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Abstract 
 

The stability of a communication network is one of the important parameters for network 

designers and users.  A communication network can be considered to be highly vulnerable if the 

destruction of a few elements cause large damage and only few members are able to 

communicate. In a communication network several vulnerability measures like binding number, 

toughness, scattering number, integrity, tenacity, edge tenacity and rupture degree are used to 

determine the resistance of network to the disruption after the failure of certain nodes (vertices) 

or communication links (edges). Domination theory also provides a model to measure the 

vulnerability of a graph network. The domination integrity of a simple connected graph is one 

such measure. Here we determine the domination integrity of square graph of path as well as the 

graphs obtained by composition (lexicographic product) of two paths. 

 

Keywords:  Integrity; Domination Integrity; Square graph; Composition of Graphs 

 

MSC 2010 No.:  05C38, 05C69, 05C76 

 

 

1. Introduction 
 

A graph structure is vulnerable if `any small damage produces large consequences'. The 

vulnerability implies a lack of resistance or weakness of graph network arising from deletion of 

vertices or edges or both. The design of any communication network should be such that it is not 

easily disrupted. Moreover it should remain stable even if it is attacked. Many graph theoretic 

parameters have been introduced to measure the vulnerability of communication networks. They 
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includ binding number [Woodall (1973)], toughness [Chvatal (1973)], scattering number [Jung 

(1978)], integrity [Barefoot et al. (1987)], tenacity [Cozzens et al. (1994)], edge tenacity [Piazza 

et al. (1995)] and rupture degree [ Li et al. (2005)]. 

 

In the analysis of the vulnerable communication network two quantities play a vital role, namely 

(i) the number of elements that are not functioning (ii) the size of the largest remaining 

(survived) sub network within which mutual communication can still occur. In adverse 

relationship it is desirable that an opponent's network be such that the above referred two 

quantities can be made simultaneously small. Here the first parameter provides information 

about nodes which can be targeted for more disruption while the later gives the impact of 

damage after disruption. To estimate these quantities Barefoot et al. (1987) have introduced the 

concept of integrity and discovered many results on this newly defined concept. 

 

Definition 1.1.  
 

The integrity of a graph G  is denoted by ( )I G and defined by 

 

( ) { ( ) : ( )}I G min S m G S S V G    , 

 

where ( )m G S   is the order of a maximum component of G S . 

 

Definition 1.2.  
 

A subset S  of ( )V G   is said to be an I -set, if ( )  | | ( )I G S m G S   . 

 

Bagga et al. (1992) have reported many results on integrity in a survey article. Goddard (1989) 

has investigated many results on integrity of graphs. Some characterizations and interrelations 

between integrity and other graph parameters are reported in Goddard and Swart (1990) while 

Mamut and Vumar (2007) have determined the integrity of the middle graph of some graphs. It 

is also observed that the bigger the integrity of network, more reliable is the functionality of the 

network after any disruption caused by non-functional devices (elements). The connectivity is 

useful to identify local weaknesses in some respect while the integrity gives a brief account of 

the vulnerability of the graph network.  

 

Throughout this work we consider simple, finite, connected and undirected graph G  with vertex 

set ( )V G  and edge set ( )E G . For any undefined terminology and notation related to the concept 

of domination in graph we refer to Haynes et al. (1998) while for the fundamental concepts in 

graph theory we rely upon Balakrishnan and Ranganathan (2012). In the remaining portion of 

this section we will give a brief summary of the definitions and information which are related to 

the present work. 

 

Definition 1.3. 

 

A subset S  of ( )V G  is called a dominating set if for every ( )v V G S  , there exists u S  such 

that v  is adjacent to u . 
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The theory of domination plays a vital role in determining the decision making bodies of 

minimum strength or weakness of a network when certain parts of it is paralyzed. In the case of 

disruption of a network, the damage will be more when the vital nodes are under siege. This 

motivated the study of the domination integrity when the sets of non-functioning nodes are 

dominating sets. The concept of domination integrity of a graph was introduced by 

Sundareswaran and Swaminathan (2010) as a new measure of vulnerability which is defined as 

follows. 

 

Definition 1.4. 

 

The domination integrity of a connected graph G  denoted by ( )DI G   and defined as  

 

( ) { ( ) :     }DI G min X m G X X is a dominating set   , 

 

where ( )m G X   is the order of a maximum connected component of G X . 

 

The domination integrity of some standard graphs has been investigated by Sundareswaran and 

Swaminathan (2010). In the same paper they have investigated domination integrity of Binomial 

trees and Complete k-ary trees while in (2010, p. 92) they have investigated the domination 

integrity of the middle graph of some standard graphs. Sundareswaran and Swaminathan (2011, 

2012) also investigated the domination integrity of trees and powers of cycles. Vaidya and 

Kothari (2012, 2013) have discussed domination integrity in the context of some graph 

operations and also of the splitting graph of path 
n

P  and cycle 
n

C . Vaidya and Shah (2013, 2014) 

and investigated the domination integrity of shadow graphs of 
n

P , 
n

C , 
,m n

K  and 
,n n

B   and of the 

total graphs of 
n

P , nC  and 
1,n

K . 

 

Definition 1.5. 

 

For a simple connected graph G  the square of graph G  is denoted by 
2

G  and defined as the 

graph with the same vertex set as of G  and two vertices are adjacent in 
2

G  if they are at a 

distance 1 or 2 apart in G . 

 

Definition 1.6. 

 

The composition of two graphs G and H is denoted as  G H  (also known as lexicographic 

product) whose vertex set is ( ) ( )V G V H  and two vertices 
1 1

( , )u v  and 
2 2

( , )u v  are adjacent if 

either 1u  is adjacent, i.e., to 2u  in G  or 1 2u u  and 1v  is adjacent to 2v  in H . 

 

Here, it is important to mention that, unlike the union, join, Cartesian product, direct product and 

strong product of two graphs, the composition of two graphs is not commutative. 
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Many results on the integrity of graphs in the context of union, join, composition and product of 

two graphs have been reported by Goddard and Swart (1988). The present work is intended to 

investigate the domination integrity of a square graph of nP  and composition (lexicographic 

product) of two paths. 

 

2. Main Results 
 

Theorem 2.1    
 

2

2, 2,

3, 3,4,

4, 5,6.

( )n

n

nDI

n

P










 



 

 

Proof:   
 

Let 
1 2
,( ) { , , }

n n
V P v v v   and 

2

n
P  be the square graph of .nP  Then, 

2
| ( ) |

n
V P n  and 

2
| ( ) | 2 3.

n
E P n   The proof is divided into following three cases: 

 

Case 1: 2n    

 
2

2P  is 
2

P  itself. Consider 
1

{ }S v   which is a dominating set of 
2

2P ,  then ( ) 1m G S  . Thus, 

( ) 2S m G S   . If we choose 
2

{ }S v , then also ( ) 2S m G S   . Hence, 
2

2
( ) 2DI P  . 

 

Case 2: 3,4n    

 

For 3n   consider 
2 3

{ , }S v v   which is a dominating set for 
2

3
P  and ( ) 1m G S  . Therefore, 

( ) 3m G SS    . For 
1 3

{ , }S v v  also ( ) 3m G SS    . If 
1

{ }S v   or 
2

{ }S v  or 
3

{ }S v   then 

( ) 2m G S    so ( ) 3m G SS    . Hence, 
2

3
( ) 3DI P  . 

 

For 4n  consider 
2 3

{ , }S v v   which is a dominating set of for 
2

4P   and ( ) 1m G S  . Therefore,

( ) 3m G SS    . For 
1 3

{ , }S v v  or 
2 4

{ , }S v v  or 
1 2

{ , }S v v  or 
3 4

{ , }S v v , ( ) 2m G S  ,  then 

for these choices of S  we get ( ) 4m G SS    . If { }
i

S v , 1,2,3,4i  , then ( ) 3m G S   so 

( ) 4m G SS    . Hence, 
2

4
( ) 3DI P  . 

 

 

Case 3: 5,6n    
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3 4
{ , }S v v  is a dominating set for 

2

5
P  and 

2

6
P . Then, ( ) 2m G S   and ( ) 4m G SS    . It is 

easy to observe that there does not exist a dominating set S  for which ( ) 3S m G S  * * . 

Therefore, 
2

( ) 4
n

DI P   for 5,6n  .  

 

Hence, from above three cases, we have  

 

2

2, 2,

3, 3,4,

4, 5,6.

( )n

n

nDI

n

P










 



  

 

Theorem 2.2.  
 

For 7n   to 15,  

 

2
5 2 , 7 4 , where 0,1,2,

( )
6 2 , if 7 4 , where 1,2,3 and 

if 

0,1.
n

i n i i
DI P

i n i k k i

   
 

     
 

 

Proof:    
 

Let 3 4 4 4{ , / 0  } { }j j nS v v j to i v     when 7 4 , 0,1,2n i i    (i.e., 7, 11, 15).n   Then, 

| | 2 3S i   and ( ) 2.m G S  If 3 4 4 4{ , / 0  1}j jS v v j to i    when 7 4 ,n i k    

1,2,3, 0,1k i   (i.e., 8, 9, 10, 12, 13, 14n  ), then | | 2 4S i   and ( ) 2m G S  . In both the 

cases S  is a dominating set of 
2

n
P   as 1 2 3, ( )v v N v  and 5 4 6 4 4 4, ( )t t tv v N v   , for 0,1,2, ,t i  ,  

or 1i  . 

 

Now we claim that there does not exist any dominating set 
1

S  such that 
1

| |   | |S S  and 

1
( )  ( )m G S m G S   . If 

1
S  is a dominating set and 

1
( ) ( ) 2,m G S m G S     then all the 

components will be 
1

K . Consequently, 
1

| |   | |S S . Hence, for any dominating set 
1

S , if 

1
| |   | |S S , then 

 

                                   
1

( )  ( )m G S m G S   .                                            (1) 

 

We also claim that there does not exist any dominating set 
2

S  such that 
2

| |  | |S S  and 

2
( ) ( ) 2m G S m G S    . But if 

2
S  is a dominating set and 

2
| |   | |S S , then due to construction 

of 
2

n
P , 

2
G S   will give rise to at least one component with the number of vertices more than 

two. This is because, each vertex of 
2

n
P   is adjacent to the vertices which are at the distance two 

apart. This implies that there does not exist any dominating set 
2

S   such that 
2

| |   | |S S   and, 

consequently, 
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2
( ) ( ) 2m G S m G S    .     (2) 

 

Moreover if we consider any dominating set 
3

S  of 
2

n
P  such that 

3
( ) 2m G S  ,  then   

 

                                        3 3| | ( )  | | ( )S m G S S m G S     .                    (3) 

 

Therefore, from equations (1), (2) and (3) we have 

 

     | | ( ) { ( ) :     }S m G S min X m G X X is a dominating set      

          
2( )nDI P . 

 

Hence, for 7n   to 15 

 

2 5 2 , 7 4 , where 0,1,2,

6 2 , if 7 4 , where 1,2,3 and 0

f 

,

i

1.
( )n

i n i i

i n i k k i
DI P

   


     
  

 

 

Theorem 2.3.  

 

2
9,       16,

( )
10,      17,18.

n

n
DI P

n


 


 

. 

Proof:    
 

To prove this result we consider following two cases: 

 

Case 1: 16n   

 

If 3 4 8 9 13 14{ , , , , , }S v v v v v v , then | | 6S   and ( ) 3m G S  . Moreover, S  is a dominating set as

1 2 3 5 6 4, ( ), , ( )v v N v v v N v  , 7 8( )v N v , 10 11 9, ( )v v N v  and 12 13( )v N v , 15 16 14, ( )v v N v . If for 

some dominating set 1S  of 
2

16P , 1( ) 2m G S  , then clearly 

 

1| |   | |S S  so 1 1| | ( )  | | ( )S m G S S m G S     .     (4) 

 

It can be verified that for any other dominating set 2S   of 
2

16P   for which 2( ) 4m G S  .  Then,  

 

2 2| | ( )  | | ( )S m G S S m G S     .       (5) 

 

Thus, from equations (4) and (5) among all dominating set,  S   G S  6 3 9m      is 

minimum. Hence, 
2

16( ) 9DI P  .  
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Case 2: 17,18n   

 

If 3 4 8 9 13 14 17{ , , , , , , }S v v v v v v v , then | | 7S   and ( ) 3m G S  . Moreover, S  is dominating set 

2

17P   and 
2

18P . If for some dominating set 1S  of 
2

nP , 1( ) 2m G S  , then clearly 

 

1| |   | |S S   so 1 1| | ( )  | | ( )S m G S S m G S     .    (6) 

 

It can be verified that for any other dominating set 2S  of 
2

nP  for which 2( ) 4m G S  . Then  

 

 2 2| | ( )  | | ( )S m G S S m G S     .      (7) 

 

Therefore, from equations (6) and (7) ,  S   G S  7 3 10m       is minimum. Thus,

2( ) 10nDI P   for 17,18n  . 

 

Hence, from above two cases,  

 

2 9,       16,
( )

10,      17,18.
n

n
DI P

n









 

 

Theorem 2.4   
 

For 19,n   

 

2

11, if 19, 20,

11 2 , if 21 6 ,  where {0} ,
( )

12 2 , if 21 6 , where 1,2,3 and {0} ,

13 2 , if 21 6 , where 4,5 and {0} .

n

n

i n i i
DI P

i n i k k i

i n i k k i




    
 

      
       

 

  

Proof:    
 

To prove this result we consider following two cases: 

 

Case 1: 019,2n   

 

Consider 3 4 9 10 15 16 19{ , , , , , , }.S v v v v v v v  Then, | | 7S   and ( ) 4.m G S   Clearly S  is a 

dominating set of 
2

nP , for 19,20n  . 
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Case 2: 21n    

 

Let 1 3 4 9 10{ , , , }S v v v v . 

 

 If 21 6n i  ,  where 0,1,2,i   , (i.e., for 21, 27, 33, )n   , consider 

 

1 15 6 16 6{ , / 0  } { }j j nS S v v j to i v     . 

 

Then, | | 7 2S i  . 

 

 If 21 6n i k   ,  where 1,2,3k   and 0,1,2,i   , (i.e., for 22,23,24,28,29,30n  ), 

consider  

 

1 15 6 16 6{ , / 0  1}j jS S v v j to i     . 

 

Then, | | 8 2S i  . 

 

 If 21 6n i k   , where 4,5k   and 0,1,2,i  , (i.e., for 25,26,31,32,n  ), consider 

 

1 15 6 16 6{ , / 0  1} { }nj jS S v v j to i v      . 

 

Then | | 9 2S i  . 

 

In all the above cases, S  will be a dominating set for 
2

n
P   as 1 2 3 5 6 6 6 4 6, ( ),  , ( )t t tv v N v v v N v      

and 7 6 8 6 9 6, ( )t t tv v N v   ,  where {0}t  . Moreover, ( ) 4m G S  . 

 

Thus, we have found dominating sets for 
2

n
P .  

 

Now, we discuss the minimality of | | ( )S m G S  . If we consider any dominating set 
1

S  of G

such that, 1| |   | |S S  , then due to the construction of 
2

nP  (i.e., to convert 
1

G S   into 

disconnected graph, we must include at least two consecutive vertices in 
1

S ), it generates large 

value of 1)(m G S  such that, 

 

1 1| | ( )  | | ( )S m G S S m G S     .    (8) 

 

Let 2S  be any dominating set of 
2

nP  such that 2( ) 3m G S  .  Then, for 

19, 20, 21, 22, 23, 28, 31n  , 

 

2 2| | ( )  | | ( )S m G S S m G S     ,        (9) 
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and for 24, 25, 26, 27, 29, 30n  , 32n  , 

 

 2 2| | ( )  | | ( )S m G S S m G S     .                           (10) 

 

Moreover, if 3S   is any dominating set of 
2

nP   with 
3

( ) 2m G S   or 
3

( ) 1m G S  ,  then clearly,  

 

3 3| | ( )  | | ( )S m G S S m G S     .                 (11) 

 

Therefore, from equations (8) to (11) we have, 

 

| | ( ) { ( ) :     }S m G S min X m G X X is a dominating set      

                            
2( )nDI P . 

 

Hence, for 19,n   

 

2

11, if 19,20,

11 2 , if 21 6 ,  where {0} ,
( )

12 2 , if 21 6 , where 1,2,3 and {0} ,

13 2 , if 21 6 , where 4,5 and {0} .

n

n

i n i i
DI P

i n i k k i

i n i k k i




    
 

      
       

 

 

 

Theorem 2.5.  
 

  2
2 1 2 

n
DI P P n n    

  . 

 

Proof:    
 

Let 
2

P  be a path with vertices 1 2,u u  and 
n

P  with 1 2, , , nv v v . Let G  be the graph  2 n
P P . Then, 

 

 ( ) ( , ) /1 2,  1i jV G u v i j n      

 

and  

 

     1 2 1 1 1 2 2 1( ) ( , )( , ) /1 ,1 {( , )( , ), ( , )( , ) /1 1}j k j j j jE G u v u v j n k n u v u v u v u v j n          . 

 

For the sake of convenience, we denote the vertices 1 1( , ) ,1j ju v w j n     and 

 

2 2( , ) ,1j ju v w j n   . 
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The graph of  2 5
P P  is shown in Figure 1 for better understanding of the notations and 

arrangement of vertices. Moreover ,n nK  is a subgraph of G  and ,( ) 1n nDI K n  , ( ) 1DI G n  . 

 

Consider  1 2 /1jS w j n   , 1| |S n . Then, 
1

S  is a dominating set of G and 
1 n

G S P    so 

1
( )m G S n  .  

 

 
 

                         Figure 1: Arrangement of vertices in  2 5
P P  

 

Let 2 11{ ( , ) /k k kS w u v v   I   set of }nP . Take 1 { /k kV v v    }nI set of P so 
2 1

| |   | |S V . 

Consider 
1 2

S S S  .  Then, S  is also dominating set of G  as 
1

S S . Here, 

 

1 2 1 1| | | | | | | | | |S S S S V     and 
1n

G S P V    so 
1

( ) ( )
n

m G S m P V   . 

 

Note that ( ) 2 1 2nI P n   
 

. So, 

 

      
1 1 1

| | ( )  | | | | ( )
n

S m G S S V m P V       

                                                             
1

 | | ( )
n

S I P  . 

                                                                         2 1 2 1n n n      
  . 

Hence,  

 

| | ( ) 2 1 2 1S m G S n n n        
  .            (12) 

 

Now we discuss the minimality of | | ( )S m G S  . If 
3

S  is any dominating set of G  which is not 

containing 
1

S  or 
2

S  as a proper subset and 3| | 2S k n  . Then, due to construction of G  (
1 j

w  is 

adjacent to 
2k

w for 1 ,i k n  ), 
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3 3

| | ( ) 2 2  | | ( )S m G S k n k n S m G S         .                              (13) 

 

Let 
5

S   be another dominating set of G such that 5 4 2S S S  , where 4 1S S  with 4| |S n . In 

G , 1 jw  is adjacent to 2kw  for 1 ,i k n  .  Therefore, 

  

5 2 4
( ) | | | |m G S S n S    . 

 

Hence,  

5 5 2 4 2 4
| | ( )  | | | | | | | |S m G S S S S n S        

              2 2 | |S n  . 

      | | ( )S m G S   .            (14)                                    

 

Therefore, from the above discussion and equations (13) and (14) we have  | | ( )S m G S   is 

minimum. Hence, from equation (12) and the minimality of | | ( )S m G S   we have, 

 

  2  { ( ) :     }nDI P P min X m G X X is a dominating set    

                     | | ( )S m G S   . 

                     2 1 2n n    
 

. 

 

 

Theorem 2.6. 

 

  2

4, if 2,3,

6, if 4,5,

2
4, if 6 & 0(mod 3),

3

2( 1)
4, if 6 & 1(mod 3),

3

2( 1)
4, if 6 & 2(mod 3 )

 

 

.
3

n

n

n

n
n n

DI P P
n

n n

n
n n








  
 

   



   


 

 

Proof:    
 

Let 
n

P   be a path with vertices 
1 2
, , ,

n
u u u  and 

2
P  with 

1 2
,v v . Let G  be the graph  2n

P P . Then,  

 

 ( ) ( , ) /1 ,1 2
i j

V G u v i n j      

 

and  
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 1 1 1 2( ) ( , )( , ) /1 1,1 2 {( , )( , ) /1 1}i j i j i iE G u v u v i n j u v u v i n                

                                                                2 1 1{( , )( , ) /1 1}i iu v u v i n    . 

 

Without loss of generality, we denote vertices 
1 1

( , ) ,  1
i i

u v w i n     and 
2 2

( , ) ,  1 .
i i

u v w i n  

The graph of  5 2
P P  is shown in Figure 2 for better understanding of the notations and 

arrangement of vertices. 

 

 
 

Figure 2. Arrangement of vertices in  5 2
P P  

 

To prove this result we consider following two cases: 

 

Case 1: 2n   to 5 

 

For 2n  ,  2 2P P  is isomorphic to complete graph 
4

K . Hence,   2 2 4DI P P  . 

 

For 3n  , consider 
21 22

{ , }S w w , which is a dominating set for  3 2P P  and ( ) 2m G S  . 

There, does not exist any dominating set 
1

S of G  such that 1 1| | ( )  | | ( )S m G S S m G S     . 

Hence,   3 2 4DI P P  . 

 

For 4n  , consider 
21 22 42

{ , , }S w w w , which is a dominating set for  4 2
P P  and ( ) 3m G S  . 

Moreover, for any dominating set 
1

S  of G  we have, 
1 1

| | ( )  | | ( )S m G S S m G S     . Hence, 

  4 2 .6DI P P    

 

For 5,n   consider 
21 22 41 42

{ , , , },S w w w w  which is a dominating set for  5 2P P  and 

( ) 2m G S  . Moreover for any dominating set 1S   of G  we have, 

 

1 1| | ( )  | | ( )S m G S S m G S     . 
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Hence,   5 2
6DI P P  . 

 

Case 2: 6n   

 

Now we consider subset S of G  as below: 

 

 If 0(mod  3)n    (i.e., 3n k ) and 2(mod 3) n    (i.e., 3 1n k  ), consider  

 

(2 3 )1 (2 3 )2{ | 0 1} { | 0 1}i iS w j k w j k           and | | 2S k . 

 

So  

 

2
| |

3

n
S    for 0(mod 3) n    and 

2( 1)
| |

3

n
S


  for 2(mod 3) n  . 

 

 If 1(mod 3) n   (i.e., 3 1n k  ), consider 

 

 (2 3 )1 (2 3 )2 1{ | 0 1} { | 0 1} { }i i nS w j k w j k w           and 
2( 1)

| | 2 1
3

n
S k


   . 

 

In all the above cases S  is a dominating set for G  as ( 1)1 ( 1)1 1, ( )i i iw w N w    and 

( 1)2 ( 1)2 2, ( )i i iw w N w   .  Moreover, ( ) 4m G S  . 

 

Now we discuss the minimality of | | ( )S m G S  . If we consider any dominating set 
1

S  of G

such that 
1

| |   | |S S , then due to construction of G  (i.e., to convert 
1

G S  into disconnected 

graph we must include vertices 1iw  and 2iw  in 1S ), It generates large value of 1)(m G S  such 

that 

 

1 1| | ( )  | | ( )S m G S S m G S     .            (15) 

 

Let 
2

S  be any dominating set of G such that 
2

( ) 3m G S  . Then, for 6n  , 

 

                                2 2| | ( )  | | ( )S m G S S m G S     .                 (16) 

 

Moreover, if 
3

S  is any dominating set of G with 
3

( ) 2m G S   or 
3

( ) 1m G S  , then clearly, 

 

                              3 3| | ( )  | | ( )S m G S S m G S     .                    (17) 

 

Therefore, from above discussion and equations (15) to (17), | | ( )S m G S   is minimum. 

 

So, in both the cases we have, 
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| | ( ) { ( ) :     }S m G S min X m G X X is a dominating set      

                   ( )DI G . 

 

Hence,  

  2

4, if 2,3,

6, if 4,5,

2
4, if 6 & 0(mod 3),

3

2( 1)
4, if 6 & 1(mod 3),

3

2( 1)
4, if 6 & 2(mod 3 )

 

 

.
3

n

n

n

n
n n

DI P P
n

n n

n
n n








  
 

   



   


 

 

 

3. Conclusions 

 
The vulnerability of a communication network is of prime importance for network designers and 

users. The domination integrity is one of the important parameters to measure vulnerability of 

graph network. We investigate the domination integrity of larger graph arising from graph 

operations like composition and square of a graph. Thus we have determined the vulnerability in 

the context of expansion of network. Investigation of the domination integrity for other graph 

products is an open area of research. 
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