" (a~ f)’}

— (S (fg—d,pP"Ya~ f)} —d,pP" (fg +d,pP" )}’ >0,
(H,):c<2d,gpP'S" (a~ [)? N1d2p*P" = g*{S" (a— f)~ f}* =2d,pP'S" (a— f){g + S (a- )}],

where f=bl" /(1+57)*, g=bS"/1+S".
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Explicit biological interpretations of the conditions H, —H, seem to be difficult. These may

simply be regarded as some conditions to be satisfied by the biological and technical parameters

for the stability of the endemic equilibrium.

Theorem 2.5:

If (H,) and (H,) hold, then the endemic equilibrium E” is locally asymptotically stable for
r=0.

Proof:
The characteristic equationat E- =(S", ', P, Q") is

* *

/I—S*{—a+L*2} bS *e%r 0 0
1+S) 1+S
I* * * i
—b—*z B8 B8 ey 0 |=o0. (2.8)
1+Ss) 1+S 1+
0 0 A —hP"
0 —c 0 A+c
When 7 =0, the characteristic equation (2.8) yields
A +al+a, X +ad+a, =0, (2.9)

where

a,=S"(a=f)+c,a,=cS (a-f)+ fg, a; =cd,(g~d,) +cfg,

i (2.10)
a, =cd,S (g—d)a-f).

Since a—f =m/h(1+8)>0 and g—d, = pP* >0, then a, >0 for i=1234. By the
conditions (/,) and (H,) the following conditions hold trivially.

aay—a, =cS (a— ) +S"(a—f)fg+c*)—cdy(g—d,)

=S"(a=f) +14S" (a=- f)} —hpl 'P'}c+ fzS" (a - f)
>0,
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ay(aa,~ay)—a,a’ = c(d,pP" + f2)[S (a— ) +{S7(a— )’ —hpI P}c
+ /88" (a— f)] —cd,pP'S (a— ){S (a— f)+c}’
=Lc* + Mc* + Ne
>0,
where

L=feS" (a—f)>0,
M=5"(a~ /) (fg~d,pP")~d,pP (fzg +d,pP"),
N = fgS"(a= f)(fg+d,pP ) —d,pP'S " (a- f)’.

Hence, the Routh-Hurwitz criterion is satisfied. Thus, it follows that the endemic equilibrium E°
is locally asymptotically stable for 7 = 0.
We now give a definition, which can be found in Beretta (2002).

Definition 2.1:

The equilibrium E” is absolutely stable if it is asymptotically stable for all delays 7 > 0 and is
conditionally stable if it is asymptotically stable for 7 in some finite interval. o

Next we will investigate the distribution of roots of the following equation

A rm 2+ m, P+ m A+ my + (A +n, A +nA+ny)e =0, (2.11)

3
where m,, n, e R(i=0,1,2,3) and > .n’ #0.

i=0
When 7 =0, the equation (2.11) reduces to

A+ (my +n)A +(my +n,)A° +(m, +n)A+m, +n, =0. (2.12)
Obviously, i@w(w > 0) is a root of equation (2.11) if and only if @ satisfies

o' —m,@’i —my@® +mi+m, +(coswr —isin wr)(-n,@’i —n,0’ +nwi+n,)=0.
Separating the real and imaginary parts, we have

{a)“ —m,@” +my = (=1,0" +n,)cOs OT + (~n,0° +n,®)sin o1, (2.13)

- m,@° +mo=(-n,0’ +nw)coswr — (-n,o’ +n,)sin wr,

which implies
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w4+ p'w g W +rw+s' =0, (2.14)
where
2 ' 2 2 ' 2 2
w=w", p'=-2m,+m;" —n,",q =m, +2m, —-2mm, —n,” +2nn,,

'__9 2.9 2 42 2
r'==2mym, +m,” +2nn, —n,", s’ =m," —n, .

Let us denote

3 3 [
1 ’ 3 12 1 13 1 rr ' 12 ll —1++3i
L =—q —— ,l == -7 + 522 — | =, =T
1T T el T TP (2 3007

!

[ [
y3:§33\/—52+ Z+§i/—52_\/§, wi:yi_3Tp’ i:13233'

Li et al. (2005) obtained the following results on the distribution of roots of Equation (2.14).
Lemma 2.1:
For the polynomial equation (2.14)

(1) If s" <0, then Eq. (2.14) has at least one positive root;

(i) If s">0and £>0, then Eq. (2.14) has positive roots if and only if w, >0 and
plw;) <0;

(iii) If s" >0 and X <0, then Eq. (2.14) has positive roots if and only if there exists at least
one w e {w, w,, w} such  that w >0 and p(w) <0, where

pw)=w+pw +g'w +r'w+s’.
Lemma 2.2:

(i) The positive equilibrium E of system (1.7) is absolutely stable if and only if the

equilibrium E” of the corresponding ordinary differential equation system is asymptotically
stable and the characteristic equation (2.8) has no purely imaginary roots for any 7 > 0;

(i) The positive equilibrium E* of system (1.7) is conditionally stable if and only if all roots of
the characteristic equation (2.8) have negative real parts at 7 =0 and there exist some
positive values 7 such that the characteristic equation (2.8) has a pair of purely imaginary
roots *i@,.a
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Theorem 2.6:
If (H,), (H,) and (H,) hold, then the endemic equilibrium point £~ is conditionally stable.
Proof:
For 7 > 0, the characteristic equation (2.8) can be expanded as

M AP +B VP +C'A+D = [gh +E'1* +F'A], (2.15)
where

A'=S(a-f)+g+c,B' =S (a—f)c+g)+cg, C' =cd,(g—d,),

D'=cd,S"(g—d\Na~f), E'=g(c—f)+gS (a~f), F'=cg{S (a~f)~ f}. 210
Assume that for some 7 >0, i@w(w > 0) is a root of (2.15), then we have

o' —A&’i—B'o’ +C'wi+ D' =(coswr —isinwr)(-gw’i — E'ow” + F'oi). (2.17)
Separating real and imaginary parts, we have

{a)“ —B'®w’ +D'=-E'0’ cosor + (—gw’ + F'w)sin or, 2.18)

-A'® +C'w=(-gw + F'ow)coswr + E'w’ sinwr,

which implies that

o° +x,0° + x,0" + x,0° +x, =0, (2.19)
where

x, =A?-2B"-g*, x,=B" +2D'-2A4'C'-E" +2gF’, (2.20)

x,=C"?-2B'D'—~F", x,=D".
Since a— f >0, we have

X, zS*z(a—f)2 +c? >0,

%2 *
x, =8 (a-f)(c+g)’ - f’g" +2cgS (c+g)a— f)-2cd,(c+g)g—d,),
x, =Uc® +Ve <0,

where
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U=d,"(g-d)’ -g*(S"(a— )~ 1)’ —2gd,S (g —d,)a~ [)-2d,S" (a- [)*(g-d,).
V=-2d,g8" (a- f)(g~d,).

Let w, be one of the positive root of the Equation (2.19). Then the characteristic Equation (2.15)
has a pair of purely imaginary roots of the form *i@,. From the Equation (2.18), we get the
corresponding 7, > 0 such that the characteristic Equation (2.15) has a pair of purely imaginary
roots.
1
7, =—cos [{(C'w,— Aw)’)F'o,-gn,’)-E'o, (0, - B, +D')}
a)O

[(Fo,-go))+ EPo 1+, n=0,1,23,...

0

Hence, by Lemma (2.2) and Theorem (2.5), the endemic equilibrium E” is conditionally stable.
o

d(Rel)
dr

Now we will show that

=1}

This implies that there exists at least one eigen value with positive real part for 7> r7,.
Differentiating (2.15) with respect to 7, we get

(@j“ __ 424D +BA D 2P +EL
dr — R+ AP +B A +CA+D) (VP +EA+F) A

Therefore,

N~ "7 = Rel —
Slgn{ o Slgn{ (¥ .

k

.| 4@ +3x,00 +2x,0] + x,
= Sign .
a0 + P+ Eor)

Thus, we have

d(Re )
dr

T=1)
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This shows that the root of characteristic Equation (2.8) crosses the imaginary axis from the left
to the right as 7 increases through z, and the conditions for Hopf bifurcation are then satisfied

atr=r7,.0m

As we know, Hopf-bifurcation is a very important dynamic phenomenon in epidemiology. It can
be used to interpret the periodic behavior for some infectious diseases. For more details we refer
the reader to see Greehalgh et al. (2004); Hethcote et al. (1999). It has been recognized that delay
may have very complicated impact on the dynamic behavior of a system. It can cause the loss of
stability and can bifurcate various periodic solutions. Some recent literatures on this subject are
Yan and Zhang (2008), Ruan and Wang (2003), and Yan and Li (2006).

3. Stability and Direction of Hopf Bifurcations
In this section, we shall study the direction of the Hopf bifurcation and the stability of the
bifurcating periodic solutions by using the normal theory and the center manifold theorem due to

Hassard et al. (1981).

Let u, =8-S, u,=I-1",u;,=P-P ,u,=0-0,u,(t)=u,(t), r=v+7, and dropping
the bars for simplification of notations, the system (1.7) becomes a functional differential
equation in C, = C,([-1, 0], R*) as

i(t) =L, (u)+ f(v,u,), (3.1
where

u(t) = (u, (), u, (t),u;(t),u,(t))" e R*and L, :C, - R*, f:RxC, — R* are given by

—aS"+ /57 0 0 0 [[4(0) 0 —g 0 0][¢(-D
_ f -g -pl" 0|40 0 g 0 0D
L= +y) 0 0 0 kP |40 HEEG 0 0 o $(-D [
0 ¢ 0 - |[40 0 0 0 0]
(3.2)
and
_a¢12(0)_bM1
7 le—p¢2(0)¢3(0)
5 =\ 33
SO A=) 0,0) )
0

where
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Ml 1 21_ 1 21 1021
(IS)¢()¢()( )¢()¢()(1S)¢()¢()+

By the Riesz representation theorem (Hale and Verduyn, 1993), there exists a function 7(é, v)
of bounded variation for & € [—1, 0] such that

L,(#) = [dn(8.v) (6. for p<C.. (3.4)

In fact, if we choose

—(@-£S" 0 0 0 0 -g 0 0
_ —pl" 0 0 g 0 O
o= T T8 T Y s 0@ ) 5,(6+1)
0 0 0 &P 0 0 0 0
0 c 0 -c 0 0 0 0
(3.5)
where 0, is the Dirac delta function, then (3.4) is satisfied.
For ¢ € C,([-1, 0], R*), define
20 0<[-1,0)
do
AWV)P =1, (3.6)
[an(sv) g(s),  0=0
-1
and
) {0 0el-1,0), 37)
V) = .
fv, ), 0=0.
Then the system (3.1) is equivalent to
u, =AW)u, + RW)u,, (3.8)

where u,(0) =u(t+6), for 8<[-1,0].

For y € C, ([0, 1], (R*)"), define
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_dy(s). se(0,1]
" ds
A y(s)=1, (3.9)
Jdn' @oyn.  s=0
and a bilinear inner product
(w(s), ¢(0)) = (0)$(0) - f IV(? —0)dn(0)¢(S) dg, (3.10)

—1£=0

where 77(8) = 17(6, 0). Then A4(0) and A~ are adjoint operators. By the discussion in section 2,
we know that +im,r, are eigenvalues of A(0). Hence, they are also eigenvalues of A4". We first

need to compute the eigenvectors of A(0) and A4  corresponding to iw,r, and —iw,7,,
respectively.

iwyr,0
0Tk

Suppose ¢(0)=(1, q,, ¢,, q5)" e is the eigenvectors of 4(0) corresponding to i@,7,. So,

A(0)q(0) =iw,7,q(8). Then from the definition of 4(0) and (3.2), (3.4) and (3.5), we get

—@-/)s" 0 0 0 0 -¢ 0 0
f -g -pI" 0 0 g 0 0 .
0)+ -D=iw 0).
Tk 0 0 0 P q(0)+7, 0 0 0 0 q(-1) = iw,7,4(0)
0 c 0 -c 0 0 0 0
Since g(-1) = g(0)e "™, then we have
—iw, —(a— f)S" hP" c
1= . E,«,M,f) s 4y =43, 43 = -
ge lw, ctiw,

Similarly, let ¢ (s) = D(1, q,, q,, g5 )e'™™ be the eigenvectors of 4" corresponding to —i,7,.
Then, by the definition of 4" and (3.2), (3.4) and (3.5), we have

*

. pl" . . hPT .
v qy = 41,93 = 9
f io, c—im,

. (@a-NS -iw
6]1=( f) b

In order to assure (g (s), ¢(@)) = 1, we need to determine the value of D. From (3.10), we have
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(G (). 40) =4 ©q0)- [ [ ¢ (E-0)dn(©.0)q(&)dé

6=—1£=0

:D(L %*a q; q;)(l, 4, 9> qz)T

06 o
_I.[D (15 ql*’ 95> 95 )eilwork(g*g) d77(<9) (1, q,> 9>, q3)Te””oTk~fdé:
-10
0

= D{l+¢,q] +6,9:+ 9,4, — | (1, 4> 43, )0 dn(6) (1, 4, 43 43)}

-1

= D{l+q,4; +4,9, + 4345 + 7,89, (=1 +¢,)e ™™ }.
Therefore, we can choose D as

1

D = * —_ * —_ * —_ *
1+q,9, +4,9, + 4595 +7,89,(-1+¢q, )e

iwgry, *

Next we will compute the co-ordinate to describe the center manifold C,, at v =0. Let u, be the
solution of (3.8) when v = 0. Define

20)={q"u,), W(t,0)=u,(0)-2Re{z(t)q(0)}. (3.11)
On the center manifold C,, we have
W(t,0)=W(z(),z(1),0),

where
2 2

W (z(t),2(t),0) = Wy, (9)% +W,,(0)zZ + W, (49)27 o (3.12)

z and Z are local coordinates for center manifold C, in the direction of ¢~ and ¢ . Note that

W is real if u, is real. We only consider real solutions. For solution u, € C, of (3.8), since
v =0, we have

(1) ={q ,u,)
= iwyt,z+q (0)F(0,W(z,2,0) + 2Re {zq(0)})
= itz +q (0, (2.9).

We rewrite this equation as

z2(t)y=iw,r,z(t)+ g'(z,2),
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where
2

z? z? z’z
g'(z,2)=¢q (O)fo(z Z)=gy— > +812Z+ 8y —— 5 +g217+.... (3.13)

It follows from (3.11) and (3.12) that

u,(0) =W(t,0) +2Re{z(t)q(0);

2 =2

= WZO(H)Z?+VV“ZE+W02((9)Z?+ZC]+567+...

2 2

z _ iwyr,.0 - = = —iwy7,0 —
:%0(6)?"'”/1122"'%2(0) +(, %ana%)T Z+(1a%:%:%) e “Z+... _(3.14)

It follows together with (3.3) that

g'(22) = ¢ (0)f, (%)

—au; (0) -bM,
P — pu,, (0)u;,(0) = = = | bM, (3.15)
=r.D( D
=T (qlan%) hut,, ()i, (0) +7,.D(Lq,,9,,95) 0 )
0 0
where
M, = et Ot (1) = st} Oty (=)t Oty (D) ..
1+5)* (1+S8°)’ (1+S)
~ au;, (0)
Il p”z;(o)um (0)
1
¢ ql,qz,%) hu,, (0)u,, (0)
0

2 —2
——a{z+Z+ WY (O)ZT W#’((»% W£>(0>Z—+ o((z.2) )Y

2

- gy {zq, + 7, + W) (0) + W (0)zZ + Wy, (0)— +0(|(z.2)[)}

<l + 7+ O Wﬁﬁ)(mzz PO 40P
s 2+ WS O W 0= D0+ 0012 2) P
<log+ T WO WO WO D 400 D))

— 2 — =2 2—
=a,z  ta,zztaz" +a,z7z +...,
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where
4, =~a- paidsd; +ha, s 4z, ay =-2a- pq; (4T, +Gd,) + has (0,T, +Tds):
4y =—a-pq; 4,3, +hg 1.4,
a,, = —a2W" (0)+ W (0)} — pa (G WL (0)/2+ g, (0) + T, W2 (0)/2 + g, W, (0)}
+ha (g, W 0) + T (0) 12+ W (0)/ 2+ g ) (0)).
and

— 2 = =2 2=
M,=b,z" +b,zz+bz" +b,z°Z +...,

where
b = ; et b — ;(— el 4 e_iwofk) b. = 1 -
11 (1+S*)2 QI s Y12 (1+S*)2 QI ql s Y13 (1+S*)2 1 5
—1 aq. i@y —iwyTy
b = gy P DR D 24 g W 0™ 124 g (007
1 —lwyTy — _iwyr;
- 1+5) {2q,e +g,e" ™},

From (3.15), we have

¢'(2,2) =1, D{(a,,2> +a, 2% + a7 + a2 +..) + b(=1+q )by, 2> +b,2Z + b2 +b,2°F +..)}.

(3.16)
Comparing the coefficients of (3.13) and (3.16), we get
80 = 27—/(5{‘111 +b(qr —-Db,,},
&u :Tkﬁ{alz +b(q1*—l)b12}, (3.17)

8w = 22—1{5{‘113 +b(‘]1* —Db;},
8 = ZTkE{aM +b(ql* -1b,,}.

Since W,,(0) and W, (@) are in g,,, we still need to compute them. From (3.8) and (3.11), we
have
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W=i,-2q-2q
= AW ~2Relq (0)/,q(6)} + Ru,
_ 4w -2Retg’ @ Jig0)y,  ir-1<0<0,
) {AWzRe{q*(O)foqw» + o, ifO=0,
= AW + H(z,Z,0), (3.18)
where
H(z,Z,0) = H,, (9)§ +H, (0)zZz+H,, (9)% oo (3.19)
We know

W= Wzo(e)%+ W, (0)z= + Woz(e)%+..,

LW =W 2(t) + W.Z(1)
=Wy (@)z+ W, (0)z +.. )iwyT,2(t) + g'(2,2))
+ (W, ()2 + Wy (D)Z +..)(~iw,r, 2(1) + §'(z,2)).  (3.20)
From (3.18),

2 2 2 2

W= A(O)(Wzo(ﬁ)%+ W, (0)zz + Woz(e)27+...)+HZO(¢9)Z?+H“(0)22+HO2 (0)%+,,,

z? _ z?
= (AW, (0)+ o (0) -+ (AW, (0)+ H, (D) + (AW, (0) + Hyn(0) -+
(3.21)
Comparing the coefficients of z* and zz from (3.20) and (3.21), we get
(A(0) = 2,7, )Wy, (0) = —H , (6), AOW,(0) = -H,,(0). (3.22)
For 6 €[-1,0], we have from (3.18) and (3.13)
H(z,2,0) = =4 (0)/,9(0) — 4 (0)£,q ()
=—-8'(z,2)9(0) - g'(z,2)q(0)
2 =2 2
z _ _zT _ _ _ z _
=—(gy 7+gllzz +..)q(0) = (g5 7"'&122 +8n 7"‘---)‘](9)- (3.23)
Again, comparing the coefficients of z* and zz between (3.19) and (3.23), we get
H,,(0) = —g,9(0) — g,09(0), (3.24)

and
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H, (0)=-g,9(0)—g,,9(0). (3.25)

From the definition of A4 and (3.22) and (3.24), we get

W, (0) = 2,7, W,y (0) + £20q(0) + 81, g (6).

Since q(8) = (1, q,, q,, q;)" "™’ so we have
I/V20 (9) — 180 q(o)ei{uor,ﬁ + 180 q(o)e—i{uor,ﬂ + ElreZi{uor,ﬁ’ (326)
2 Wy Ty

where E| =(E"",E® ,E®,E)" is a constant vector.

Similarly, from (3.22) and (3.25), we obtain

Wvll(e) - _ 181 q(o)eia)orkﬂ + g1 a(O)e_m)Orkg +E;, (327)

Wy Ty Wy Ty
where E) = (E\",E EP,EY)" is a constant vector.

We find the values of E| and E}. From the definition of 4(0) and (3.22), we have
0
jdn(@) W,,(0) =2iw,c,W,,(0)—H,,(0), (3.28)
-1

and
0
[an@yw, ©) =-H,0), (3.29)
-1

where 7(8) =n(0,0).

By (3.18), we know when 6 =0,

H(z,2,0)=—-2Re{g (0)f,q(0)} + f,
=-g'(2,2)q(0) - g'(z,2)q(0) + f,.

2 2 2 =2

. z _ z z _ z
1.€. H20(0)7+H11(0)Zz +H, (0)7+... =—(g, 7+gnzz + 80 ?+...)q(0)

=2 2

_  Z _ _ Z _ -
—(g207+gnzz +8n 7+---)‘](0)+f0-
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(3.30)
By (3.3), we have

—au. (0)—bM,
y bM | — pu,, (0)us, (0)
0o =T .
hus, (0)u,, (0)
0

By (3.11), we obtain

u,(0)=wi(,0)+2Re{z(t)q(0)}

=Wy (O) 5411, (0)22 + W (0) S+ (04(0) + 50 (O) +...

Then, we have

—a _L*queﬂ‘wnrk _2a _L”Re{qle—iwork}
1+Ss) 1+s)
- —i@yTy 2 Zb —i0yTy — —
1, =1, s g —pgq, |27 +1, Tis ) Re{ge ™"} -2pRefq,q,} |zz+... (3.31)
hq,qs, 2hRelq,q,}
I 0 ] i 0 1
From (3.30) and (3.31), we get
—a-bb,,
_ bb,, - pq,q
Hy(0)= ~8204(0) = 8ng () +27, | 1~ T, (3.32)
9,45
0
and
n,
_ n,
H,,(0) =—-g,,9(0) - g,,§(0) + 27, nf : (3.33)
3
0

where
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" =-a Re{ge ™"}, n} = Re{g,e ™"}

b
(14—5*)2
- pRe{qq.}, n; =hRe{q,q:}.

b
1+S87)
Since iw,7, is the eigenvalue of 4(0) and ¢(0) is the corresponding eigenvector, we obtain
0 .
iyt I = [ dn(6))g(0) =0,
-1
and
0 .
(~ioyr, I~ [e" " dn(0))3(0) =0.
-1

Therefore, substituting (3.26) and (3.32) into (3.28), we get

—a- bbll
{2 bb,, —
@iy, - [ dp@)E =27, "~ PHE |
B hq,4;
0
That is,
—2i(00 + (a — f)S* ge—zia)ork 0 0 _ - bbll
. 2+ g —ge*Z"‘”ofk pl* 0 E =2 bb,, - pq,q,
0 ’ 210, —hP" 1 hq,q;
) —¢ 0 2w, +c | 0
This implies that
—a— bbll ge—ziwork 0 0
EM — i bb,, — pq,q, 2iw, + g _ge—Ziwﬂfk p]* 0
I g
A1 hQZQ3 0 2ia)0 _ P
’ —¢ 0 2ia)0 +c
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2iw, +(a—f)S —a—bb,, 0 0
E® :i -f bb,, - pq,q, p]* 0
1 *
A, 0 hq,q, 2iw,  —hP
0 0 0 2w, +c
2iw, +(a— f)S” ge —a—bb,, 0
E® = 2 -/ 2iw, + g —ge bb,, - pq,q, 0
A, 0 0 hq,q, —hP’
0 —c 0 2iw, + ¢
2iw, +(a—f)S ge 0 —a—bb,,
o -2 —f diwy+g—ge™™  pl"  bb = paids|
A, 0 0 2iw, hq,q,
—c 0 0
where
2iw, +(a—f)S ge 0 0
Aol iw, + g —ge ™™ pI’ 0
1 0 0 2iw,  —hP’
0 —c 0 2iw, +c

Similarly, substituting (3.27) and (3.33) into (3.29), we get

(a-1)S" g 0 0 n

- 0 I 0 !
/ p B =2
0 0 0 -—hP ny

_0 —c 0 c | 0

Hence, we obtain
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n g 0 0 (a-f)S" n 0 0
EM — 2 |n pl* 0 E® _i -/ n, pl* 0
CoAdmy 0 0 —hP| T Al 0 . —hP'
0 —-c 0 c 0 0 c
(a-f)S" g n 0 (a- 1S 0 n
g 2 -f 0 n 0 o -2 -/ 0 pl° n
2 , 0 0 n, - A, 0 0 0 nl|
0 —c 0 c 0 —-cC 0 c
where
(a-S" g O 0
A - —f 0 pI’ 0
’ 0 0 0 —hp
0 —c 0 c

Thus, we can determine W, (8) and W () from (3.26) and (3.27). Furthermore, we can

compute g,, by (3.17). Hence, we can compute the following values:

i 18n ). g
¢, (0) :m(gzogn -2 g, |2 _%J"‘?,
~ Refe,(0)}
Hy =————F 1~ >
@t
dr (3.34)

B, =2Re{c (0)},
dAz,)

Im {Cl (O)} T U, Im{dl’}
T, =- , k=012,..
WyTy

By the result of Hassard et al. (1981), we have the following theorem:

Theorem 3.1:

In (3.34), the sign of u, determined the direction of the Hopf bifurcation: if x, > 0(u, <0),
then the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solution exist
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for r>7,(r<r,); p, determines the stability of the bifurcating periodic solution: the
bifurcating periodic solution is stable (unstable) if £, <0(f, >0) and 7, determines the period
of the bifurcating periodic solution: the period increases (decreases) if 7, > 0(7, <0).

4. Numerical Simulations and Discussion

In this section, we have studied the existence of the Hopf bifurcation of the system (1.7) by
choosing a set of parameter values. Consider the following system:

B _sa-0115)- 250
dt 1+S

b

ar _0781t=17) 427 _0.021P

dt 1+S 4.1)
9P 03P+04PO
dt ' . ’
a0 _ 4
C=31-0).
18
i |
2T l’w ﬂﬂﬂ i |
, 100 ) N [T =
% sfw ]
§ 6,” |
“*\H 1
| ﬁ

-2

L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
time

Figure 1. The endemic equilibrium £~ = (8.59341,0.75,10.3517,0.75)
of the system (4.1) is asymptotically stable for 7 =14.73 < 7,,.

All the trajectories of the state variables converge to their respective
equilibrium values.
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Figure 2. The bifurcating periodic solutions for 7 = 20.11> 7.

The figure shows that the equilibrium point
E™ =(8.59341,0.75,10.3517,0.75) is unstable.

Figure 3. Bifurcation diagram of the system (4.1) in (S, 1, P) -space for 7 = 0.

The system (4.1) has an endemic equilibrium E~ = (8.59341,0.75,10.3517,0.75) and for 7 =0,

the endemic equilibrium E° is locally asymptotically stable. The values of
o, =0.0800723, 7,=19901 and from the formulae (3.34), we  obtain

¢,(0)=22.9545-19.7103i, u, =11290>0, p, =45.909>0 and 7, =29.345> 0. Thus, the

endemic equilibrium E° is asymptotically stable when 7 =14.73<7, and unstable when
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7 =20.11> 7, as shown in the Figures 1 and 2 respectively. In Figure 2, it is found that all the

trajectories of susceptible, infected prey and predator bifurcate periodically around their
equilibrium point. The equilibrium point (8.59341,0.75,10.3517) is periodically stable when no

delay parameter is introduced in the model system (4.1) and is numerically investigated in figure
3.

F(o)
a=011
a =003
! i
[
(o) a=021
, a=011
oo
oo
oo @ = 003
oo
20 40 &0 g0 100

Figure 4. Local stability properties of endemic equilibrium £ " through the functions

F(c)=a,a, —a, and G(c) = Lc’ + Mc® + Nc forr =0. F(c),G(c) >0

ensure the local asymptotic stability of £ . The functions F (¢) and G(c)

are plotted for different values of a i.e. for different values of carrying capacity
and the saturation constant.
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Figure 5. The figures indicate variation of both the predator and infectious prey
populations with the susceptible prey population. The plot functions
imply the growth of predator depends on the prey population.

In Figure 4, it is observed that for different values of a, i.e., for different values of saturation
factor and carrying capacity, the endemic equilibrium E” is locally asymptotically stable for
7 = 0. Also, when the susceptible prey gradually increases, the predator population increases but

infected population decreases and extinct entirely for S > 9.1, which is shown in Figure 5.
1.3

0.8

0.7

0.6

05 Il I I Il Il
0 5 10 15 20 25 30

Figure 6. The endemic equilibrium (10.3517,0.75) is locally asymptotically

stable for some initial parameter values in (P, I) plane when 7 =14.73 < 7,,.
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0 5 10 15 20 25 30

Figure 7. The figure indicates projection of the phase portrait of system
(4.1)in (P, I) plane for 7 =20.11 > 7,,.

The Figure 6 shows that when the value of delay parameter lies below the critical value, the
infected population initially increases and when rate of predation increases the number of
infected prey population drops off and the path approaches to their equilibrium values in finite
time. But, when the value of delay parameter is beyond the critical value, Hopf-bifurcation
occurs for the system (4.1) and there exist limit cycle near the equilibrium point (10.3517,0.75)

as demonstrated in Figure 7.

70

60 -

50

401

30+

20

0 | | | | | | |
7.4 7.6 7.8 8 8.2 8.4 8.6 8.8 9
S

Figure 8. The positive equilibrium (8.59341,10.3517) is locally asymptotically
stable for some hypothetical parameter values in (S, P) plane when the delay

parameter value below the critical delay value i.e.7 =14.73 < 7,,.
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Figure 9. The figure shows projection of the phase portrait of system (4.1)
in (S, P) plane for 7 =20.11> z,,.

Again, assuming the value of the delay parameter 7 =14.73 below the critical value
7, =19.901, we sketch the trajectory in (S, P)-plane as depicted in figure 8. Here we observe

that initially the number of predator population increases when the susceptible population
decreases and after some finite time the number of predator population decreases while the
number of susceptible population increases and the path approaches to their equilibrium value
(8.59341,10.3517) in finite time. But, when the value of delay parameterz = 20.11> 7, Hopf-

bifurcation occurs for the system and there exist limit cycle nears the equilibrium point
(8.59341,10.3517) as demonstrated in Figure 9.

5. Conclusions

In this paper, we propose a prey-predator model with the assumption that the disease is spreading
only among the prey species and though the predator species feeds on both the susceptible and
infected prey species, the rate of predation on infected prey is more than the susceptible prey as it
becomes more vulnerable to predation. The dynamical behavior of the system is investigated
from the point of view of stability analysis. The system is locally asymptotically stable in some
region of the parametric space and exhibits periodic oscillations in some other region. Some
conditions are obtained for small amplitude periodic solutions bifurcating from a positive interior
equilibrium by applying both mathematical and numerical techniques. The stability as well as the
direction of bifurcation is obtained by applying the algorithm due to Hassard et al. (1981) that
depends on the centre manifold theorem. There is a minimum force of infection below which the
disease does not spread out. Numerical simulations substantiate the analytical results.
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