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Abstract  
 
In the present work a mathematical model of the prey-predator system with disease in the prey is 
proposed. The basic model is then modified by the introduction of time delay. The stability of the 
boundary and endemic equilibria are discussed. The stability and bifurcation analysis of the 
resulting delay differential equation model is studied and ranges of the delay inducing stability as 
well as the instability for the system are found. Using the normal form theory and center 
manifold argument, we derive the methodical formulae for determining the bifurcation direction 
and the stability of the bifurcating periodic solution. Some numerical simulations are carried out 
to explain our theoretical analysis. 
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1.  Introduction 
 
Both mathematical ecology and mathematical epidemiology are distinct major fields of study in 
biology. But there are some commonalities between them. A branch of ecology which considers 
the effect of transmissible diseases is called eco-epidemiology. On the other hand interaction 
between predators and their prey is a complex phenomenon in ecology. This complexity is 
further increased when one considers the presence of various infectious diseases prevalent in 
their populations. In the present paper, we consider a prey-predator model with disease in the 
prey. A biologically relevant example for this model can be found in the Salton Sea ecosystem. 
We could cite in particular the example of Tilapia (prey) and the Pelicans (predator). When the 
Tilapia become infected and struggle in their death, they tend to come closer to the surface of the 
sea and become more vulnerable as well as attractive to fish eating birds, like Pelicans (see Slack 
1997). Chattopadhyay and Bairagi (2001) proposed an eco-epidemiological model of the Salton 
sea consisting of susceptible and infected tilapia fish populations and their predators, the pelican 
bird population, where it is assumed that predation is only on infected fish population.  Hadeler 
and Freedman (1989) have discussed a predator-prey model where the prey population is 
infected by a parasite and in turn infects the predator with the parasite. Haque et al. (2008), 
proposed an eco-epidemiological predator-prey model with standard disease incidence. 
   
The incidence rate, i.e., the rate of new infection plays an important role in the context of 
epidemiological modeling. Generally, the incidence rate is assumed to be bilinear in the infected 
fraction I and the susceptible fraction .S  However, there are many factors that emphasize the 
need for a modification of the standard bilinear form. It has been suggested by several authors 
that the disease transmission process may follow the saturation incidence (see Kar and Mondal, 
2011; Cai et al., 2009; Esteva and Matias, 2001). We have considered the incidence rate as 

),/( SSI   where   is the transmission rate and   is a saturation factor, which is more 
realistic than the bilinear one, as it includes the behavioral change and crowding effect of the 
susceptible individual and also prevents unboundeness of the contact rate. The main aim of the 
paper is the study of the mutual relations occurring in an ecosystem where an epidemic runs 
through a prey population and the predator population being unaffected by the disease. We study 
some basic questions, among which whether and how the presence of the disease in the prey 
species affects the behavior of the model, but also whether the introduction of a sound predator 
can affect the dynamics of the disease in the prey.       
    
Model with delay is much more realistic, as time delay occurs in almost every biological 
situation. For example, parasite is passed from one infected prey to another susceptible prey. So, 
the infection process cannot be done instantaneous. Therefore, the effect of time delay can’t be 
ignored. Xiao and Chen (2001) claimed that they were the first to formulate and analyze an eco-
epidemiological model with time delay. Bhattacharyya and Mukhopadhyay (2010) studied an 
analysis of periodic solutions in an eco-epidemiological model with saturation incidence and 
latency delay. They have incorporated the time required by the susceptible individuals to become 
infective after their interaction with the infectious individuals as a discrete time delay. They also 
elucidated the role of differential predation on disease dynamics and the role of latency delay in 
infection propagation. They have found an interval of the time delay parameter, in terms of 
different system parameter, that imparts stability around the infected equilibrium point and also 
deduced a threshold delay, which indicates the change of stability of the endemic equilibrium 
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point. In this paper, we consider the discrete time delay in the disease transmission term and also 
consider an average information delay that measures the influence of the past disease. The main 
aim of this paper is to study the dynamics of the system around the biologically feasible 
equilibria. 
    
We have two populations: (a) the prey, whose population is denoted by N  and (b) the predator, 
whose population is denoted by .P   
 
The following assumptions are made for formulating the basic mathematical model: 
 
(i)  In the absence of infection, the prey population grows according to the logistic law of 

growth with carrying capacity )0(K  and intrinsic growth rate ).0(r  
 
(ii) In the presence of infection the total prey population N  is divided into two classes, 

susceptible population S  and infected population .I  Therefore, at any time ,t  
          

).()()( tItStN                                                                                                                (1.1) 
 
(iii)  Susceptible prey becomes infected when it comes to the contact with the infected prey. 
 
(iv)  Infected individuals fail to contribute in the reproduction process and the growth dynamics 

of the susceptible. 
 
(v) We assume that the predators’ growth depend on past quantities of prey. Since prey 

populations are infected by a disease, so infected preys are weakened and become easier to 
catch.  

 
Also, we assume that predator catches very small quantities of susceptible prey. Consider a 
continuous weight (or density) function ,1f  whose role is to weight moments of the past and 
satisfies the following conditions: 
                    





0

11 .1)(),,0(,0)( dssfssf                                                                            (1.2) 

 
Assume two weighted average over the past 
 





tt

dsstgsStQdsstfsItQ .)()()(,)()()( 1211                                          (1.3)  

 
From the above assumptions we obtain the following model: 
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where )(),( tItS  and )(tP  denote the quantities of sound prey, infected prey and predator, 

respectively. )0(, 21 pp  are the capturing rates, )0(, 21 hh  are the product of the per-capita rate 
of predation and the rate of conversing prey into predation, )0(,   are the death rate of 
infective prey and predator, respectively.   is a time, during which the infectious prey develop 
in the fish population and only after that time the infected prey becomes itself infectious. 
 
The predator species feeds on both the susceptible and infected prey, but as the infected prey 
becomes more vulnerable than the susceptible prey, the rate of predation on infected prey is 
much more than the susceptible prey. As the predation on susceptible prey is negligible so for the 
simplicity we do not consider the predation term on susceptible prey. 
 
Therefore, we will discuss the integro-differential system as follows: 
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                                                                                  (1.5)  

 
If we choose the density function ,)(1

sesf    where 0  is the average delay of the 
collected information on the disease, as well as the average length of the historical memory 
concerning the disease in study, then 1f  satisfies the condition (1.2). Then 





t

st dsesItQ )(
1 )()(   is the weighted average over the past values of disease and the choice 

of 1f  lays down exponentially fading memory (see Cushing, 1977; MacDonald, 1977; Farkas, 

2001). Since 1f  is the probability density of an exponentially distributed random variable, the 
probabilistic interpretation is obvious. The smaller 0  is longer is the time interval in the past 
in which the values )(tI  are taken into account, i.e., /1  is the “measure of the influence of the 
past.” Therefore, the system (1.5) can be transformed into the system of differential equations on 
the interval ),0[   as follows:  
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We set PPQQIISS  ,,/,/ 1  and use dimensionless time scale .rtt   For 
simplicity, we replace the notation t  by t . Then the system (1.6) can be written as follows: 
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where .,/,/,/,/,/,/,/ 1221  rrcrhhrdrpprdrbKa   
 
The initial conditions for the system (1.7) are 
 

,3,2,1,0)0(,0)0(

),],0,([))(),(),(),(( 4
321
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 

i

CC

i


                                                             (1.8) 

 
where 
 

}.0,,,:),,,{( 44  QPISQPIS  
 
We observe that the right hand side of Equation (1.7) is a smooth function of the variables 

),,,( QPIS  and the parameters, as long as these quantities are non-negative, so local existence 
and uniqueness properties hold in the positive octant.  
 
Rest of this paper is organized as follows: In section 2, we discussed the existence of equilibria 
and the stability of non-negative equilibria. The dynamical behavior of endemic equilibrium 
point and the existence of Hopf-bifurcation around the endemic equilibrium point are also 
presented in this section. In section 3, we have discussed the direction of Hopf-bifurcation and 
the stability of bifurcating periodic solutions by using normal form theory and the center 



AAM: Intern. J., Vol. 7, Issue 1 (June 2012)                                                                                                            305                                
          

   

manifold theorem due to Hassard et al. (1981). Some numerical simulations are given to satisfy 
our theoretical results in section 4. ◘   
 
2.  Equilibria and Stability Criteria 
 
We now investigate non-negative equilibria for system (1.7). )0,0,0,0(0 E  is the trivial 

equilibrium, )0,0,0,/1(1 aE   is the axial equilibrium and 

))/()(,0,)/()(),/(( 2
111

2
111112 dbaddbdbaddbdbdE   is the boundary 

equilibrium. The interior equilibrium is ),,,,( ***** QPISE  where ,2/))1((* ahmahS   
* *

2 / ,I Q d h  )(/)2))((( 11
* ahmhpahdahmhdbP   and 

).(4)1( 2
22 bdhahahm   

 
We see that equilibria ,0E  1E  always exist. The boundary equilibria 2E  exists if ).1(1 adb   

Now if ),1(1 adb   i.e. if the maximal renewal rate of infected prey is less than their mortality 

rate, then both infected prey and predator tends to zero. So, we note that the equilibrium 2E  

arises from 1E  for )1(1 adb   and persists for ).1(1 adb   The existence condition for the 

interior equilibrium *E  is  
 

.02))((,4/)1(:)( 112
2

1  ahdahmhdbadahbH  
 
From the system (1.7), we observe that   0/ 0 PdtdI  if ),/()0( 11 dbdS   since )0()( StS   

at any time .t  In this case )./()0()( 11 dbdStS   This is usually known as threshold 
phenomenon. If the initial susceptible prey population is less than the ratio of the death rate of 
infected prey to the maximal renewal rate of infected prey decreased by the death rate of infected 
prey, the epidemic can not at all spread. The more susceptible population in the system, the 
greater chance of becoming infective in the diseased system. ◘  
 
Let ),,,( QPISE  be any arbitrary equilibrium. Then the Jacobian matrix evaluated at E  leads 
to the characteristic equation as follows: 
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Theorem 2.1:  
 
The trivial equilibrium 0E  is unstable. 

 
Proof: 
 
The characteristic equation (2.1) at the trivial equilibrium 0E  is 

 
         .0))()()(1( 21  cdd   
 
So, the trivial equilibrium is unstable (saddle). 
 
Theorem 2.2:  
 
The disease free equilibrium )0,0,0,/1(1 aE   is  

 
(i)  Asymptotically stable when ,1/)( 11  addb   

(ii)  Linearly neutrally stable for )1/(1  abd  and 

(iii)  Unstable when .1/)( 11  addb  
  
Proof: 
 
The characteristic equation at the disease-free equilibrium 1E  is 
 

.0))1/()()()(1( 12   abedcd                                                                (2.2) 
 
Thus the stability of the disease-free equilibrium depends on  )( ).1/(1 abed     
 
(i)  )( 0)1/(|))1/((,0)1/( 101max1  

 dabdabeabed 
   if 

.1/)( 11  addb  In fact, the root of 0)(    has negative real part for .0  Thus, if 

,1/)( 11  addb  the disease-free equilibrium is asymptotically stable for all .0  
 
(ii)  If ),1/(1 abd   we see that 0  is a simple root of .0)(    If )(  has a 

characteristic root as , i  then we have  
 

.0)sin(cos11     ieddi  
 

This implies that  
 

,)( 22
1

22
1

  edd   
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which holds only when .0  If ,0  we will reach a contradiction. Thus, when 

),1/(1 abd   the disease-free equilibrium is linearly neutrally stable. 
 
(iii) When ,1/)( 11  addb  0)0(   and .0)(   Thus, the characteristic equation (2.2) has 

at least one positive root. So the disease-free equilibrium is unstable and the equilibrium 
point 2E  exists. ◘  

 
To discuss the stability of the equilibrium point ,2E  we state the following theorem, which is set 
up in Kar, (2003). 
 
Theorem 2.3: 
 
A set of necessary and sufficient conditions for ),( ** yx  to be asymptotically stable for all 0  
is the following: 
 
     1. The real parts of all the roots of 0)0,(    are negative. 

     2. For all real v  and ,0  ,0),(  iv  where .1i     
 
Theorem 2.4:  
 
The boundary equilibrium ))/()(,0,)/()(),/(( 2

111
2

111112 dbaddbdbaddbdbdE   
is   
    (i) Locally asymptotically stable for all ,0  if ,11 adabdb   

    (ii) Unstable for ,0  if .11 adabdb     
 
Proof:  
 
The characteristic equation at the equilibrium point 2E  is  

2
2 1 1 1 1 1

1 1 1
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where  
 

).(/)( 1111 dbbaddabbdx   
 
As )( 1H holds, so  
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Thus, the stability of the equilibrium point 2E  depends on the equation  
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.0/)())((),( 11111   beaddbddedx                                            (2.4)                       
      

]./)([)(),( 1111111
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For ,0  the equation (2.4) can be written as 
 

.0/)( 111
2  baddbdx                                                                                         (2.5) 

 
If 0x  i.e. 11 adabdb   and since ,011  addb  all roots of the Equation (2.5) are real 

and negative or complex conjugate with negative real parts. Therefore, the equilibrium point 2E  
is locally asymptotically stable for .0  
 
For ,0  if  i  is a root of the Equation (2.4), then we have 
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Separating real and imaginary parts, we get 
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)( 1 xd  = .sin}/)({cos 11111  baddbdxdd   

 
Squaring and adding the above two equations, we have 
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(2.7) does not have any real solutions. Hence, by the theorem 2.3., the theorem is proved. ◘                            
 
Now we consider the following assumptions: 
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where .1/,)1/( **2** SbSgSbIf   
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Explicit biological interpretations of the conditions  42 HH   seem to be difficult. These may 

simply be regarded as some conditions to be satisfied by the biological and technical parameters 

for the stability of the endemic equilibrium. 

 
Theorem 2.5: 
 
If )( 2H  and )( 3H hold, then the endemic equilibrium *E  is locally asymptotically stable for 

.0  
 
Proof: 
 
The characteristic equation at ),,,( ***** QPISE   is 
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When ,0  the characteristic equation (2.8) yields 
 

,043
2

2
3

1
4  aaaa                                                                                             (2.9) 

 
where 
 

 
).)((

,)(,)(,)(

1
*

24

123
*

2
*

1

fadgScda

cfgdgcdafgfacSacfaSa




                                  (2.10)                       

 

Since ,00)1(/ *
1

*  pPdgandShmfa  then 0ia  for .4,3,2,1i  By the 

conditions )( 2H  and )( 3H  the following conditions hold trivially.  

 

,0

)(})({)(

)())(()(

***22*2*

12
2*22*

321






fafgScPhpIfaScfaS

dgcdcfgfaSfacSaaa

 



310                                                                                                                      T. K. Kar and Prasanta Kumar Mondal 
 

         

2 * * 2 *2 2 * *
3 1 2 3 4 1 2

* * * * 2
2

3 2

( ) ( )[ ( ) { ( ) }

( )] ( ){ ( ) }

0,

a a a a a a c d pP fg S a f c S a f hpI P c

fgS a f cd pP S a f S a f c

Lc Mc Nc

       

     

  


 

where   
      

.)())((

),()()(

,0)(

33**
2

*
2

*

*
2

*
2

*
2

22*

*

faSpPdpPdfgfafgSN

pPdfgpPdpPdfgfaSM

fafgSL







 

 
Hence, the Routh-Hurwitz criterion is satisfied. Thus, it follows that the endemic equilibrium *E  
is locally asymptotically stable for .0 ◘  
We now give a definition, which can be found in Beretta (2002). 
 
Definition 2.1: 
 
The equilibrium *E  is absolutely stable if it is asymptotically stable for all delays 0  and is 
conditionally stable if it is asymptotically stable for   in some finite interval. ◘  
 
Next we will investigate the distribution of roots of the following equation 
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When ,0  the equation (2.11) reduces to 
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Obviously, )0( i  is a root of equation (2.11) if and only if   satisfies 
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Separating the real and imaginary parts, we have 
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which implies 
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Li et al. (2005) obtained the following results on the distribution of roots of Equation (2.14).         
 
Lemma 2.1: 
 
For the polynomial equation (2.14) 
 

(i)  If ,0s  then Eq. (2.14) has at least one positive root; 

(ii) If ,00  ands  then Eq. (2.14) has positive roots if and only if 01 w  and 

;0)( 1 w  
(iii) If 0s  and ,0  then Eq. (2.14) has positive roots if and only if there exists at least 

one },,{ 321
* wwww   such that 0* w  and ,0)( * w  where 

)(w .234 swrwqwpw        
 
Lemma 2.2: 
 
(i)  The positive equilibrium *E  of system (1.7) is absolutely stable if and only if the 

equilibrium *E  of the corresponding ordinary differential equation system is asymptotically 
stable and the characteristic equation (2.8) has no purely imaginary roots for any ;0   

 
(ii)  The positive equilibrium *E  of system (1.7) is conditionally stable if and only if all roots of 

the characteristic equation (2.8) have negative real parts at 0  and there exist some 
positive values   such that the characteristic equation (2.8) has a pair of purely imaginary 
roots .0i ◘  
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Theorem 2.6:  
 
If ),( 2H  )( 3H  and )( 4H  hold, then the endemic equilibrium point *E  is conditionally stable. 

 
Proof: 
 
For ,0  the characteristic equation (2.8) can be expanded as 
 

],[ 23234   FEgeDCBA                                                       (2.15) 
 
where  
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Assume that for some ,0  )0( i  is a root of (2.15), then we have 
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Separating real and imaginary parts, we have 
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which implies that 
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where 
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Let 0  be one of the positive root of the Equation (2.19). Then the characteristic Equation (2.15) 

has a pair of purely imaginary roots of the form .0i  From the Equation (2.18), we get the 

corresponding 0k  such that the characteristic Equation (2.15) has a pair of purely imaginary 

roots.   
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Hence, by Lemma (2.2) and Theorem (2.5), the endemic equilibrium *E  is conditionally stable. 
◘  
 

Now we will show that  .0
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This implies that there exists at least one eigen value with positive real part for .k   

Differentiating (2.15) with respect to ,  we get  
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Thus, we have 
          

.0
)(Re


 k

d

d




 

 



314                                                                                                                      T. K. Kar and Prasanta Kumar Mondal 
 

This shows that the root of characteristic Equation (2.8) crosses the imaginary axis from the left 
to the right as   increases through k  and the conditions for Hopf bifurcation are then satisfied 

at .k   ◘         

 
As we know, Hopf-bifurcation is a very important dynamic phenomenon in epidemiology. It can 
be used to interpret the periodic behavior for some infectious diseases. For more details we refer 
the reader to see Greehalgh et al. (2004); Hethcote et al. (1999). It has been recognized that delay 
may have very complicated impact on the dynamic behavior of a system. It can cause the loss of 
stability and can bifurcate various periodic solutions. Some recent literatures on this subject are 
Yan and Zhang (2008), Ruan and Wang (2003), and Yan and Li (2006).                     
 
3.  Stability and Direction of Hopf Bifurcations 
 
In this section, we shall study the direction of the Hopf bifurcation and the stability of the 
bifurcating periodic solutions by using the normal theory and the center manifold theorem due to 
Hassard et al. (1981).  
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where 
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By the Riesz representation theorem (Hale and Verduyn, 1993), there exists a function ),(   
of bounded variation for ]0,1[  such that 
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                                                                                                                                                     (3.5)                     
 
where 1  is the Dirac delta function, then (3.4) is satisfied. 
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Then the system (3.1) is equivalent to 
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and a bilinear inner product 
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where ).0,()(    Then )0(A  and *A  are adjoint operators. By the discussion in section 2, 

we know that ki 0  are eigenvalues of ).0(A  Hence, they are also eigenvalues of .*A  We first 

need to compute the eigenvectors of )0(A  and *A  corresponding to ki 0  and ,0 ki   

respectively. 
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Since ,)0()1( 0 kieqq   then we have 
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In order to assure ,1)(),(*  qsq we need to determine the value of .D  From (3.10), we have 
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Therefore, we can choose D  as 
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Next we will compute the co-ordinate to describe the center manifold 0C  at .0  Let tu  be the 

solution of (3.8) when .0  Define 
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On the center manifold ,0C  we have 
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z  and z  are local coordinates for center manifold 0C  in the direction of *q  and .*q  Note that 

W  is real if tu  is real. We only consider real solutions. For solution 0Cut   of (3.8), since 
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We rewrite this equation as 
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From (3.15), we have        
 

.)}...)(1(.)..{(),( 2
14

2
1312

2
11

*
1

2
14

2
1312

2
11  zzbzbzzbzbqbzzazazzazaDzzg k

                                                                                                                                                   (3.16) 
 
Comparing the coefficients of (3.13) and (3.16), we get 
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Since )(20 W  and )(11 W  are in ,21g  we still need to compute them. From (3.8) and (3.11), we 

have 
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Comparing the coefficients of 2z  and zz  from (3.20) and (3.21), we get 
 

).()()0(),()()2)0(( 111120200  HWAHWIiA k                                  (3.22) 

 
For ],0,1[  we have from (3.18) and (3.13) 
 

)(),()(),(

)()0()()0(),,( 0
*

0
*




qzzgqzzg

qfqqfqzzH




          

                      ).(.)..
22

()(.)..
2

(
2

0211

2

2011

2

20  q
z

gzzg
z

gqzzg
z

g                         (3.23)  

Again, comparing the coefficients of 2z  and zz  between (3.19) and (3.23), we get 
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From the definition of A  and (3.22) and (3.24), we get 
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                                                                                                                                                   (3.30) 
By (3.3), we have 
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From (3.30) and (3.31), we get 
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This implies that 
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Similarly, substituting (3.27) and (3.33) into (3.29), we get 
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Hence, we obtain 
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Thus, we can determine )(20 W  and )(11 W  from (3.26) and (3.27). Furthermore, we can 

compute 21g  by (3.17). Hence, we can compute the following values: 
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                                                          (3.34) 

 
By the result of Hassard et al. (1981), we have the following theorem: 
 
 
Theorem 3.1:  
 
In (3.34), the sign of 2  determined the direction of the Hopf bifurcation: if ),0(0 22    
then the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solution exist 
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for );( kk    2  determines the stability of the bifurcating periodic solution: the 

bifurcating periodic solution is stable (unstable) if )0(0 22    and 2T  determines the period 

of the bifurcating periodic solution: the period increases (decreases) if ).0(0 22  TT   
 
4.  Numerical Simulations and Discussion  
 
In this section, we have studied the existence of the Hopf bifurcation of the system (1.7) by 
choosing a set of parameter values. Consider the following system: 
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                                                                                 (4.1) 
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                      Figure 1. The endemic equilibrium )75.0,3517.10,75.0,59341.8(* E  

                                           of the system (4.1) is asymptotically stable for .73.14 0    

                                           All the trajectories of the state variables converge to their respective  
                                           equilibrium values. 
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                                         Figure 2. The bifurcating periodic solutions for .11.20 0    

                                                          The figure shows that the equilibrium point  

                                                          )75.0,3517.10,75.0,59341.8(* E  is unstable.  
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                                 Figure 3. Bifurcation diagram of the system (4.1) in ),,( PIS -space for .0  

 

The system (4.1) has an endemic equilibrium )75.0,3517.10,75.0,59341.8(* E  and for ,0  

the endemic equilibrium *E  is locally asymptotically stable. The values of 
,0800723.00  901.190   and from the formulae (3.34), we obtain 

,7103.199545.22)0(1 ic   ,0112902   0909.452   and .0345.292 T  Thus, the 

endemic equilibrium *E  is asymptotically stable when 073.14    and unstable when 
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,11.20 0   as shown in the Figures 1 and 2 respectively. In Figure 2, it is found that all the 

trajectories of susceptible, infected prey and predator bifurcate periodically around their 
equilibrium point. The equilibrium point )3517.10,75.0,59341.8(  is periodically stable when no 
delay parameter is introduced in the model system (4.1) and is numerically investigated in figure 
3.  
  
 

  

 
                               Figure 4. Local stability properties of endemic equilibrium

*E  through the functions 

                                              321)( aaacF   and NcMcLccG  23)(  for 0 . 0)(),( cGcF   

                                                ensure the local asymptotic stability of
*E . The functions )(cF  and )(cG   

                                               are plotted for different values of a  i.e. for different values of carrying capacity  
                                               and the saturation constant. 
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                              Figure 5. The figures indicate variation of both the predator and infectious prey  
                                               populations with the susceptible prey population. The plot functions  
                                               imply the growth of predator depends on the prey population. 
 
In Figure 4, it is observed that for different values of a , i.e., for different values of saturation 
factor and carrying capacity, the endemic equilibrium *E  is locally asymptotically stable for 

.0  Also, when the susceptible prey gradually increases, the predator population increases but 
infected population decreases and extinct entirely for ,1.9S  which is shown in Figure 5.  
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                        Figure 6. The endemic equilibrium )75.0,3517.10(  is locally asymptotically  

                                         stable for some initial parameter values in ),( IP  plane when .73.14 0   
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                                     Figure 7. The figure indicates projection of the phase portrait of system  

                                                      (4.1) in ),( IP  plane for .11.20 0   

 
The Figure 6 shows that when the value of delay parameter lies below the critical value, the 
infected population initially increases and when rate of predation increases the number of 
infected prey population drops off and the path approaches to their equilibrium values in finite 
time. But, when the value of delay parameter is beyond the critical value, Hopf-bifurcation 
occurs for the system (4.1) and there exist limit cycle near the equilibrium point )75.0,3517.10(  
as demonstrated in Figure 7.  
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                          Figure 8. The positive equilibrium )3517.10,59341.8(  is locally asymptotically  

                                           stable for some hypothetical parameter values in ),( PS  plane when the delay       

                                           parameter value below the critical delay value i.e. .73.14 0   
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                                 Figure 9. The figure shows projection of the phase portrait of system (4.1)  

                                                 in ),( PS  plane for .11.20 0        

 
Again, assuming the value of the delay parameter 73.14  below the critical value 

,901.190   we sketch the trajectory in ),( PS -plane as depicted in figure 8. Here we observe 

that initially the number of predator population increases when the susceptible population 
decreases and after some finite time the number of predator population decreases while the 
number of susceptible population increases and the path approaches to their equilibrium value 

)3517.10,59341.8(  in finite time. But, when the value of delay parameter ,11.20 0   Hopf-

bifurcation occurs for the system and there exist limit cycle nears the equilibrium point 
)3517.10,59341.8(  as demonstrated in Figure 9.    

                                                                                            
5.  Conclusions 
 
In this paper, we propose a prey-predator model with the assumption that the disease is spreading 
only among the prey species and though the predator species feeds on both the susceptible and 
infected prey species, the rate of predation on infected prey is more than the susceptible prey as it 
becomes more vulnerable to predation. The dynamical behavior of the system is investigated 
from the point of view of stability analysis. The system is locally asymptotically stable in some 
region of the parametric space and exhibits periodic oscillations in some other region. Some 
conditions are obtained for small amplitude periodic solutions bifurcating from a positive interior 
equilibrium by applying both mathematical and numerical techniques. The stability as well as the 
direction of bifurcation is obtained by applying the algorithm due to Hassard et al. (1981) that 
depends on the centre manifold theorem. There is a minimum force of infection below which the 
disease does not spread out. Numerical simulations substantiate the analytical results.  
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