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Abstract 
 
 In this paper we obtain sufficient conditions for the asymptotic properties of solutions of two 
dimensional neutral difference systems. Our result extends some existing results in the literature. 
An example is given to illustrate the result. 
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1. Introduction 
 
The problem of oscillation and nonoscillation of second order nonlinear difference equations is 
of particular interest because they are discrete analogues of second order differential equations 
with physical applications (Kocic et al. (1993), Potts (1981)). It is an interesting problem to 
extent an oscillation criteria for second order nonlinear difference equations to the case of 
nonlinear two dimensional difference systems since such systems include, in particular, second 
order nonlinear, half linear and quasilinear difference equations as special cases. 
 
In the qualitative theory of difference equation, oscillatory and nonoscillatory behavior of 
solutions plays an important role. Further these types of solutions are associated with many 
physical and biological phenomena such as vibrating mechanical systems, electrical circuits and 
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population dynamics. Thandapani et al. (1996), considered the following neutral difference 
equation of the form  
 

1 0( ( )) ( ) = 0, ( ).n n n n k n n la x p x q x n N n        
 
They obtained the oscillation criteria of the equation. Further they classified all nonoscillatory 
solutions of the same equation into four classes and established conditions for the existence and 
nonexistence of solutions in these classes. Szafranski et al. (1990) considered the two 
dimensional difference system of the form  
 

nnn ybx =)(  

 

0= ( ) ( ).n n ny a f x n N n   
 
They established the condition for the oscillation and asymptotic behavior of solutions of the 
above system. Graef et al. (1999) considered the two dimensional difference system of the form  
 

)(=)( nnn ygbx  

 

0= ( ) ( ).n n ny a f x n N n    
 
They obtained conditions for all solutions of the system to be oscillatory. Huo and Li (2001) 
considered the following Emden-Fowler difference system  
 

)(=)( nnn ygbx  

 

0= ( ) ( ).n n n ny a f x r n N n     
 
 They established some criteria for the oscillation of the system. 
 
Motivated by the above, in this paper we study the asymptotic behavior of two dimensional 
nonlinear difference system of neutral type. Consider the nonlinear two-dimensional difference 
systems of neutral type  
    

nnnnn ypxax =)( )(                                                                                                             (1) 

  

( ) 0= ( ), ( ).n n ny q f x n N n  
 

 
and }1,,{=)( 000 nnn , 0n  non-negative integer. 

 
The following conditions are assumed:  
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 1.  }{ na  is a positive real sequence. )}({ n  and )}({ n  are sequences of integers and are 

increasing with  =)(lim=)(lim nn nn  . 
 
 2.  }{ np  and }{ nq  are nonnegative real sequences with 0nq  for infinitely many values of 

n  and 
=

0= nnn
p . 

 
3.  :f  is continuous, 0>)(uuf  for 0u  and |||)(| uKuf   where K  is a positive 

constant.  
 
Let )}(inf),(inf{max=

0>0> nn nnnn  . By a solution of the system (1) we mean a real sequence 

}){},({= nn yxX , which is defined for all  0nn  and satisfies the system (1) for all 

)( 0nNn .  

 
Denote by W  the set of all solutions }){},({= nn yxX  of the system (1) which exists for 

)( 0nNn  and satisfy  

 
0>}|:||{| Nnyxsup nn   for any integer 0NN  . 

 
A real sequence defined on )( 0NN  is said to be oscillatory if it is neither eventually positive nor 

eventually negative and nonoscillatory otherwise.  
 
A solution WX   is said to be oscillatory if both components are oscillatory and it will be called 
nonoscillatory otherwise. 
 
Some oscillation results for difference system (1) when 0=na  for )( 0NNn  and nn =)(  have 

been presented in Graef et al. (1999), Huo and Li (2001). In particular when 0>np  for all, 

)( 0nNn  the difference system reduces to the second order nonlinear difference equations  

 

( ) ( )

1
( ) = ( ).n n n n n

n

x a x q f x
p  

 
    
 

                                                                                    (2) 

 
Also if 1=np  for )( 0nNn  and if sgnuuuf |=|)( , the above equation becomes  

 

.|=|)(
1

)()()( nnnnn
n

sgnxxxax
p  








                                                                                  (3) 

 
The oscillatory and asymptotic behavior of the equations of type (2) and (3) are studied by Hoker 
and Patula (1983), Stemal et al. (1998), Thandapani (1992), Thandapani et al. (1995), Zang 
(1993). 
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2. Some Useful Lemmas 
 

Denote t

n

st
psnA  1

=
=),( , 0> nsn  . For any nx  we define nz  by  

 

( )= .n n n nz x a x                                                                                                                      (4) 

 
We begin with the following lemma 
 
Lemma 1.   
 
Let (C1) - (C3) hold and let WyxX nn }){},({=  be a solution of the system (1) with }{ nx  either 

eventually positive or eventually negative for all )( 01 nNNn  . Then }){},({ nn yx  is 

nonoscillatory and }{ nz , }{ ny  are monotone for )( 1NNn . 

 
Proof: 
  
Let WyxX nn }){},({=  and let }{ nx  be eventually positive. Then from the second equation of 

the system (1) we have 0 ny  for all )( 01 nNNn   and ny  and ny  are not identically zero 

for infinitely large values of n . Hence, }{ ny  is either eventually positive or eventually negative 

2Nn  . Then, }){},({ nn yx  is nonoscillatory. Further from the first equation of the system (1) we 

have 0>nz  or 0<nz  eventually. Hence, }{ nz  is monotone for all 2NNn  . The proof is 

similar when }{ nx  is eventually negative.  

 
Lemma 2.   
 
In addition to conditions (C1) - (C3) assume that na1  for all )( 0nNn . Let }{ nx  be a 

nonoscillatory solution of the inequality  
 

0>)( )(nnnn xaxx                                                                                                                  (5) 

 
 for n  sufficiently large. 
 

1.  If knn =)(  for )( 0nNn  where k  is a positive integer then }{ nx  is bounded. 

Moreover if na<1 , )( 0nNn  for some constant   then 0=lim nn x .  

 
2.   If knn =)(  for, then there exists a positive constant C  such that Cxn ||  for all 

large n .  
 
Proof: 
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Let }{ nx  be a nonoscillatory solution of the system (1). Without loss of generality we may 

assume that }{ nx  be an eventually positive solution of the inequality (5), the proof for the case 

}{ nx  eventually negative is similar. 

Assume that na1 .   

1. Let 0>nx  for all )( 0nNn . In view of na1  and knn =)(  we have 

nn
n

kn xx
a

x 
1

<  for all large n , which implies }{ nx  is bounded. If na<1 , 

)( 0nNn  holds for some positive constant , then we have nn
n

kn xx
a

x

1

<
1

< . Then, 

0
1

lim< 







 n

j

jjkn xx


 as j  which implies that = 0.limn nx  

 
2.   Let }{ nx  be a nonoscillatory solution of the system (1). Let 0>nx  for all 

)( 01 nNnn  . In view of na1  and knn =)(  we have 0>knnn xax  . This 

implies nkn xx > , which implies that there exists a constant 0>C  such that Cxn ||  

for all large n .  
 
 
3.  Asymptotic Behavior 
 
In this section we present a sufficient condition for the asymptotic behavior of solutions of the 
system (1). 
 
Theorem 3. 
 
Assume that  
 

)tisaconstan(,<1  na                                                                                                      (6) 

  
,<with=)(and=)( lklnnknn                                                                                   (7) 

  
1

=

( , 1) / > 1,limsup
n

s s s k l
n s n k l

K A n s q a


 
  

  
 

                                                                              (8) 

 
 and  
 

= =0

= .s
n

n n s n s k l

q
p

a

 

 

                                                                                                                  (9) 

 
 Then, for every nonoscillatory solution WyxX nn }){},({= , 0=lim=lim nnnn yx   holds.  
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 Proof: 
 
Let Wyx nn }){},({  be a non oscillatory solution of the system (1). Without loss of generality 

we may suppose that 0>nx  for all )( 01 nNnn  . By the second equation of the system (1) and 

the hypotheses, we have 0 ny  for all )( 12 nNnn  . 

 
In view of Lemma 1, we have two cases for sufficiently large )( 23 nNn  ; 

(I) 0>ny , for 3nn  ; 

(II) 0<ny , for 3nn  . 

 
Case (I) We consider two possibilities. 
 
(A):  Let 0<nz  for 4nn   where )( 34 nNn   is sufficiently large. 

 
We prove 0=lim nn z . Since }{ nz  is non-decreasing  

 
= , > 0 is a constantlim n

n
z L L


                                                                                            (10) 

 
 and  

.for 4nnLzn   

 
Since 0>nx , by (4), we have  

 

4< , ,n k l
n l

n k l

z
x n n

a
 


 

   

 
and  
 

4, .n k l n k l n lL z a x n n                                                                                                   (11) 

 
 By the hypotheses and the second equation of (1)  
 

.for=)( 4nnyxfqxKq
a

KLq
nlnnlnn

lkn

n 





                                                              (12) 

 
 Summing (12) from n  to *n  and then taking *n  we obtain  
 

., 4
=

nny
a

q
KL n

lks

s

ns







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Multiplying the last inequality by np  and using the first equation of the system (1), we have  

 

n
lks

s
nsn z

a

q
KLp 



 =
, 4nn  . 

 
Summing the last inequality from N  to 1n  and letting n , we obtain 
 

NN
lks

s
nsnNn

zzL
a

q
pKL 



  <
==

. 

 
This contradicts (9) consequently 0=lim nn z . 

 
Since }{ nz  is bounded, there is a constant 0>B  such that Bzn   for 4nn   and by (4), one 

has  
 

.for= 4nnBxBxazxax knknnnknnn     (13) 

 
 We claim }{ nx  is bounded. Let }{ nx  be unbounded then }{ knx   is unbounded and there is a 

sequence }{ jn  such that jn  as j  and  =lim kjnj x  and skjnsnkjn xx max=
4  . 

 
By (13),  
 

,Bxx kjnkjn    

 

.1,2,=,
1

j
B

x kjn 
   

 
 This is a contradiction to  =lim kjnj x , and, hence, }{ nx  is bounded. 

  
Next we claim that 0=lim nn x . 

 
 Let 0>=lim cx knn  . Then, cxnn =suplim  . Let }{ jn , 1,2,=j  be a subsequence such          

that  =lim jj n  and cx kjnj =suplim  . Then, cx
jnj lim . By (4), we have  

and1,2,, jxxz kjnjnjn   .1,2,=, j
zx

x jnjn

kjn 


  

 
By the last inequality, we have  
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,
limsup

limsup=

c

x
xc

jn
j

kjn
j

 


  
 
which holds when 1 , a contradiction to (6). This means that  0=lim knn x   and also 

0=limsup nn x . Further, 0>nx  holds for )( 0nNn , so 0=inflim nn x  and this leads to 

0=lim nn x . 

 
Next we prove 0=lim nn y . Let 0>=lim Dynn  . Then,  

 
.for, 3nnDyn                                                                                                                  (14) 

 
 Summing the first equation of system (1) from 3n  to 1n  and using (4) and (14), we have  

 
1

3
= 3

.
n

n n s
s n

z z D p


                                                                                                                   (15) 

 
 By (15) and the hypothesis,  =lim nn z , which contradicts the fact 0<nz  for 4nn  . Hence, 

0=lim nn y . 

 
(B):  Let 0>nz  for 4nn   where )( 34 nNn   is sufficiently large. By Lemma 2, 0=lim nn x . 

holds. We prove similarly as in the above proof that 0=lim nn y . 

 
The relation (15) implies  =lim nn z . Therefore, by (4) we have nn xz <  for 3nn   and that 

contradicts 0=lim nn x . Hence, 0=lim nn y . 

 
Case (II)  
 
In this case , 
 

3for , is a positive constant.ny L n n L                                                                           (16) 

 
Summing the first equation of the system (1) from 3n  to 1n , and using the inequality (16),       

we  have  
 

1

33
= 3

.
n

n n s
s n

z z L p n n


                                                                                                       (17) 

 
By (17) and the hypothesis, it follows that  =lim nn z  and 0<nz  for 4nn  , where 

)( 34 nNn   is sufficiently large. By (4) we have knnn xaz > , 4nn  . Then,  
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4> , .n k l
n k

n k l

z
x n n

a
 


 

                                                                                                            (18) 

 
Since |||)(| ukuf  , for knxu = , we have  

 

4

( )
, .n l

n l

f x
x n n

K


                                                                                                            (19) 

 
 Multiply (19) by nKq  and using (18) we have  

 

4( ), .n k l
n n n l n n l

n k l

z
Kq Kq x q f x n n

a
 

 
 

                                                                              (20) 

 
 Using the second equation of the system (1) and (20), we have  
 

lkt

lkt
t

n

st
ltt

n

st
t

n

st a

z
qtnAKxfqtnAytnA










  1);()(1),(=1),(
1

=

1

=

1

=

 , for 4> nsn  .       (21) 

 
Using summation by parts formula we have  
 

1

=

( , 1) = ( , ).
n

t n s
t s

A n t y z z A n s


                                                                                         (22) 

 
 Combining (21) and (22), we have  
 

1 1

4
= =

( , 1) = ( , ) ( , 1) > .
n n

t k l
t s n s t

t s t s t k l

z
A n t y z z A n s y K A n t q n s n

a

 
 

 

                                  (23) 

 
 Since 0<nz , 0<ny , and 0),( tnA , 4> nsn  , we have 

  
1

4
=

( , 1) , > .
n

t k l
s t

t s t k l

z
z K A n t q n s n

a


 

 

                                                                                  (24) 

 
 Let lkns =  and using the fact that 0<lknz   and non-increasing, by (24), we obtain  

 

.,1),(1 5

1

=

nn
a

q
qtnAK

lkt

t
t

n

lknt









 
 
This contradicts (8). The second part of the proof for the case 0<nx  eventually is similar to the 

previous one and hence the details are omitted. Hence, the proof is complete.  
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Example 4. 
 
Consider the difference system  
 

nnn ynxx 1)2(=)3( 1    

 

1
3

= 3   nx
n

y nn .                                                                                                            (25) 

 

 Here 3=na , 1=)( nn , 1)2(= npn , 
n

qn

3
= , 3=)( nn , uuf =)( , 1=K , 

1)(1)(=),(  ssnnsnA . Then all the conditions of Theorem 3 are satisfied. Hence, every 

nonoscillatory solution }){},({ nn yx  of (25) satisfies 0=lim=lim nnnn yx  .  

 
4. Conclusion 
 
The sufficient condition for the asymptotic behavior of the two dimensional neutral difference 
system have been discussed. The example considered in this work supports the results of the 
theorem.  
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