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Abstract 
 

This paper presents an analytic study for the steady drainage of magnetohydrodynamic 

(MHD) Sisko fluid film down a vertical belt. The fluid film is assumed to be electrically 

conducting in the presence of a uniform transverse magnetic field. An analytic solution for 

the resulting non linear ordinary differential equation is obtained using the Adomian 

decomposition method. The effects of various available parameters especially the Hartmann 

number are observed on the velocity profile, shear stress and vorticity vector to get a 

physical insight of the problem. Furthermore, the shear thinning and shear thickening 

characteristics of the Sisko fluid are discussed. The physical quantities discussed for the 

Sisko fluid film have also been discussed for the Newtonian fluid film and comparison 

between them made.   
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1.     Introduction 
 

The phenomenon of thin film flow is involved in many natural and industrial problems, some of 

which on a rigid surface are driven by  gravity. Along with the understanding and developments 

in the fundamental issues relating to such flows, a wide variety of industrial, biological and 

medical applications have benefited from scientific research. The recurring feature in this 

phenomenon is that when a fluid is disposed to a vertical rigid object, it adheres to it and drains 

down the object under conditions such that the gravitational and viscous forces dominate the 

inertial forces due to which the fluid film formed in contact with the free surface drain down 

under the action of gravity only. This type of drainage is termed as “free drainage” and it consists 

of an extention of fluid bounded by an object and with a free surface (usually air). The fluid film 

thickness  , is much shorter than the length of the object so that the flow takes place 

predominantly in the longer dimensions under the action of gravity only. The flow velocity 

perpendicular to the plate is much smaller than the main flow velocity. Hence, we can consider it 

as a one dimensional flow, Jeffreys (1930), Green (1936), Denson (1970), Raghuraman (1971), 

Munson and Young (1994), O’ Brien and Schwartz (2002), Mayers (2005). 

 

The study of thin film flow of an electrically conducting fluid in the presence of a transverse 

applied magnetic field has become the basis of numerous scientific and engineering applications. 

In recent times, great interest has been shown by many researchers towards the study of 

magnetohydrodynamic (MHD) thin film flows due to the effect of magnetic fields on the fluid 

film thickness and on the performance of many systems involving the phenomenon of thin liquid 

films of electrically conducting fluids, Dutta (1973), Hameed and Ellahi (2011), Alam et al. 

(2012). We will consider the particular example of the motion of MHD Sisko fluid film down an 

infinity, long vertical belt which can be extended to any frame of coatings and lubrication 

process. 

 
In recent years, the flow of non-Newtonian fluids have gained considerable importance because 

of its promising applications in various fields of engineering, technology, biosciences, 

particularly in material processing, geophysics, chemical and nuclear industry, food industry and 

polymer processing. Drilling mud, tooth paste, greases, polymer melts, cement slurries, paints, 

blood, clay coatings etc., are  some examples of non-Newtonian fluid. It is difficult to suggest a 

model for such broad and complex class of fluids that can single handily describe all the 

properties of non-Newtonian fluids. Therefore, several constitutive equations have been 

proposed to characterize and predict the physical structure and behaviour of such fluids for 

different materials, Mayers (2005). 
 

The flow characteristics of the above mentioned fluids include shear-thinning, shear-thickening, 

viscoplasticity, viscoelasticity etc., which are usually analyzed with the help of the power law 

fluid model. Some of these flow characteristics were not fully described by the power law model. 

In view of this situation, Sisko proposed a constitutive equation (named after him “Sisko fluid 

model”) which includes the Newtonian and the power law fluids as special case to characterize 

these types of flows. Sisko fluids are capable of describing shear thinning and shear thickening 

phenomena, and have many important and well known industrial applications. It is the most 

appropriate model for describing the flow of greases having high viscosities at low shear rates 

and low viscosities at high shear rates. Waterborne coatings and metallic automotive basecoating 

where polymeric suspensions are used, cement slurries, lubricating greases, most psueodoplastic 
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fluids and drilling fluids are some of its applications in industry, Sisko (1958), Siddiqiui et al. 

(2007), (2009), (2013), Mekheimer and El Kot (2012). 

 

The Adomian Decomposition method has proven to be a valuable alternative analytic tool for 

solving linear, nonlinear ordinary as well as partial differential equations, which occur in 

engineering and applied sciences, Adomian (1987). This method does not require any small 

parameter, linearization, perturbation and other similar restrictions rather it provides a direct 

scheme. An advantage of this method is that it provides a solution in the form of an infinite 

convergent series in which each component can easily be determined by recursion. Hosseini and 

Nasabzadeh (2006) have discussed the rapid convergence of the series solution obtained by 

ADM. The first several computed terms of the series solution obtained, usually provides a good 

approximation with a high degree of accuracy when compared with other techniques, Alam et al. 

(2012). Wazwaz (1999), (2001), (2009) and Siddiqiui et al. (2010), (2012) have applied this 

method for different types of linear and nonlinear differential equations. As in our case, for the 

drainage of magnetohydrodynamic (MHD) Sisko fluid film down a vertical belt, an exact 

solution seems to be difficult, so a truncated number of terms will be used for the solution 

purpose. 

 

The purpose of the present paper is to analytically study the steady drainage of 

magnetohydrodynamic (MHD) Sisko fluid film down a vertical belt. We extend the work of 

Siddiqiui et al. (2013) to observe the effects of the uniform transverse magnetic field. We shall 

solve this problem for the first time by ADM. We shall find the physical expressions like the 

velocity profile, the volume flow rate, the average film velocity, the shear stress, the force 

exerted by the fluid film on the belt surface and the vorticity vector. We shall also discuss the 

influences of the fluid behaviour index, The sisko fluid parameter, Stokes number and the 

Hartmann number on the velocity profile, the shear stress, the flow rate and the vorticity vector 

via tables and on velocity profile via graphs. 

 

The rest of the paper is organized as follows: the basic governing equations and the constitutive 

equation for the incompressible Sisko fluid model are given in section 2, in section 3 the  

problem is formulated, section 4 contains the solution of the problem using the ADM and 

includes the volume flow rate, the average film velocity, the shear stress, the force exerted by the 

fluid film on the belt surface and the vorticity vector, in section 5 the influences of the available 

parameters and dimensionless numbers are discussed through tables and graphs and finally 

concluding remarks are given in section 6. 

 

2.    Basic Equations 
 

The continuous flow behaviour of an electrically conducting Sisko fluid film is governed by the 

Maxwells' equations and Ohm's law together with the equation of continuity, momentum balance 

and the constitutive equation for the incompressible Sisko fluid model: 

The Maxwells' equations in simplified form are  

 

 0 2

1
= , . = 0, = , . = ,

c t t






 
     

 

E B
B J B E E  (1) 
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where B  is the total magnetic field, 0  is the magnetic permeability, J  is the electric current 

density, E  is the electric field,   is the permittivity of free space (an electric constant) and 


 is 

the charge density. An electrically conducting Sisko fluid film moving with velocity V  in the 

presence of an external magnetic field B , in addition to an electric field E , is subjected to an 

extra term  V B , that accounts for the current induced by the Lorentz force on the charge 

carriers. Ohm's law professes that the current density is proportional to the total electric field, 

mathematically in generalized form, it can be written as  

 

  = ,  J E V B  (2) 

 

where   is the electric conductivity. The magnetic induction equation for the magnetic flux B  

can easily be derived from Maxwells' equations (1) and Ohm's law (2). It suggests that an applied 

magnetic field be induces a magnetic field b  in the medium and total field B  is the sum of the 

applied and induced magnetic fields, i.e., 0= B B b . If the magnetic Reynolds number and the 

effect of the polarization of the ionized fluid, are negligibly small. Then the  so that induced 

magnetic field b  and electric field E  respectively are assumed to be zero. 

 

Finally, it is assumed tacitly that a magnetic field with a constant magnetic flux density 0B  is 

applied perpendicular to the velocity field. Hence, the final form of the MHD body force caused 

by the external magnetic field is   

 

 
2

0= .B J B V  (3) 

 

 The equation of continuity and momentum balance respectively are  

 

                                    = 0,divV  (4) 

                                  = ,
D

p div
Dt

     
V

f S J B  (5) 

 

where V  is the velocity vector,   is the constant density, f  is the body force per unit mass, p  

is the dynamic pressure, S  is the extra stress tensor and 
Dt

D  is the material time derivative. The 

constitutive equation for incompressible Sisko fluid model, Sisko (1958), Siddiqiui et al. (2009), 

(2013), Mekheimer and El Kot (2012) is given by  

 

 

 

1

2

1 1

1
= ,

2

n

a b tr

  
       

S A A  (6) 

 

where ba,  are material constants and n  is the fluid behaviour index. If 0=a  the equations for 
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the power law fluid model and if 0=b  for Newtonian fluid are obtained and 1A  is the Rivlin-

Ericksen tensor:  

 

 1 = , = ,T A L L L V  (7) 

 

 superscript T  denotes the transpose and V  is the velocity gradient. 

 

3.    Problem Formulation 
 

We consider a steady, laminar and parallel flow of an electrically conducting incompressible 

Sisko fluid flowing down an infinite vertical belt. As a result, a thin uniform fluid film of 

thickness   is formed in contact with the stationary air. We choose an xz -coordinate system 

such that x -axis is normal to the belt and z -axis along the belt in downward direction as shown 

in the Fig. 1. We neglect the thermal effects and assume that the fluid completely wets the belt, 

the belt extends to infinity in the y -direction so that 0=
dy

d , there is no applied pressure driving 

the flow and fluid film fall under the action of gravity only. Therefore, the only velocity 

component is in z -direction. Accordingly we assume that  

 

 = [0,0, ( )], = ( ).w x xV S S  (8) 

 

A uniform transverse magnetic field with a constant magnetic flux density 0B  is applied 

perpendicular to the belt in the direction of positive x -axis. Therefore, the electromagnetic force 

per unit volume becomes 

 

                                                           2

0= [0,0, ( )].B w x J B                                                               (9) 

  

 
Figure 1. The geometry of the problem 
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Profile (8) identically satisfies the equation of continuity (4). Equation (6) upon using Equation 

(7) and profile (8) yields the following non zero components of extra stress tensor:  

 

 .==

1

zx

n

xz S
dx

dw

dx

dw
baS
























 (10) 

 

The momentum balance (5) with the help of Equations (8)-(10) and assumptions we made, will 

lead to  

 

 
22

0

2
= .

n
Bd w b d dw g

w
dx a dx dx a a

  
   

 
 (11) 

 

The boundary conditions associated with Equation (11) are  

 

                           = 0 = 0, ( ),w at x no slip  (12) 

                         = 0 = , ( ).xyS at x free surface  (13) 

 

The free surface condition (13) after making use of Equation (10) takes the form  

 

 .=0= xat
dx

dw
 (14) 

 

Considering non-dimensional parameters 

 

 ,=,=


x
x

g

w
w 

 

 

into Equation (11) and boundary conditions (12) and (14), after omitting ` ', we obtain  

 

 ,=2

2

2

t

n

SwM
dx

dw

dx

d

dx

wd









   (15) 

  

                                    0,=0= xatw  (16) 

                                  1,=0= xat
dx

dw
 (17) 

where  

 





ga

g
St

2

=  
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is the Stokes number,  

 

1)(

=
n

g
a

b




  

 

is the Sisko fluid parameter and  

 

a

B
M

22

02 =


 

 

is the Hartmann number. Equation (15) is a second order non-linear and inhomogeneous ordinary 

differential equation. It seems to be difficult to have exact solution for (15). In the next section, 

we will apply ADM to solve (15) subject to boundary conditions (16) and (17).  
 

4.   Solution of the Problem 
 

Keeping in mind the main steps of ADM (for reference see Adomian (1987), Wazwaz (2009)), 

we rewrite (15) in operator form as  

 

 ,)(=)( 2wMwNLSwL xtxx    (18) 

 
 where  

 

2

2

=
dx

d
Lxx  and 

dx

d
Lx = , 

 

respectively, are two and one fold linear operators and  

 
n

dx

dw
wN 








=)(  

 

is a nonlinear term. Since xxL  is invertible, then the two folds inverse operator 1

xxL is defined as 

 

 1(*) = (*) .xxL dxdx

  

 

Operating 1

xxL  on both sides of Equation (18), we get  

 

    2 1 2 1( ) = ( ) ( ) ,
2

t
xx x xx

S
w x A Bx x L L N w M L w x       (19) 

 

where A  and B  are constants to be determined. We present the decomposition of unknown 
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)(xw  by the decomposition series  

 ),(=)(
0=

xwxw k

k




 (20) 

 

 and the expansion of non linear term )(wN  by an infinite series of Adomian polynomials  

 

 ,=)(
0=

k

k

AwN 


 (21) 

 

where the components ( ), 0kw x k   and the Adomian polynomials , 0kA k   can easily be 

computed. Substituting the decomposition series (20) and infinite series of Adomian polynomials 

(21) into (19), we have 

  

 
2 1 2 1

=0 =0 =0

( ) = ( ) .
2

t
k xx x k xx k

k k k

S
w x A Bx x L L A M L w x

  
    

      
   

    (22) 

 

Boundary conditions (16) and (17), after making use of decomposition series (20), yield  

 

                                

0 1 2

0 1 2

(0) = (0) = (0) = = 0,

(1) = (1) = (2) = = 0.' ' '

w w w

w w w







 (23) 

 

 Equation (22) follows with the following recursive relation  

 

                                
2

0 ( ) = ,
2

tS
w x A Bx x   (24) 

                                  0.,)(=)( 121

1  

 kxwLMALLxw kxxkxxxk   (25) 

 

Equation (24) with the help of boundary conditions (23) leads to 

 

                                             
2

0 ( ) = 1 1 .
2

tS
w x x  

 
                                                     (26) 

 

Substituting the decomposition series (20) into the infinite series of Adomian polynomials (21), 

then using binomial expansion, we acquire  

 

                                                     ,)(= 00

n' xwA  (27) 

                                         ),()(= 1

1

01 xwxwnA 'n' 
 (28) 

                                                          
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where `dash’ over w  reprents the derivative with respect to ‘ x ’. By making use of boundary 

conditions (23), Equation (26) and Adomian polynomials kA  from Equations (27) and (28); the 

recursive relation (25) gives the following components of )(xw :  

 

               ,)(11126
24

)(11
1

=)( 42
2

1

1 xxx
SM

x
n

S
xw tn

n

t 


 
                (29) 

              












1

)(113

6
)(11

2
=)(

12
2

122

2
n

xSMn
x

S
xw

nn

tn
n

t 
 

                              



























3)2)((

)(11

213

)(11 3223

nn

x
x

x

n

SM

n

x nn

t

n 
 

                               ,)(1190156015
720

6234
4

xxxxx
SM t   (30) 

                                                      
 

Inserting components )(),( 10 xwxw  and )(2 xw  from Equations (26), (29) and (30) into the 

decomposition series (20), we get the solution of Equation (15) of the following form:  

 

            
2 2 1

2 1 2( ) = 1 (1 ) 1 (1 ) 1 (1 )
2 1 2

n n
n nt t tS S S

w x x x x
n

  
                 

 

                              
 1 3

2 2 4
3 1 (1 ) 1 (1 )

6 12 1 (1 )
24 6 1 3

nn n

t t
xS n S x

M x x x
n n


      

            

 

                             
 1 3 2 33 1 (1 ) 1 (1 ) 1 (1 )

6 1 3 1 2 ( 2)( 3)

nn nn n

t t
xn S Sx x x

x
n n n n n

 
          

       
       

 

                                ,)(1190156015
720

6234
2





 xxxxx

SM t  (31) 

 

which is the velocity profile for the steady drainage of magnetohydrodynamic (MHD) Sisko 

fluid film downs a vertical belt. 

 

Remark:  

 

We recover the solutions for (i) the Sisko fluid film [Siddiqui et al. (2013)] when 0M , (ii) 

the MHD Newtonian fluid film when 0  and (iii) the Newtonian fluid film [Van Rossum 

(1958)] when both M  and 0  in (31). 

 

The non-dimensional volume flow rate Q  and average film velocity w  are defined by 
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                                          ,)(==

1

0

dxxwwQ                                                        (32) 

 

 which upon using (31) leads to  

 

            
2 2 2 1 42

2

2

2 176 5
= = .

3 2 15 2 1 3( 6 8) 315

n n
nt t t t t
t

S S M S n S M Sn n
Q w M S

n n n n

 


   
      

    
      (33) 

 

The shear stress (10) exerted by the belt on fluid film in dimensionless form is given by  

 

 ,=

n

XZ
dx

dw

dx

dw
S 








   (34) 

 where  



g
a

S
S xz

XZ = . 

 

     
2

3 2 2 1 2 1= (1 ) (1 ) 3(1 ) (1 ) (1 )
6

n n n nt
XZ t t t

M S
S S x S x x x n S x             

         
2 2 2

2 (1 )
3(1 ) (1 ) (1 )

6 1 2

n n n
n nt tn M S M S x

x x x
n n

  
  

       
  

 

         
4

3 2 510 30 5 15 (1 ) (1 ) (1 )
120

n nt
t t

M S
x x x x S x S x            

           
2 2

3 2 2 1 2 1 23(1 ) (1 ) (1 ) 3(1 ) (1 )
6 6

n
n n n nt t

t

M S n M S
x x n S x x x


              

          
2 42

3 2 5(1 )
(1 ) 10 30 5 15 (1 )

1 2 120

n n

t tM S M Sx
x x x x x

n n

  
        

  
 

         ...] .n   (35) 

 

 Equation (35) at 0=x  gives the shear stress exerted by the belt on fluid film at the belt surface:  

 

      
120233
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2 2 2 4

2 2 1 .
3 3 2 120

n
n n

n nt t t t
t t t

M S n M S M S M S
S S n S

n

 
    

         
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    (36) 

 

The force exerted by the fluid film on the belt surface, in dimensionless form during drainage is 

defined by  
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                                                 ,|= 0=

1

0
dxSF xXZz                                                           (37) 

 

 which after making use of (36) yields 
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n
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n

 
    
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which provides the force exerted by the fluid film at the belt surface. In dimensionless form, the 

vorticity vector   is calculated as  

 

 
2
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6
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S x S x x x n S x   

          


 

                       
2 2 2

2 (1 )
3(1 ) (1 ) (1 )

6 1 2

n n n
n nt tn M S M S x

x x x
n n

  
  

       
  

 

                        
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3 2 510 30 5 15 (1 ) ,
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tM S
x x x x       


j  (39) 

 

 where j is the unit vector in the y -direction.  

 

5.   Results and Discussion  
 

In this section, we shall observe the quantitative effects of fluid behaviour index n , Sisko fluid 

parameter  , Stokes number tS  and Hartmann number M  involved in the present analysis. For 

the numerical evaluations of the analytical results obtained in the previous section, we developed 

numerical codes in Mathematica and displayed some of the important results via tables (see 

Tables 1-12) and graphs (see Figures 2-6). 

 

Tables 1-4 show the distribution of velocity profile of the MHD Sisko fluid film, draining from 

the vertical belt. From these tables, it is noted that as we move within the domain i.e., [0,1] x  

the velocity increases. We delineated the decrease in velocity with increase in the Hartman 

number M . This is because of the fact that the introduction of transverse magnetic field damps 

the thin film of Sisko fluid, flowing down the belt. Moreover, these tables disclosed the slower 

drainage of Sisko fluid film when compared with the Newtonian fluid film. The slower drainage 

of shear thinning fluid film as compared to the shear thickening fluid film has also been evident. 

This indicates that the rheology of the fluid has significant effects on the thin film flow. 

 

Tables 5-8 are tabulated to observe the effect of Hartman number M  on the shear stress. From 

these tables we observed that shear stress decreases as we move from belt surface to the free 
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surface. With increase in the Hartman number M  shear stress decreases. It is also observed that 

shear stress experienced by the Sisko fluid film is greater in amount than that of the Newtonian 

fluid film. Shear thickening fluid film bears more shear stress as compared to the shear thinning 

fluid film which decreases with increasing heartman number M.  

  

Distribution of vorticity vector is shown in tables 9-12. From these tables, we infer that as we 

proceed within the domain [0,1] x , the vorticity effect decreases, i.e., maximum near the belt 

and minimum at the free surface. Negative sign indicates that film has clockwise rotational 

effects. Decrease in vorticity effect with increase in the Hartman number M  is seen. 

Furthermore, we also noted that the Sisko fluid film has lesser clockwise rotational effects than 

that of the Newtonian fluid film. Shear thickening fluid film have more rotational effects as 

comparing to the shear thinning fluid film which is again the evidence of the rehological effects 

of Sisko fluid.   

 

Table  1. Velocity distribution for the thin film flow of MHD Sisko fluid when 1.2=tS  and 0.0=  

 Newtonian fluid film MHD Newtonian fluid film 

 0.0=M  0.4=M  

 x   )(xw    )(xw   

 0.0   0.00000   0.00000  

0.2   0.21599   0.20425  

0.4   0.38400   0.36178  

0.6   0.50400   0.47358  

0.8   0.57610   0.54038  

1.0   0.60000   0.56260 

 

 

Table  2. Velocity distribution for the thin film flow of MHD Sisko fluid when 0.2= , 1.2=tS  and 0=M  

 Shear thinning fluid film Shear thickening fluid film 

 0.5=n  1.5=n  

 x   )(xw    )(xw   

 0.0   0.00000   0.00000  

0.2   0.17845   0.18509  

0.4   0.31382   0.33074  

0.6   0.40689   0.43644  

0.8   0.45900   0.50129  

1.0   0.47394   0.52364 
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   Table  3. Velocity distribution for the thin film flow of MHD Sisko fluid when 0.2= , 1.2=tS  and 

0.2=M  

 Shear thinning fluid film Shear thickening fluid film 

 0.5=n  1.5=n  

 x   )(xw    )(xw   

 0.0   0.00000   0.00000  

0.2   0.17635   0.18357  

0.4   0.30990   0.32775  

0.6   0.40160   0.43220  

0.8   0.45290   0.49619  

1.0   0.46761   0.51821 

 

 

 

Table  4. Velocity distribution for the thin film flow of MHD Sisko fluid when 0.2= , 1.2=tS  and 

0.4=M  

 Shear thinning fluid film Shear thickening fluid film 

 0.5=n  1.5=n  

 x   )(xw    )(xw   

 0.0   0.00000   0.00000  

0.2   0.17067   0.17961  

0.4   0.29928   0.31994  

0.6   0.38729   0.42108  

0.8   0.43643   0.48274  

1.0   0.45056   0.50387 

 

 

 

Table  5. Shear stress distribution for the thin film flow of MHD Sisko fluid when 0=  and 1.2=tS  

 Newtonian fluid film MHD Newtonian fluid film 

 0.0=M  0.4=M  

 x   )(xSXZ    )(xSXZ   

 0.0   1.20120   1.14015  

0.2   0.95732   0.90348  

0.4   0.72231   0.67262  

0.6   0.47999   0.44605  

0.8   0.23994   0.22232  

1.0   0.00000   0.00000 
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Table  6. Shear stress distribution for the thin film flow of MHD Sisko fluid when 0.2= , 1.2=tS  

and 0=M  

 Shear thinning fluid film Shear thickening fluid film 

 0.5=n  1.5=n  

 x   )(xSXZ    )(xSXZ   

 0.0   1.20101   1.23058  

0.2   0.96113   0.97764  

0.4   0.72133   0.72867  

0.6   0.48168   0.48318  

0.8   0.24252   0.24057  

1.0   0.00000   0.00000 

 

 

Table  7. Shear stress distribution for the thin film flow of MHD Sisko fluid when 0.2= , 1.2=tS  

and 0.2=M  

 Shear thinning fluid film Shear thickening fluid film 

 0.5=n  1.5=n  

 x   )(xSXZ    )(xSXZ   

 0.0   1.18914   1.22083  

0.2   0.95001   0.96796  

0.4   0.71213   0.72011  

0.6   0.47523   0.47671  

0.8   0.23932   0.23701  

1.0   0.00000   0.00000 

 

 

Table  8. Shear stress distribution for the thin film flow of MHD Sisko fluid when 0.2= , 1.2=tS  

and 0.4=M  

 Shear thinning fluid film Shear thickening fluid film 

 0.5=n  1.5=n  

 x   )(xSXZ    )(xSXZ   

 0.0   1.15692   1.19563  

0.2   0.91989   0.94269  

0.4   0.68731   0.69755  

0.6   0.45794   0.45947  

0.8   0.23087   0.22741  

1.0   0.00000   0.00000 
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Table  9. Vorticity vector distribution for the thin film flow of MHD Sisko fluid when 0=  and 1.2=tS  

 Newtonian fluid film MHD Newtonian fluid film 

 0.0=M  0.4=M   

 x   )(x    )(x   

 0.0   -1.99914   -1.13958  

0.2   -0.95932   -0.90330  

0.4   -0.72125   -0.67257  

0.6   -0.47999   -0.44604  

0.8   -0.23991   -0.22231  

1.0   0.00000   0.00000 

 

 

Table  10. Vorticity vector distribution for the thin film flow of MHD Sisko fluid when 0.2= , 

1.2=tS  and 0=M  

 Shear thinning fluid film Shear thickening fluid film 

 0.5=n  1.5=n  

  x   )(x    )(x   

 0.0   -1.00091   -1.02349  

0.2   -0.78404   -0.82718  

0.4   -0.57029   -0.62892  

0.6   -0.36144   -0.42731  

0.8   -0.16202   -0.21994  

1.0   0.00000   0.00000 

 

 

Table  11. Vorticity vector distribution for the thin film flow of MHD Sisko fluid when 0.2= , 

1.2=tS  and 0.2=M  

 Shear thinning fluid film Shear thickening fluid film 

 0.5=n  1.5=n  

  x   )(x    )(x   

 0.0   -0.99010   -1.01598  

0.2   -0.77405   -0.81956  

0.4   -0.56217   -0.62200  

0.6   -0.35591   -0.42190  

0.8   -0.15946   -0.21682  

1.0   0.00000   0.00000 
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Table  12. Vorticity vector distribution for the thin film flow of MHD Sisko fluid when 

0.2= , 1.2=tS  and = 0.4M  

 Shear thinning fluid film Shear thickening fluid film 

 0.5=n  1.5=n  

  x   )(x    )(x   

 0.0   -0.96036   -0.98389  

0.2   -0.74686   -0.78721  

0.4   -0.54026   -0.59237  

0.6   -0.34113   -0.39838  

0.8   -0.15271   -0.20300  

1.0   0.00000   0.00000 

 

 

Figures 2-6 are showing the effects of fluid behaviour index n , Sisko fluid parameter  , Stokes 

number tS  and Hartmann number M  on the velocity profile of the MHD Sisko fluid film. It is 

observed in Figure 2 that the velocity increases with the increase in n  and shear thickening fluid 

film drains down faster than the shear thinning fluid film. From Figure 3 (drawn to observe the 

effect of   on velocity profile), we depicted that the velocity decreases with the increase in  . 

The comparison of Newtonian fluid film ( 0= ) and Sisko fluid film ( 0> ) shows notable 

increase in magnitude of the velocity from Sisko fluid film to Newtonian fluid film. Figure 4 

shows the effect of tS  on velocity profile, increase in velocity with the increase in tS  can be 

seen in it. In order to observe the effect of M  on velocity, Figures 5 and 6 are plotted. It is 

evident that the velocity decreases with the increase in M , i.e., fluid drains down slowly in the 

presence of magnetic field. 

 

 

 
 

Figure  2. The effect of variation in fluid index n  on velocity profile, for 

1.2=tS , 0.2=  and 0.4=M  
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Figure  3.  The effect of variation in Sisko fluid parameter   on velocity profile, for 1.2=tS , 0.4=M , 

(a) 0.5=n  and (b) 1.5=n  

 

 
 

Figure  4.  The effect of variation in Stokes number tS  on velocity profile for 0.2= , 0.4=M , (a) 

0.5=n  and (b) 1.5=n  

 

   

 
 

Figure  5. The effect of variation in Hartmann number M  on velocity profile for 1.2=tS  

and 0.2= , (a) 0.5=n  and (b) 1.5=n  
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Figure  6. The effect of variation in Hartmann number M  on velocity profile for 

1.2=tS  and 0=  

 

6.  Concluding Remarks 
 

In the present theoretical work, we analytically investigated the flow behaviour during the steady 

drainage of magnetohydrodynamic (MHD) Sisko fluid film down a vertical belt. Modeling of the 

problem yielded non-linear ordinary differential equation which has been analyzed using ADM. 

We found ADM much easier to proceed and concluded that it can provide any desired higher 

order solution recursively with efficiency and high accuracy. ADM does not require 

linearization, perturbation or any other similar restrictive assumptions which is the main 

advantage of this method for obtaining the approximate solutions as is shown in our present 

work. We observed the effect of Hartman number M  on velocity profile, shear stress and 

vorticity vector via tables and the effects of fluid behaviour index n , Sisko fluid parameter  , 

Stokes number tS  and Hartman number M  on velocity profile via graphs. The results obtained 

indicate the following findings: 

 

   The velocity decreases monotonically with the increase in Hartman number M .  The 

decrease in velocity with increasing M  discloses the fact that transverse magnetic 

field damps the drainage of  thin film flow of Sisko fluid down the belt. 

   The velocity increases with the increase in n  and tS  and decreases with increasing 

 . 

   Shear stress exerted by the belt on Sisko fluid film decreases with increase in the 

Hartman number M . 

   With the increase in  the Hartman number M , the vorticity effect decreases. Sisko 

fluid film has clockwise rotational effects and these effects are maximum near the 

belt and minimum at the free surface. 

 

These findings show that presence of a uniform transverse magnetic field stressed the system.  
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