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Abstract 
 

 The modified sine-cosine method is an efficient and powerful mathematical tool in finding exact 

traveling wave solutions to nonlinear partial differential equations (NLPDEs) with time-

dependent coefficients. In this paper, the proposed approach is applied to study a 

nonhomogeneous generalized form of Benjamin-Bona-Mahony (BBM) equation with time-

dependent coefficients. Explicit traveling wave solutions of the equation are obtained under 

certain constraints on the coefficient functions. 
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1. Introduction 
 

Many important phenomena and models can be described by homogeneous nonlinear partial 

differential equations with constant coefficients. The study of the dynamics of those NLPDEs 

require the existence of their exact solution. With the development of solitary theory, many 

powerful methods were established for obtaining the exact solutions of NLPDEs, such as the 

rational sine-cosine method, the extended tanh-function method, the exp-function method, the 

Hirota's method, Hirota bilinear method, the tanh-sech method, the first integral method, the 
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GG /  expansion method, the sub-ODE method and so on. See [Alquran (2012a), Alquran and 

Al-Khaled (2012), Alquran, Al-Khaled and Ananabeh (2011), Alquran, Ali and Al-Khaled 

(2012), Alquran and Qawasmeh (2013), Bekir and Unsal (2013), Palacios (2004), Li and Wang 

(2007), Wazwaz (2007a), Alquran and Al-Khaled (2011a), Alquran and Al-Khaled (2011b), 

Alquran (2012b), Alquran and Qawasmeh (2014), Wazwaz (2007b) and Qawasmeh (2013)]. 

Most of the aforementioned methods are related to constant-coefficients NLPDEs. Recently, 

much efforts have been employed to variable-coefficient nonlinear equations [Yang, Tao and 

Austin (2010)]. variable-coefficient NLPDEs can describe many nonlinear phenomena more 

realistically than their constant-coefficient ones. Some of the aforementioned methods have been 

modified to handle variable-coefficient equations such as the modified sine-cosine method, the 

modified sech-tanh method and Hirota bilinear method. 

 

The objective of this paper is to use the modified sine-cosine method to study the 

nonhomogeneous form of Benjamin-Bona-Mahony equation with time-dependent coefficients 

that reads  

 

),(=)()( tguututuu xxxxtt                                                                                       (1.1) 

  

where   is a real constant and )(),(),( tftt   are functions depending on the variable t  only. In 

the literature, extensive study was done on different types of the BBM equation by different 

methods [Benjamin, Bona and Mahony (1972), Wazwaz (2005), Alquran (2012a), Alquran and 

Al-Khaled (2011a), Alquran (2012b), Chen, Lai and Qing (2007) and Abazari (2013)].  

 

2. The Modified Sine-Cosine Method 
 

The modified sine-cosine method "extension of the regular sine-cosine method [Tascan and 

Bekir (2009), Ali, Soliman and Raslan (2007), Alquran and Qawasmeh (2013) and Alquran and 

Al-Khaled (2011b)]" admits the use of solutions of the form  

 

),(=),(cos)(=),( tcxtAtxu m                                                                                 (2.1) 

 

 and  

 

),(=),(sin)(=),( tcxtAtxu m                                                                                 (2.2) 

 

for some parameters mtA ,),(   and )(tc  to be determined later. Here,   is the wave number and 

)(tc  is the wave speed being a function of the time t . From (2.1), we have 
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Because of the duality relation between the sine and cosine functions, and without loss of 

generality, we omit the analysis argument regarding the solution proposed in (2.2). Now, after 

substituting (2.3) into the original partial differential equation (1.1), a trigonometric equation is 

obtained with either )(cos n  or )(sin)(cos n  terms so that the parameter n  can be 

determined by comparing exponents. The fact that the coefficient of )(cos i  or 

)(sin)(cos i  must vanish for all powers of i , then produces a system of algebraic equations 

in the the unknowns mtA ,),(   and )(tc , from which the solution proposed in (2.1) follows 

immediately. 

 

3. Generalized Benjamin-Bona-Mahony 
 

 Consider the following nonhomogeneous BBM  

 

).(=)()( tguututuu xxxxtt                                                                                       (3.1) 

 

First, we use the transformation  

 

).(),(=),( thtxwtxu                                                                                                           (3.2) 

  

Substituting (3.2) in (3.1) yields 

  

).(=)()()()()( tgwthtwwtwtwthw xxxxxtt                               (3.3) 

 

We require that 

 

)(=)( tgth  so that dttgth )(=)(  . 

 

Hence, the following homogeneous BBM equation is obtained  

 

0,=)()( xxxxtt wwtwtkww                                                                                        (3.4) 

 

 where  

 

).()()(=)( thtttk                                                                                                            (3.5) 

 

By substituting the cosine assumption (2.1) and (2.3) into (3.4), and then comparing exponents 

and collecting coefficients of )(cos i  or )(sin)(cos i  for all i , we have the following 

algebraic system 
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Solving the above system yields  
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adducing the following facts (3.7): 

 

1.  )(tA  must be a constant i.e. AtA =)( . 

 

2.  dt
tAtk

tc
3

)()(3
=)(


 . 

 

3.  Since   is constant from the cosine assumption, therefore 
)(

)(

t

tk


 must be constant. Thus, )(tk  

is a multiple of )(t . 

 

Accordingly, the solution of the BBM (3.1) is  
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4. Discussion 
 

We have discussed in this context several cases of the nonhomogeneous BBM equation based on 

different selections of the time-dependent coefficients. 
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Case I: In this case we consider  

 

1.=0,=)(1,=)(1,=)(1,= Atgtt    

  

By the constraints on the coefficient functions we find that 
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Therefore the solution of the BBM is  
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Case II: Consider  

 

1.=1,=)(,=)(,2=)(1,= 2 Atgttttt    

  

We find  
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giving the solution:  
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Case III: Consider  
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We find  
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So that the solution is  
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Case IV: Consider  

 

1.=),(cot)(csc=)(),(sin=)(1,)(sin2=)(1,= Atttgtttt    

  

We find  
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with the solution:  
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  (4.4) 

 

It should be noted that the type of the time-dependent coefficients "within the constraints given 

in the previous section", does not deform the physical structure of the BBM equation. This is 

observed in Figures 1 and 2.  

 

 

  
 

                 Figure 1. Plots of solutions to the BBM obtained in Case I and II respectively  
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                 Figure 2. Plots of solutions to the BBM obtained in Case III and IV respectively  

   

   

5.  Conclusion 
 

In summary, the modified sine-cosine method with symbolic computation is employed for a 

reliable treatment of the proposed BBM with time-dependent variable coefficients. Solitary wave 

solutions to this model are obtained under certain constraints on the coefficient functions and 

geometric illustrations of the physical structure of the nonhomogeneous BBM has been 

addressed. 

 

The modified version of the well-known sine-cosine method is effective and powerful in 

handling variable-coefficient nonlinear equations while other existing methods may not be so 

handy for the same study.   
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